

Configuration Manual

MSc Research Project

MSc Cloud Computing

Rachana Poonacha
Student ID: 22217029

School of Computing

National College of Ireland

Supervisor: Jitendra Kumar Sharma

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Rachana Kottangada Poonacha

………

Student ID: 22217029

………..……

Programme: MSc Cloud Computing

……………………………………………………………

Year: 2023 – 24

………………………..

Module: MSCCLOUD Research Project
…….………

Lecturer: Jitendra Kumar Sharma
…….………

Submission
Due Date:

16 – 09 -2024
……………………………………………………………………………………………………….………

Project Title: Integration of Security Vulnerability Tools and Kubernetes Deployment
to Obtain an Enhanced CI/CD Pipeline for A Blockchain-based
Decentralized Application (DApp)
…….………

Word Count:

….2625…… Page Count: …………18……………………….…….………

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: K P Rachana

……

Date: 16 – 09 – 2024
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Rachana Kottangada Poonacha

Student ID: 22217029

The configuration manual outlines the steps in detail that are required to setup the

research environment for implementing the proposed solution, which was done in 3 phases.

First phase, concentrated on the development and installation of “The Yoga Studio”

Blockchain-based DApp. Second phase included the setup of Cloud environment required for

the deployment of the application into AWS Elastic Kubernetes Service (AWS EKS) and

pushing the Docker Images to AWS Elastic Container Registry (AWS ECR). The third and

the last stage is the development of CI/CD scripts to integrate “Lint”, “SonarCloud scan” and

“Deploy” stages.

1 Development and Installation of “Yoga Studio” DApp

 “The Yoga Studio” DApp is a Ethereum Blockchain-based Decentralized application

which contains a set of yoga courses and booking time slots for users to purchase and

schedule appointments by making the payment using Ethereum.

 The application has been developed in Node.js programming language and the IDE

used for the development purpose is Visual Code Studio (VSC). To setup the

application, initially, the Nodejs installer is downloaded and run from Node.js website

(Nodejs, 2024). The installation can be tested by running the commands “npm -v” or

“node -v”.

 Express framework is installed using the following command (Expressjs, 2024):

“npm install -g express-generator”

 Create an application using the following command:

“npx express-generator -view=ejs blockchain-latest-v2

 EJS (Embedded Java Script) and the express framework are initialized in app.js as

shown in Figure 1.

Figure 1: EJS and express frameworks initialized

 The application routes are configured at “routes/index.js” as shown in Figure 2.

2

Figure 2: Configuration of different routes in the application

 The templating engine of EJS is used to configure reusable components using the

“footer.ejs” and “header.ejs” files in “views/partials”. The have included EJS syntax

along with HTML content. As shown in Figure 3, these scripts are added into every

single page inside “views/*.ejs” using the syntax: <%- include partials/header.ejs %>

and <%- include partials/footer.ejs %>.

Figure 3: “views/partials” in index.ejs

 Bootstrap has been used for the frontend design and the associated packages are

download from the official website of Bootstrap (Getbootstrap, 2024). As seen in

Figure 4, they contain pre-defined HTML, CSS and JavaScript class names that are

copied to the node’s “public/js” and “public/css” locations.

Figure 4: Libraries included for Bootstrap in public/css

 As shown in Figure 5, “Web3.js” library is configured in “views/partials/footer.ejs”

and this enables interaction with the underlying Ethereum network. “Ethers.js” is also

a library that is included for communication with the Ethereum network and it

includes a number of tool sets that can be utilized to work with Ethereum.

Figure 5: Libraries such as “web3:” and “ethers.js” for interaction with Ethereum network

3

 User login is facilitated via the MetaMask wallet which is made available by

“Ethers.js” library. The function written for MetaMask Login is inside

“views/login.js” as shown in Figure 6.

