‘

\\ |
National
Collegeof

[reland

Configuration Manual

MSc Research Project
MSc Cloud Computing

Rachana Poonacha
Student ID: 22217029

School of Computing
National College of Ireland

Supervisor: Jitendra Kumar Sharma

National College of Ireland
MSc Project Submission Sheet
School of Computing

Student
Name:

Rachana Kottangada Poonacha

Student ID:

Programme: MSc Cloud Computing Year: 2023 - 24
Module: MSCCLOUD Research Project

Lecturer: Jitendra Kumar Sharma

Submission

Due Date: 16 - 09 -2024

\—-
\ National

Collegeof
Ireland

Project Title: Integration of Security Vulnerability Tools and Kubernetes Deployment

to Obtain an Enhanced CI/CD Pipeline for A Blockchain-based
Decentralized Application (DApp)

Word Count:2625...... Page Count: 18

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: K P Rachana
Date: 16 - 09 - 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signhature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Rachana Kottangada Poonacha
Student ID: 22217029

The configuration manual outlines the steps in detail that are required to setup the
research environment for implementing the proposed solution, which was done in 3 phases.
First phase, concentrated on the development and installation of “The Yoga Studio”
Blockchain-based DApp. Second phase included the setup of Cloud environment required for
the deployment of the application into AWS Elastic Kubernetes Service (AWS EKS) and
pushing the Docker Images to AWS Elastic Container Registry (AWS ECR). The third and
the last stage is the development of CI/CD scripts to integrate “Lint”, “SonarCloud scan” and
“Deploy” stages.

1 Development and Installation of “Yoga Studio” DApp

“The Yoga Studio” DApp is a Ethereum Blockchain-based Decentralized application
which contains a set of yoga courses and booking time slots for users to purchase and
schedule appointments by making the payment using Ethereum.

e The application has been developed in Node.js programming language and the IDE
used for the development purpose is Visual Code Studio (VSC). To setup the
application, initially, the Nodejs installer is downloaded and run from Node.js website
(Nodejs, 2024). The installation can be tested by running the commands “npm -v” or
“node -v”.

e Express framework is installed using the following command (Expressjs, 2024):
“npm install -g express-generator”

e Create an application using the following command:
“npx express-generator -view=ejs blockchain-latest-v2

e EJS (Embedded Java Script) and the express framework are initialized in app.js as
shown in Figure 1.

app.set('view engine’, ‘ejs');

Figure 1: EJS and express frameworks initialized
e The application routes are configured at “routes/index.js”” as shown in Figure 2.

1

router.get(’; in (req, res

res.render('login’', {page title: "Login

Figure 2: Configuration of different routes in the application

The templating engine of EJS is used to configure reusable components using the
“footer.ejs” and “header.ejs” files in “views/partials”. The have included EJS syntax
along with HTML content. As shown in Figure 3, these scripts are added into every
single page inside “views/*.ejs” using the syntax: <%- include partials/header.ejs %>
and <%- include partials/footer.ejs %>.

%- include partials/header.ejs %>

class="intro-se
class=""
r class="header"
%- include partials/navbar.ejs %>

class="contai
class="row"
class="col-md-12 col-sm-12 text-center"
r class="intro-caption”
hl class="intro-title">The Best Yoga Studio
Figure 3: “views/partials” in index.ejs

Bootstrap has been used for the frontend design and the associated packages are
download from the official website of Bootstrap (Getbootstrap, 2024). As seen in
Figure 4, they contain pre-defined HTML, CSS and JavaScript class names that are
copied to the node’s “public/js” and “public/css” locations.

