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Designing a green scheduler using containers to
optimize workload distribution across multiple clusters
based the availability of low carbon energy sources

Saichandan Kondepudi
22184805

Abstract

The carbon emitted by the data centers these days is the point of notice. It
depends on the variety of factors like constant availability of renewable resources
in the data centers and others. Thus, scheduling of the jobs in the available data
centers has an elongated impact on the emission of carbon intensity. This research
tries to create a new algorithm and simulate the deployment of the algorithm on
Kubernetes cluster. The algorithm is then compared with the other two existing al-
gorithms and evaluates the parameters like energy efficiency, job scheduling, Global
resource utilization while maintaining high job scheduling percentage. The evalu-
ation was conducted with series of five different sets of available carbon intensities
and resources to evaluate the algorithms under different conditions. In every eval-
uation CAKS algorithm achieved the highest percentage of green utilization ration
and achieved better results in scheduling the jobs in each data center. However,
research also highlights the drawbacks and areas of the improvement required for
future studies. Additionally, the paper suggests the real world implementation of
this algorithm to get real time analytics. This research contributes in the concept
of green computing by demonstrating the benefits of job scheduling algorithms.

1 Introduction

Several studies have been done in the various aspects of energy efficient and carbon aware
computing. Bahreini et al. (2023)) and |Bahreini and Tantawi| (2023))introduced algorithms
which are designed to optimize workload placement across geographically distributed data
centers, exploiting temporal and spatial variations in energy availability to enhance the
utilization of renewable energy. Similarly, WU et al. (2020), Sarkar et al. (2024) and
Breukelman et al.| (2024)highlighted the benefits of shifting non urgent workloads to
periods when renewable energy is more abundant, demonstrating significant reductions
in carbon emissions without compromising service quality. Despite these advancements,
there remains a gap in real time, dynamic scheduling solutions that can seamlessly integ-
rate with modern cloud environments like Kubernetes.

This research aims to address this gap by developing a Green Scheduler for Kuber-
netes. The proposed scheduler will dynamically manage and allocate the workloads based
on real time data about renewable energy availability and carbon emissions, that optim-
izes the environmental performance of data centers. By using Kubernetes container and
monitoring it’s capabilities, the scheduler will ensure that workloads are scheduled to



minimize carbon footprints also while maintaining high levels of efficiency and perform-
ance. Below Figure (1| shows the carbon emitted by countries across the world.The data
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Figure 1: Carbon Intensity by each country across the world

The central question driving this particular research is: How can a green scheduler
can be designed to effectively optimize workload distribution across multiple
clusters based on the availability of low-carbon energy sources? This question
enquires the commitment towards advancement of cloud computing technologies with
more sustainable practices. It attempts to contribute significantly towards reducing the
global carbon footprint of digital operations. The proposed solution involves designing
and implementing a green scheduler integrated with Kubernetes. This scheduler will
use real time data on energy availability and carbon intensity to inform scheduling de-
cisions, dynamically allocating workloads to optimize for environmental sustainability.
The scheduler will integrate the advanced algorithms capable of responding to the inter-
mittent nature of renewable energy, thereby maximizing its utilization.

1.1 Structure of the Report

1. Introduction- It gives the brief idea of the project

2. Related Work- It describes about all he previous works done in his field.

3. Methodology- It describes about the techniques that should be followed to achieve the
goal.

'https://app.electricitymaps.com/map
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4. Design Specification- This section tells he design patterns that should be followed
while implementing the research work.

5. Implementation- This section tells about how exactly the research work was imple-
mented.

6. Evaluation Results- This content tell about the results that are achieved while per-
forming the analysis.

7. Conclusion- This section concludes the paper by comparing the results and analyzing
it.

2 Related Work

Nowadays, data centers are being used much more frequently used, which demands their
ability to provide scalable, on demand computing resources. However, there are a lot of
hurdles because of the environmental problems caused by data centers, particularly the
carbon emissions from intensive operations. According to WU et al.| (2020)), data centers
are predicted to use around 1% of the world’s electricity, which makes a major contri-
bution to CO2 emissions worldwide. The shift to green computing, which demands the
methods for creating and learning about energy efficiency and lowering carbon footprints,
is therefore a crucial field of study.