Figure 6: Function for MetaMask login

 For the purpose of development, test ethers have been used which are provided by

“Ethereum Sepolia Faucet” via “The Alchemy login” (Alchemy, 2024)

 User will further communicate through the MetaMask Wallet for transactions related

to “Payment” or “Making an appointment”. In both scenarios, users will interact

through MetaMask whose connections are established due to the configuration code

written inside “public/js/contract.js”. The same is shown in Figure 7. MetaMask can

be downloaded from the MetaMask website (MetaMask, 2024) to install the plugin in

your browser. For the purpose of the research, I have used MetaMask in Firefox

browser.

Figure 7: Function to connect to MetaMask

 The two functionalities such as “Payments” and “Book an appointment” are enabled

through “Smart Contracts” written within “remix/payment.sol” and

“remix/appointment.sol”. The two programs are compiled within Remix IDE which

then generates an AIB Code. Once compiled, they are deployed into the Ethereum

4

Test network (sepolia) which generates a contract address. This contract address is

used to invoke the “Smart Contract” functionalities whenever the user “makes a

payment” or “books an appointment” using MetaMask. The details of both the

transactions are permanently lodged into the Blockchain network. Figure 8 represents

the ABI code and contract address of “Payment.sol” and “Appointment.sol” smart

contracts. Figure 9 represents the deployment of “appointment.sol” smart contract in

REMIX IDE.

Figure 8: ABI and Contract addresses for “payment.sol” and “appointment.sol”

Figure 9: Deployment of Smart Contract through Remix IDE

 Every transaction conducted in Ethereum Blockchain including the deployment of

Smart Contracts includes a certain price that is nominal called the “Gas” price through

“Ethers”. “Gas” is the smallest unit for the measurement of the computational effort

that is required to deploy “Smart Contracts” into the Ethereum Blockchain network.

2 Setup of Cloud environment: AWS EKS, AWS ECR and

IAM

AWS Elastic Kubernetes Service (AWS EKS), AWS Elastic Container Registry (AWS

ERC) and Identity and Access Management (IAM) are required to basically run the

application, store Docker images and enable user access controls respectively.

2.1 Creating AWS EKS Cluster

5

 The AWS EKS Cluster needs to be setup to deploy the application through

Kubernetes.

 The official documentation of AWS Elastic Kubernetes Service outlines the steps in

detail to setup the cluster as per the project requirements (Amazon Web Services

(AWS), 2024)

 Figure 10 represents the configuration details of the cluster that was used to conduct

the experiment along with the Kubernetes version utilized.

Figure 10: AWS EKS Cluster

 The workload deployed into the Kubernetes cluster include Pods, ReplicaSets and

Deployments as shown in Figure 11, 12 and 13 respectively.

Figure 11: Pods in the EKS Cluster : “yoga-studio-app-deployment- 76d6db76fb-v9cn2”

6

Figure 12: ReplicaSets in the EKS Cluster

Figure 13: Deployments in the EKS Cluster

 The EKS Cluster for “The Yoga Studio” DApp deployment is configured with 2

nodes as shown in Figure 14. The application is running within these nodes.

Figure 14: Nodes that form the EKS Cluster for DApp

 The application is accessible through the “Services” workload and is configured of

the type “LoadBalancer” as shown in Figure 15.

Figure 15: Services configured to access the application

7

 A “Classic” Load Balancer is provided by the EKS service and the configuration of

the same is as shown in Figure 16. The DNS of the Load Balancer can be used to

access the application: http://a492faa991b2d4b27bd04a8eabcd6b3b-209784938.eu-

north-1.elb.amazonaws.com/

Figure 16: Load Balancer

 In Kubernetes, a “Node” is nothing but a worker machine that is used to run a

containerized application which can be a physical machine or a virtual machine. A

“Pod”, in Kubernetes, is defined as the smallest object of Kubernetes that runs a

single instance of a process, usually encapsulates one or more containers. The “Pod”

configuration is submitted to the Kubernetes API server.

 The application is deployed into the AWS EKS Cluster through Kubernetes manifests

such as deployment and service yamls. A “deployment.yml” manifest file is a

Kubernetes configuration file that outlines details about how the application needs to

be deployed, number of replicas of the application that are required to be maintained,

and how the applications should be updated. The “yoga-app-deployment.yaml” is the

manifest file configured for the deployment of the application into AWS EKS cluster.