Figure 4: Libraries included for Bootstrap in public/css

As shown in Figure 5, “Web3.js” library is configured in “views/partials/footer.ejs”
and this enables interaction with the underlying Ethereum network. “Ethers.js” is also
a library that is included for communication with the Ethereum network and it
includes a number of tool sets that can be utilized to work with Ethereum.

t src=" rs. 10 6.4.U

Figure 5: Libraries such as “web3:” and “ethers.js” for interaction with Ethereum network

2

User login is facilitated via the MetaMask wallet which is made available by
“Ethers.js” library. The function written for MetaMask Login is inside
“views/login.js”” as shown in Figure 6.

web3 metamask login() {

if (web3 check metamask
console.log('Initate

st provider = new ethers.providers.Web3Provider(window.ethereum);

await provider.send("eth requestAccounts”, []);

console. log("Connect

address = await provider.getSigner().getAddress();
existingData = localStorage.getItem("metamask-
Figure 6: Function for MetaMask login

For the purpose of development, test ethers have been used which are provided by
“Ethereum Sepolia Faucet” via “The Alchemy login” (Alchemy, 2024)

User will further communicate through the MetaMask Wallet for transactions related
to “Payment” or “Making an appointment”. In both scenarios, users will interact
through MetaMask whose connections are established due to the configuration code
written inside “public/js/contract.js”. The same is shown in Figure 7. MetaMask can
be downloaded from the MetaMask website (MetaMask, 2024) to install the plugin in
your browser. For the purpose of the research, | have used MetaMask in Firefox
browser.

t connectMetamask = async ()
t account;
console.log(window.ethereum);
if(window.ethereum !== "undefined") {
t accounts = await ethereum.request({method: "eth requestAccounts”});

account = accounts|[@];
document.getElementById("userArea”).innerHTML = "User Account: ${account} ;

~eturn account

Figure 7: Function to connect to MetaMask

The two functionalities such as “Payments” and “Book an appointment” are enabled
through “Smart Contracts” written within “remix/payment.sol” and
“remix/appointment.sol”. The two programs are compiled within Remix IDE which
then generates an AIB Code. Once compiled, they are deployed into the Ethereum

Test network (sepolia) which generates a contract address. This contract address is
used to invoke the “Smart Contract” functionalities whenever the user “makes a
payment” or “books an appointment” using MetaMask. The details of both the
transactions are permanently lodged into the Blockchain network. Figure 8 represents
the ABI code and contract address of “Payment.sol” and “Appointment.sol” smart
contracts. Figure 9 represents the deployment of “appointment.sol” smart contract in
REMIX IDE.

payment_abi = '[{"inputs":[],"name": "de

payment_address = '0xe9b6392d55e6

appointment_abi = '[{"inp

5 v

8.087 SepoliaETH

3000000 Send Portfolio

Tokens NFTs Activity
Aug 17,2024
+* Contract .. -0 SepoliaETH
n}
Confirmed -0 SepoligETH
W) * Contract... -0 SepoliaETH
Confirmed -0 SepoliaETH

Il 24.9024

Figure 9: Deployment of Smart Contract through Remix IDE

e Every transaction conducted in Ethereum Blockchain including the deployment of
Smart Contracts includes a certain price that is nominal called the “Gas” price through
“Ethers”. “Gas” is the smallest unit for the measurement of the computational effort
that is required to deploy “Smart Contracts” into the Ethereum Blockchain network.

2 Setup of Cloud environment: AWS EKS, AWS ECR and
IAM

AWS Elastic Kubernetes Service (AWS EKS), AWS Elastic Container Registry (AWS
ERC) and Identity and Access Management (IAM) are required to basically run the
application, store Docker images and enable user access controls respectively.

2.1 Creating AWS EKS Cluster

The AWS EKS Cluster needs to be setup to deploy the application through

Kubernetes.

The official documentation of AWS Elastic Kubernetes Service outlines the steps in
detail to setup the cluster as per the project requirements (Amazon Web Services

(AWS), 2024)

Figure 10 represents the configuration details of the cluster that was used to conduct
the experiment along with the Kubernetes version utilized.

devops_blockchain_cluster

v Cluster info info

Status Kubernetes version Info Support period

@ Active 1.30 @ Standard support until July 28, 2025
Overview Resources Compute @) Networking Add-ons @) Access Observability Upgrade insights Update
Details