Initiatives that reduce the effects are being taken by the industry, as seen by Apple’s
solar energy deployment?] However, academic study continues to be essential for discov-
ering and improving data center operations worldwide. Many approaches and techniques
have already been developed to attempt to overcome these difficulties, some of which they
are discussed below. In order to create a green scheduler that optimally uses low carbon
energy sources in a Kubernetes environment, this research will attempt to evaluate the
existing literature on carbon aware and energy-efficient scheduling in cloud computing.
It will also introduce an approach from multiple studies that will look at the effects of
carbon emissions.

2.1 Innovative Use of Renewable Energy

The study paper |Akoush et al. (2011) shows an architecture which finds data centers
with renewable energy sources in order to make use of the renewable energy that is
lost . Specialized network connections and dynamic workload management are used in
this method to adjust to fluctuating energy availability., It also optimizes the energy
usage and decreases the dependency on fossil fuels by dynamically managing workloads
according to the availability of renewable energy by using virtualization and network-
ing technology. This design makes use of the underutilized renewable energy sources to
facilitate the migration of virtual machines across data centers based on energy availab-
ility. By improving energy utilization and minimizing the dependency on fossil fuels, this
methodology achieves the goals of green computing. The architectural solution in this
paper offers a practical illustration of how renewable energy can be easily implemented
in data center operations, which enhances the previously described energy and carbon
available algorithms. It fits in the gaps in the current energy management strategies for
cloud computing by providing a concrete framework that can be customized for creating
a renewable energy aware scheduler within Kubernetes Pods applications.

’https://www.cultofmac.com/191838/
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2.2  Green-Aware Workload Scheduling

The research (Chen et al.| (2012)) focuses on minimizing the brown energy consumption by
dynamically allocating the tasks across the available data centers Allocation depends on
renewable energy availability and cooling requirements of each data center. Approach in
this research paper is to utilize a dynamic scheduling algorithm that contains geographical
and temporal availability in renewable energy supply and external cooling factors. This
allows for reductions in non renewable energy use by placing workload processing with
the availability of green energy across the different locations. This method highlights the
potential of adding environmental variables directly into cloud scheduling procedures. It
offers a model for effectively using renewable energy in data center operations, which can
be crucial for developing a green scheduler in Kubernetes environments.

2.3 Eco-Aware Power Management in Data Centers

An paper by |Deng et al. (2016)), worked on an important strategy for sustainable data
centre administration. Main focus of this paper is on how to improve the energy efficiency
of data centres by adjusting power usage dynamically based on available green energy
and real time workload requirements. They have introduced online power management
strategies which aligns with environmental objectives. Without the compromise of service
quality and performance, carbon emission can be reduced. For energy management, eco
aware strategies offer some framework. They frequently lack the comprehensiveness of
carbon emission tracking that is necessary for specific reduction. This approach do not
work well with Kubernetes which play as an crucial component in cloud infrastructure.

2.4 Advanced Resource Management in Cloud Computing

This research paper |(Chen and Lu| (2020)) states about Generally Weighted Moving Aver-
age (GWMA) as an part of dynamic virtual machine allocation to detect host overloading
in cloud environments. To increase the chances to determine about when the hosts are
overloaded, this technique optimizes virtual machine migration and boosts the energy
efficiency. The GWMA Algorithm makes use of previous data to accurately predict and
control the loads of the host to assist it for efficient virtual machine migrations. It
also tries to minimize the possibility of SLA violations. It includes application that has
Maximum Correlation (MC) and Minimum Migration Time (MMT) for M placement
and selection in order to assure that migrations reduce downtime and resource waste.
To match the purpose of green computing, the GWMA algorithm and other techniques
mentioned in the paper proposes a framework Which controls data center dynamically.
This method is relevant to the creation of a green scheduler for Kubernetes, which could
benefit significantly from the inclusion of these resource management techniques.