The config file is as shown in Figure 17.

 A service.yaml file in Kubernetes is used to expose a set of pods as a service on the

network in order to enable communication between different applications within the

cluster or from outside the network. Figure 18 is the “yoga-app-service.yaml” written

to run the DApp in AWS EKS.

2.2 Creating AWS Docker Container Registry

 AWS Elastic Container Registry (AWS ECR) is a managed service that hosts Docker

images and other artifacts providing a platform to reliably deploy the applications

(Docs AWS ECR, 2024).

 Figure 19 shows the list of docker images that were pushed to AWS ECR during the

application deployment via CI/CD pipeline and stored inside “devops” repository.

http://a492faa991b2d4b27bd04a8eabcd6b3b-209784938.eu-/

8

Figure 17: yoga-app-deployment.yaml

Figure 18: yoga-app-service.yaml

9

Figure 19: Docker images in “AWS ECR”

2.3 Setting up of IAM roles and policies

 The next step is to create a user and assign policies related to AWS EKS and to

provide “Administrator access” to the user so that it can communicate between

different services within AWS.

 The official documentation of IAM provides detailed instructions to configure IAM

roles and policies as per the project specifications (AWS IAM, 2024).

 Figure 20 shows the IAM configuration done as part of this research implementation.

Figure 20: IAM configuration for user “devops”

3 Creation of CI/CD pipeline to integrate with “The Yoga

Studio” DApp

This part of the configuration manual provides step-by-step instructions on how the

CI/CD setup has been configured for implementing the solution for the research question.

The CI/CD pipeline is designed to automate the process of building, security detection, code

quality analysis and deployment of the application features and fixes, into the AWS EKS

cluster.

10

3.1 Setting up of “Github actions”

 To begin with, the source code of the DApp is stored in the “Github repository”. The

CI/CD pipeline is then configured in “Github actions”.

 Initially, the “Github actions” is setup by creating the “Github workflow”. The

“Github workflow” is created by navigating to the root folder in your repository and

then create a directory named “.github/workflows/”.

 Create a file in this directory called as “main.yml” as shown in Figure 21.

 Define the different stages of the pipeline in the workflow under “jobs” parameter.

 The workflow will be automatically triggered if there are any new changes committed

into the repository.

 The environment variables pertaining to the Cloud environment are configured under

“env” tag where you specify the “ECR Repository name” where the Docker images of

the application build are pushed, “AWS EKS Cluster name” where the application is

running, and the “AWS Region name” where the ECR repo and the EKS Cluster has

been created as shown in Figure 21.

Figure 21: “Github workflow” main.yml file

3.2 Configuration of “job” for “Linting” stage using ESLint

11

 Figure 22 represents the configuration done in the “.github/workflows/main.yml” for

the “Lint” stage of the pipeline.

 ESLint is used for detecting errors in the code which aims to improve the overall

quality of the code and eventually the application.

 ESLint dependencies are installed from “package.json” file which is also present in

the root folder of the repository.

 The name of the “job” in the “Lint” stage is called “lint”.

 The job will run on “ubuntu-latest” OS.

 Execute “actions/checkout@v3” to fetch the entire repository to ensure that the source

code is available to run the workflow.

 Define the installation of the “Node.js” runtime environment.

 Define commands to run the “ESLint” to check JavaScript files such as “utils” and

“routes” in the source code.

 Run the pipeline to check for “Linting errors”. If any errors detected, needs to be

fixed to re-run the pipeline using the “actions” button available within the specific

Github repository.

Figure 22: LINT Stage configuration in “main.yml”

3.3 Configuration of “job” for “Linting” stage using ESLint

 Initially, generate an access token in SonarCloud under the “Sonar Cloud” security

section. This is required to authenticate SonarCloud to perform code analysis when

Github workflow is triggered.

 GITHUB_TOKEN is configured to authenticate “Github actions” with Github.

 The access token is added as an environment variable under the “Security/secrets and

variables/actions” section of the repository as shown in Figure 23.