APl server endpoint OpenlD Connect provider URL

https://4164C104287365373911EF2A44FD551C.sk1.eu-north-1.ek

s.amazonaws.com 73911EF2A44FD551C

Certificate authority Cluster IAM role ARN

arn: 1:975050278219:1

https://oidc.eks.eu-north-1.amazonaws.com/id/4164C1042873653

_blockchain View in 1AM [

LSOtLS1CRUAJTIBDRVJUSUZJQOFURSOtLSOtCk 1JSURCVENDQWU
yZOF3SUJBZOUZW83MDViOFQ4ejB3RFFZSktvWklodmNOQVFFTE
JRQXAGVEVUTUJFROEXVUUKQXhNS2EzVmlaWEp 1WIhSbGN6QW

Figure 10: AWS EKS Cluster

Provider

EKS

history Tags

Created

August 4, 2024, 08:17 (UTC+01:00)

Cluster ARN

arn:aws:eks:eu-north-1:975050278219:cluster/devops_blockchain_cl

uster

Platform version Info

eks.5

The workload deployed into the Kubernetes cluster include Pods, ReplicaSets and
Deployments as shown in Figure 11, 12 and 13 respectively.

¥ Workloads

Workloads: Pods (9)
PodTemplates

Pod is the smallest and simplest Kubernetes object. A Pod represents a set of running containers on your cluster. Learn more [4

Pods

All Namespaces v | ‘Q Filter Pods by name

ReplicaSets

Deployments Name

StatefulSets

DaemonSets

aws-node-q2k9g
Jobs
CronJobs

PriorityClasses coredns-75b6b75957-4c5zt

HorizontalPodAutoscalers

» Cluster coredns-75b6b75957-csnh2

» Service and networking

) -pod-i — g
» Config and secrets eks-pod-identity-agent-5fcw9

» Storage

eks-pod-identity-agent-sn988
» Authentication
> Authorization PTpe——

» Policy

» Extensions kube-proxy-v69pn

yoga-studio-app-deployment-76d6db76fb-vocn2

Age

Created

August 5, 2024, 19:48 (UTC+01:00)

Created

August 4, 2024, 08:32 (UTC+01:00)

Created

August 4, 2024, 08:32 (UTC+01:00)

Created

August 5, 2024, 19:48 (UTC+01:00)

Created

August 5, 2024, 19:48 (UTC+01:00)

Created

[F August 5, 2024, 19:48 (UTC+01:00)

Created

August 5, 2024, 19:48 (UTC+01:00)

Created

an hour ago

Figure 11: Pods in the EKS Cluster : “yoga-studio-app-deployment- 76d6db76fb-v9cn2”

Resource types X Workloads: ReplicaSets (12)

ReplicaSet aims to maintain a set of replica Pods running at any given time. Leam more [

¥ Workloads
All Namespaces vlla a2)
PodTemplates
Pods Name Namespace Type Age Pod count Status
ReplicaSets
i Created
CPayments O coredns-75b6b75957 kube-system icasets 2
: A s (5 August 4, 2024, 08:32 (UTC+01:00)
StatefulSets
DaemonSets
Created
Job O yoga-studio-app-deployment-569598f4dc default icasets 0 .
- : s (5 August 11, 2024, 10:03 (UTC+01:00) 0fsied
CronJobs
PriorityClasses Created
" 8 yoga-studio-app-deployment-57f7667866 default replicasets 0 R
HorizontalPodAutoscalers (3 August 11, 2024, 11:00 (UTC+01:00) 0 Ready | 0 Failed
» Cluster
Created
O yoga-studio-app-deployment-5d6697954b default replicasets 0 e
» Service and networking = adayago 0 Ready | 0 Faled |0 D
Figure 12: ReplicaSets in the EKS Cluster
Resource types X Workloads: Deployments (2) View details
Deployment is an AP! object that manages a replicated application, typically by running Pods with no local state. Learn more [4
¥ Workloads r
| Al Namespaces v ‘ [Q Filter Deployments by name 1
PodTemplates ¢
Pods Name Namespace Type Age Pod count Status
ReplicaSets
o Created ——
eployments 0 d kube-system deployments 2
v R - g 3 August 4, 2024, 08:32 (UTC+01:00) 2 Ready | O Failed | 2Desied
StatefulSets
DaemonSets
Created —
C yoga-studio-app-deployment default depl its 1 3
o 2 e £ S August 4, 2024, 09:04 (UTC+01:00) 1 Ready | OFailed | 1 Desired

CronJobs

Figure 13: Deployments in the EKS Cluster

The EKS Cluster for “The Yoga Studio” DApp deployment is configured with 2
nodes as shown in Figure 14. The application is running within these nodes.

Cluster: Nodes (2) View details

A node is a worker machine in Kubernetes. Learn more [4

Q Filter Nodes by name 1
Node name A Instance type v Node group v Created v Status ¢
Created
O ip-172-31-0-56.eu-north-1.compute.internal t3.medium devopsNodeGroup @© Ready

August 5, 2024, 19:48 (UTC+01:00)

Created

ip-172-31-38-167.eu-north-1.compute.internal t3.medium devopsNodeGroup © Ready
3 August 5, 2024, 19:48 (UTC+01:00)

O

Figure 14: Nodes that form the EKS Cluster for DApp

The application is accessible through the “Services” workload and is configured of
the type “LoadBalancer” as shown in Figure 15.

Resource types X Service and networking: Services (3)

Service is an abstract way to expose an application running on a set of Pods as a network service. Learn more [4

» Workloads

All Namespaces v ‘ | Q, Filter Services by name
» Cluster
Name Age
¥ Service and networking
R Created
Services O kube-dns
- —— August 4, 2024, 08:32 (UTC+01:00)
Endpoints
EndpointSlices Created
(@) kubernetes
Ingresses = August 4, 2024, 08:22 (UTC+01:00)
IngressClasses
- Created
i O yoga-studio-app-service
» Config and secrets August 4, 2024, 09:05 (UTC+01:00)
» Storage

Figure 15: Services configured to access the application

A “Classic” Load Balancer is provided by the EKS service and the configuration of
the same is as shown in Figure 16. The DNS of the Load Balancer can be used to
access the application: http://a492faa991b2d4b27bd04a8eabcd6b3b-209784938.eu-
north-1.elb.amazonaws.com/

EC2 > Load balancers > a492faa991b2d4b27bd04aBeabcd6b3b

a492faa991b2d4b27bd04a8eabcd6b3b

[a]

v Details

Load balancer type Status VPC Date created
Classic 2 of 2 instances in service vpc-0bOcdb11acdc484d3 [4 August 4, 2024, 09:05 (UTC+01:00)

Scheme Hosted zone Availability Zones
Internet-facing 223TAZ6LKFMNIO subnet-082bd759eab04e693 [4 eu-north-1b (eun1-
az2)

subnet-0176b321f732d71f1 [4 eu-north-1c (eun1-
az3)

subnet-0645292111c539fb8 [4 eu-north-1a (eun1-
azl)

DNS name Info
2492faa991b2d4b27bd04aBeabcdb6b3b-209784938.eu-north-1.elb.amazonaws.com (A Record)

Figure 16: Load Balancer

In Kubernetes, a “Node” is nothing but a worker machine that is used to run a
containerized application which can be a physical machine or a virtual machine. A
“Pod”, in Kubernetes, is defined as the smallest object of Kubernetes that runs a
single instance of a process, usually encapsulates one or more containers. The “Pod”
configuration is submitted to the Kubernetes API server.

The application is deployed into the AWS EKS Cluster through Kubernetes manifests
such as deployment and service yamls. A “deployment.yml” manifest file is a
Kubernetes configuration file that outlines details about how the application needs to
be deployed, number of replicas of the application that are required to be maintained,
and how the applications should be updated. The “yoga-app-deployment.yaml” is the
manifest file configured for the deployment of the application into AWS EKS cluster.
The config file is as shown in Figure 17.

A service.yaml file in Kubernetes is used to expose a set of pods as a service on the
network in order to enable communication between different applications within the

cluster or from outside the network. Figure 18 is the “yoga-app-service.yaml” written
to run the DApp in AWS EKS.