12

Figure 23: Repository secrets

 The “job” is configured to analyse security related issues of “HIGH” and “MEDIUM”

severity. The pipeline will fail in case of such security issues are identified. The code

configured for the same is as shown in Figure 24.

 The issues can be viewed in SonarCloud Web UI and a detailed report of the analysis

will be present on the project dashboard.

Figure 24: “SonarCloud scan” configuration in main.yml

13

3.4 Configuration of “job” for “Deploy to EKS” stage using Docker and

Kubernetes

 AWS_ACCESS_KEY and AWS_SECRET_KEY are generated for the created

“devops” user in IAM and the same is added into the “security” section of repository

secrets. These are required to authenticate to AWS ECR and AWS EKS to push the

docker images and deploy the application respectively.

 The “job” name for application “Build” and “Deployment” is configured under the

name “Deploy to ECR” in main.yml file as shown in Figure 25.

 Initially, the job retrieves the SHA of the latest commit into the repository.

 The entire history of the code checkout is performed.

 Python environment is setup in the underlying VM in “Github actions”.

 The required dependencies to compile and deploy the “Smart Contracts” solidity code

is installed.

 The job checks for any changes in the “Smart contracts” code. If any changes found,

in “payment.sol” or “appointment.sol”, the code is re-compiled and deployed in

REMIX IDE.

 AWS credentials are configured.

 The application “Build” is performed using docker build commands and the image is

tagged appropriately and pushed to AWS ECR to keep track of all the latest and

previous changes done in the code.

 Kubernetes manifests such as “yoga-app-deployment.yaml” and “deployment/yoga-

app-service.yaml” files present in the “deployment” folder within the repository is

executed to deploy the application into the nodes created in the AWS EKS cluster.

14

Figure 25: “Deploy to ECR” configuration in main.yml

 The pipeline is run to deploy the application using “Actions” button within the Github

repository.

4 Conclusion

To conclude, this configuration manual has detailed all the required steps to setup a

comprehensive CI/CD pipeline to integrate with “The Yoga Studio” DApp. This ensures a

robust software development process for Blockchain applications with enhance security,

availability and integrity.

References

Alchemy (2024), “Ethereum sepolia faucet”, Available at:

https://www.alchemy.com/faucets/ethereum-sepolia (Accessed: 17 August 2024)

AWS IAM (2024), “What is IAM?”, Available at:

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html (Accessed: 17 August

2024).

Amazon Web Services (AWS) (2024), “Creating an Amazon EKS cluster”, Available at:

https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html (Accessed: 17 August

2024).

https://www.alchemy.com/faucets/ethereum-sepolia
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html

15

Docs AWS ECR (2024), “Amazon Elastic Container Registry (ECR) Documentation”,

Available at: https://docs.aws.amazon.com/ecr/ (Accessed: 17 August 2024)

Getbootstrap (2024), “Build fast, responsive sites with Bootstrap”, Available at:

https://getbootstrap.com/ (Accessed: 17 August 2024)

Expressjs (2024), “Express”, Available at: https://expressjs.com/ (Accessed at: 17 August
2024).

MetaMask (2024), “Install MetaMask for your browser”, Available at:

https://metamask.io/download/ (Accessed: 17 August 2024)

Nodejs (2024), “Run JavaScript everywhere”, Available at: https://nodejs.org/en/ (Accessed:

17 August 2024).

https://docs.aws.amazon.com/ecr/
https://getbootstrap.com/
https://expressjs.com/
https://metamask.io/download/

	1 Development and Installation of “Yoga Studio” DApp
	2 Setup of Cloud environment: AWS EKS, AWS ECR and IAM
	2.1 Creating AWS EKS Cluster
	2.2 Creating AWS Docker Container Registry
	2.3 Setting up of IAM roles and policies

	3 Creation of CI/CD pipeline to integrate with “The Yoga Studio” DApp
	3.1 Setting up of “Github actions”
	3.2 Configuration of “job” for “Linting” stage using ESLint
	3.3 Configuration of “job” for “Linting” stage using ESLint
	3.4 Configuration of “job” for “Deploy to EKS” stage using Docker and Kubernetes

	4 Conclusion
	References