2.2 Creating AWS Docker Container Registry

AWS Elastic Container Registry (AWS ECR) is a managed service that hosts Docker
images and other artifacts providing a platform to reliably deploy the applications
(Docs AWS ECR, 2024).

Figure 19 shows the list of docker images that were pushed to AWS ECR during the
application deployment via CI/CD pipeline and stored inside “devops” repository.

http://a492faa991b2d4b27bd04a8eabcd6b3b-209784938.eu-/

apiVersion: apps/vl
kind: Deployment
metadata:

name: yoga-studio-app-deployment

annotations:

service.beta.kubernetes.io/aws-1load-balancer-security-groups:

labels:

app: yoga-studio-app

spec:
replicas: 1
selector:
matchlabels:

app: yoga-studio-app

template:
metadata:
labels:

app: yoga-studio-app

spec:

automountServiceAccountToken:

containers:

- name: yoga-studio-app-container
image: DOCKER_IMAGE

ports:

- containerPort: 3@8

env.

- name: EXAMPLE_ENV_VAR

value: "example-value"

resources;

requests:

memory: “"128Mi"

limits:

memory: "256Mi"
Figure 17: yoga-app-deployment.yaml

Blockchain_latest_v2 / deployment / yoga-app-service.yaml (&

"sg-861d8cec3ed96cd48”

' RachanaPoonachaMCl Updated deployment folder for app deployment into Kuberenetes X

| Code | Blame 14 lines (14 loc)

1 apiversion:

2 kind: Serwice

E metadata:

4

5 labels:

6

7 spec:

8 selector:

9

1a ports:

11 - protocol:
12 port:

13 targetPort:
14 type: LeadBalancer

name: yoga-studic-app-service

app: yoga-studio-app

app: voga-studio-app

Figure 18: yoga-app-service.yaml

Amazon ECR » Private registry » Repositories » devops

d evops View push commands
Images (36) @
Q Search acts 1 &
Image tag v Artifact type Pushed at v Size (MB) v ImageURI Digest
9cb2129 Image August 17, 2024, 17:16:01 (UTC+01) 417.70 Copy URI sha256:b275b9a70fd8428164368ae482287...
277269 Image August 16, 2024, 19:34:22 (UTC+01) 417.70 (3 Copy URI sha256:2465f1677255638642488996800c....
O 6ca02be Image August 16, 2024, 19:29:35 (UTC+01) 417.70 Copy URI sha256:0a2e9098¢cd3d56bf0e336d3813bad...
33c912a Image August 16, 2024, 19:21:40 (UTC+01) 417.70 Copy URI sha256:c2a2aab2ea23dab9e3701a7956703...
0O 1b2d069 Image August 16, 2024, 19:17:20 (UTC+01) 41769 Copy URI sha256:8201be05b76c2ade5792b1db3c68cC. ..

Figure 19: Docker images in “AWS ECR”

2.3 Setting up of IAM roles and policies

e The next step is to create a user and assign policies related to AWS EKS and to
provide “Administrator access” to the user so that it can communicate between
different services within AWS.

e The official documentation of IAM provides detailed instructions to configure 1AM
roles and policies as per the project specifications (AWS IAM, 2024).

e Figure 20 shows the IAM configuration done as part of this research implementation.

WM > User 3 devops

devops ws

armawsiams 8750502782 Suserfdevaps

sgust 04, 2024, O7:43 (UTC+21:00)

uuuuuu

Permissions policies (3)

@ 8 g

T

Diectl

Figure 20: IAM configuration for user “devops”

3 Creation of CI/CD pipeline to integrate with “The Yoga
Studio” DApp

This part of the configuration manual provides step-by-step instructions on how the
CI/CD setup has been configured for implementing the solution for the research question.
The CI/CD pipeline is designed to automate the process of building, security detection, code

quality analysis and deployment of the application features and fixes, into the AWS EKS
cluster.

3.1 Setting up of “Github actions”

e To begin with, the source code of the DApp is stored in the “Github repository”. The
CI/CD pipeline is then configured in “Github actions”.

e Initially, the “Github actions” is setup by creating the “Github workflow”. The
“Github workflow” is created by navigating to the root folder in your repository and
then create a directory named “.github/workflows/”.

e Create afile in this directory called as “main.yml” as shown in Figure 21.

e Define the different stages of the pipeline in the workflow under “jobs” parameter.

e The workflow will be automatically triggered if there are any new changes committed
into the repository.

e The environment variables pertaining to the Cloud environment are configured under
“env” tag where you specify the “ECR Repository name” where the Docker images of
the application build are pushed, “AWS EKS Cluster name” where the application is
running, and the “AWS Region name” where the ECR repo and the EKS Cluster has
been created as shown in Figure 21.

= O RachanaPoonachaNC! / Blockchain_latest_v2

<> Code (@ lIssues 1% Pull requests ® Actions [Projects [Wiki @ Security 4 [~ Insights 3 Settings

[T Files Blockchain_latest v2 / .github / workflows / main.yml (3
g y
&% main - =2 %2 RachanaPoonachaNCl Update mainyml| X
Q Gotofile t
‘ Code ‘ Blame 204 lines (172 loc) - 6.51 KB

v @ .github/workflows

’ D mainym 1 name: Deploy to ECR
> bin 3 on:
> database J e ,
5 branches: [main]
v B dep|0ymem 6 paths-ignore:
7 - 'remix/payment.abi’
D yoga-app-deployment.yaml 8 - 'remix/payment.bin’
D yoga-app-service.yaml - 'remix/payment.json'
- 'remix/appointment.abi’
> public i1 - 'remix/appeintment.bin’
. 12 - 'remix/appointment.json’
4 Lol - 'public/js/contract.js'
> routes 14
env:
> utils ECR_REPOSITORY: devops
N i 17 EKS_CLUSTER_NAME: devops_blockchain_cluster
AWS_REGION: eu-north-1
3 .env

Figure 21: “Github workflow” main.yml file

3.2 Configuration of “job” for “Linting” stage using ESLint

10

e Figure 22 represents the configuration done in the “.github/workflows/main.yml” for
the “Lint” stage of the pipeline.

e ESLint is used for detecting errors in the code which aims to improve the overall
quality of the code and eventually the application.

e ESLint dependencies are installed from “package.json” file which is also present in
the root folder of the repository.

e The name of the “job” in the “Lint” stage is called “lint”.

e The job will run on “ubuntu-latest” OS.

e Execute “actions/checkout@v3” to fetch the entire repository to ensure that the source
code is available to run the workflow.

e Define the installation of the “Node.js” runtime environment.

e Define commands to run the “ESLint” to check JavaScript files such as “utils” and
“routes” in the source code.

e Run the pipeline to check for “Linting errors”. If any errors detected, needs to be
fixed to re-run the pipeline using the “actions” button available within the specific
Github repository.

Jjobs:
lint:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v3
with:
fetch-depth: @

- name: Install nede
uses: actions/setup-node@vd
with:

node-version: 18

- name : Run ES lint on nedels files
run: |
npm install
npx eslint utils/*.js

npx eslint routes/*.js

Figure 22: LINT Stage configuration in “main.ym]1”

3.3 Configuration of “job” for “Linting” stage using ESL.int

e Initially, generate an access token in SonarCloud under the “Sonar Cloud” security
section. This is required to authenticate SonarCloud to perform code analysis when
Github workflow is triggered.

e GITHUB_TOKEN is configured to authenticate “Github actions” with Github.

e The access token is added as an environment variable under the “Security/secrets and
variables/actions” section of the repository as shown in Figure 23.

11

Security Repository secrets New repository secret

@ Code security and analysis Name =1 Last updated
P Deploy keys
6 AWS_ACCESS_KEY_ID 2 weeks ago Va ‘C/
E] Secrets and variables A
Actions B AWS_SECRET_ACCESS_KEY 2weeksage /U
Codespaces .
B ETH_WALLET_PRIVATE_KEY last week 7z U
Dependabot
B GH_paT last week 7 U
Integrations
(@) GitHub Apps B INFURA_API_KEY lastweek 2 O
B3 Email notifications
B SoNAR_TOKEN lastweek /2 U
(2 Autolink references
a
B ToKEN_GITHUB lastweek /2 U

Figure 23: Repository secrets

e The “job” is configured to analyse security related issues of “HIGH” and “MEDIUM”
severity. The pipeline will fail in case of such security issues are identified. The code
configured for the same is as shown in Figure 24.

e The issues can be viewed in SonarCloud Web Ul and a detailed report of the analysis
will be present on the project dashboard.

sonarcloud:
name: SonarCloud Scan
runs-on: ubuntu-latest

needs : lint

steps:
- name: Checkout code
uses: actions/checkout@v3
with:
fetch-depth: @ # Shallow clones should be disabled for better relevancy of analysis

- name: SonarCloud Scan
uses: SonarSource/sonarcloud-github-action@master
eny:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} # Needed to get PR information, if any
SONAR_TOKEN: %{{ secrets.SONAR_TOKEN }}
with:
args: >

-Dsonar.exclusions=**/deploy_contract.py,**/contract.js

- name: Check for HIGH and MEDIUM security issues
run: |
response=%(curl --location 'https://sonarcloud.iofapi/issues/search?projects=Blockchain_latest vZ' %
--header 'Authorization: Bearer ${{ secrets.SONAR_API_KEY }}')

high=%{echo "$response” | jq '[.issues[].impacts[] | select(.softwareQuality == "SECURITY" and .severity == "HIGH")] | length')
medium=%(echo "%response” | jg '[.issues[].impacts[] | select(.softwareQuality == "SECURITY" and .severity == "MEDIUM")] | length')

echo "HIGH: %high"

echo "MEDIUM: Smedium"”

if ["Shigh" -gt @ 1 || ["$medium” -gt @ 1; then

if ["$high" -gt @ 1; then
echo "Blocking deployment due to HIGH or MEDIUM security issues.”
exit 1

fi

Figure 24: “SonarCloud scan” configuration in main.yml

12

3.4 Configuration of “job” for “Deploy to EKS” stage using Docker and
Kubernetes

e AWS ACCESS KEY and AWS SECRET_KEY are generated for the created
“devops” user in IAM and the same is added into the “security” section of repository
secrets. These are required to authenticate to AWS ECR and AWS EKS to push the
docker images and deploy the application respectively.

e The “job” name for application “Build” and “Deployment” is configured under the
name “Deploy to ECR” in main.yml file as shown in Figure 25.

e Initially, the job retrieves the SHA of the latest commit into the repository.

e The entire history of the code checkout is performed.

e Python environment is setup in the underlying VM in “Github actions”.

e The required dependencies to compile and deploy the “Smart Contracts” solidity code
is installed.

e The job checks for any changes in the “Smart contracts” code. If any changes found,
in “payment.sol” or “appointment.sol”, the code is re-compiled and deployed in
REMIX IDE.

e AWS credentials are configured.

e The application “Build” is performed using docker build commands and the image is
tagged appropriately and pushed to AWS ECR to keep track of all the latest and
previous changes done in the code.

e Kubernetes manifests such as “yoga-app-deployment.yaml” and “deployment/yoga-
app-service.yaml” files present in the “deployment” folder within the repository is
executed to deploy the application into the nodes created in the AWS EKS cluster.

deploy:
name: Deployment to ECR and EKS
runs-on: ubuntu-latest

needs: sonarcloud

steps:
- name: Set short git commit SHA

id: commit

uses: prompt/actions-commit-hash@w2
- name: Checkout code
uses: actionsscheckout@vs
with:
fetch-depth: @ # Shallow clones should be disabled for better relevancy of analysis

- name: Set up Python
uses: actionsssetup-pythong@vd
with:

python-wversion: "'3.x°'

- name: Install dependencies
run: |
sudo add-apt-repository ppa:ethereum/ethereum
sudo apt-get update
sudo apt-get install solc
python -m pip install --upgrade pip
pip install web3
git config --global user.name “"github-actions[bot]™

git config --global user.email “"github-actions[bot]@users.noreply.github.com"

13

- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@vl
with:
aws-access-key-1id: %{{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: %{{env.AWS_REGION}}

- name: Login to Amazon ECR
id: login-ecr

uses: aws-actions/amazon-ecr-login@vl

- name: Build, tag, and push image to Amazon ECR
env:
ECR_REGISTRY: %{{ steps.login-ecr.outputs.registry }}
IMAGE_TAG: %{{ steps.commit.ocutputs.short }7
run: |
docker build -t $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG .
docker push $ECR_REGISTRY/$ECR_REPOSITORY:S$IMAGE_TAG

- name: Update kube config

run: aws eks update-kubeconfig --name FEKS_CLUSTER_MAME --region 3A4AWS_REGION

- name: Deploy to EKS

env:
ECR_REGISTRY: %{{ steps.login-ecr.outputs.registry }}
IMAGE_TAG: %{{ steps.commit.outputs.short }}

run: |
kubectl wversion
sed -i.bak "s|DOCKER_IMAGE|%ECR_REGISTRY/3ECR_REPOSITORY:3IMAGE TAG|g" deployment/yoga-app-deployment.yaml
kubectl apply -¥ deployment/yoga-app-deployment.yaml
kubectl apply -f deployment/yoga-app-service.yaml

Figure 25: “Deploy to ECR” configuration in main.yml

e The pipeline is run to deploy the application using “Actions” button within the Github
repository.

4 Conclusion

To conclude, this configuration manual has detailed all the required steps to setup a
comprehensive CI/CD pipeline to integrate with “The Yoga Studio” DApp. This ensures a
robust software development process for Blockchain applications with enhance security,
availability and integrity.

References

Alchemy (2024), “Ethereum sepolia faucet”, Available at:
https://www.alchemy.com/faucets/ethereum-sepolia (Accessed: 17 August 2024)

AWS IAM (2024), “What is IAM?”, Available at:
https://docs.aws.amazon.com/l AM/latest/UserGuide/introduction.html (Accessed: 17 August
2024).

Amazon Web Services (AWS) (2024), “Creating an Amazon EKS cluster”, Available at:

https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html (Accessed: 17 August
2024).

14

https://www.alchemy.com/faucets/ethereum-sepolia
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html

Docs AWS ECR (2024), “Amazon Elastic Container Registry (ECR) Documentation”,
Available at: https://docs.aws.amazon.com/ecr/ (Accessed: 17 August 2024)

Getbootstrap (2024), “Build fast, responsive sites with Bootstrap”, Available at:
https://getbootstrap.com/ (Accessed: 17 August 2024)

Expressjs (2024), “Express”, Available at: https://expressjs.com/ (Accessed at: 17 August
2024).

MetaMask (2024), “Install MetaMask for your browser”, Available at:
https://metamask.io/download/ (Accessed: 17 August 2024)

Nodejs (2024), “Run JavaScript everywhere”, Available at: https://nodejs.org/en/ (Accessed:
17 August 2024).

15

https://docs.aws.amazon.com/ecr/
https://getbootstrap.com/
https://expressjs.com/
https://metamask.io/download/

	1 Development and Installation of “Yoga Studio” DApp
	2 Setup of Cloud environment: AWS EKS, AWS ECR and IAM
	2.1 Creating AWS EKS Cluster
	2.2 Creating AWS Docker Container Registry
	2.3 Setting up of IAM roles and policies

	3 Creation of CI/CD pipeline to integrate with “The Yoga Studio” DApp
	3.1 Setting up of “Github actions”
	3.2 Configuration of “job” for “Linting” stage using ESLint
	3.3 Configuration of “job” for “Linting” stage using ESLint
	3.4 Configuration of “job” for “Deploy to EKS” stage using Docker and Kubernetes

	4 Conclusion
	References