2.5 Economic Influences on Carbon Intensity

This research paper Mahmood| (2023) proposes Autoregressive Distributive Lag (ARDL)
model which tells how foreign direct investments, natural resource ren and economic ex-
pansion affect the carbon intensity in Saudi Arabia. Method included in the paper high-
lights the complexity of environmental management in cloud computing and offers a com-
prehensive knowledge of how economic activities influence environmental consequences.
ARDL is used to examine both short and long term effects. Linear analysis is applied to



assess the asymmetric effects of economic factors. It provides an approach that can be
used to dvelope the algorithms that can dynamically schedule workloads in cloud envir-
onments. Even with the other external factors in align, these economic models show how
crucial it is to manage cloud resources. By using real time energy availability and demand,
using these techniques in cloud computing, sustainable operations can be achieved

2.6 Carbon Aware Scheduling Approaches:

By making use of real time energy availability and demand in cloud computing, sus-
tainable operations can be achieved. Research by Bahreini et al.| (2022)), they discuss
about dynamic scheduling algorithm which is based on carbon intensity measure which is
crucial for environmental sustainability. This is done to fulfil the objective of intelligent
workload distribution to lower carbon footprints. This algorithmE] takes advantage of
change in green energy supply throughout the data centre to produce optimal solution.
This was created to handle NP hard nature of the problem. The used of LP was based
on approximation technique which shows how difficult is to schedule the lowest possible
carbon emission. This is then compared to a different strategies which prioritizes cost
cutting or computational efficiency without explicitly taking environment into account.
Now, workload scheduling is dynamically altered by Google’s Carbon Intelligent Com-
puting System(CICS) to match with time when the intensity or emission of carbon is
low. All the proposed solution work well but they don’t adjust in real time in response to
unanticipated changes in energy demand or availability. When data centres are frequently
allocated in different geographic regions with variable access to renewable energy scores,
but this algorithm has capacity to manage the dynamic job scheduling adjustments and
the variations in power sources emission of carbon is also handled.

2.7 Carbon-Aware Workload Dispatcher

This research Bahreini et al.| (2023)) talks about the carbon aware scheduling algorithms
that decrease the carbon footprint of data center operations Their investigation presents
two crucial algorithms: The first is Randomized Rounding Approximation Algorithm
(RRAPX) that is a method for approaching scheduling problems which solves a linear
programming relaxation and then uses randomized rounding to get the optimal solutions.
Another one is SRRAPX, a sample based rounding algorithm method that is an improve-
ment over RRAPX. It samples several possible solutions and chooses the best one, which
reduces carbon emissions and improves it to enhance its limitations. These methods show
how algorithmic techniques can be used to significantly decrease emissions. But they lack
the ability to adjust in real time to changes in the carbon intensity of the grid, which
is a crucial component of genuinely dynamic scheduling regimes. This gap provides up
the possibility to the investigation of eco-aware scheduling techniques that handle more
general energy management issues in addition to carbon-aware scheduling.

3https://github.com/sustainablecomputing/caspian?tab=readme-ov-file
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2.8 Summary of all the previous works

Table 1: Summary of all the previous works

Article Name | Methodo- | Research | Achievements Limitations
logy Domain
Free Lunch Colocating | Renewable | Developed an archi- | High dependency on
datacen- Energy tecture for using oth- | the availability of re-
ters with | Utilization | erwise wasted renew- | newable energy; tech-
renewable | in  Data- | able energy, demon- | nical challenges in mi-
energy centers strated viability with | gration and storage
sources case studies. synchronization.
GWMA  Al- | Generally | Cloud Improved energy | Limited evaluation to
gorithm Weighted Comput- efficiency and re- | specific workloads and
Moving ing, VM | duced SLA violations | configurations; the ap-
Average Migration | compared to other | proach may not gener-
(GWMA) methods; demon- | alize well to all cloud
for host strated significant | environments or work-
overload reduction in VM | loads.
detection migrations.
Eco-Aware Dynamic Green Achieved notable | Focuses on specific
Online Power | power Cloud energy savings while | types of workloads
Management man- Datacen- managing workloads | and datacenter con-
and Load | agement ters in cloud datacenters. | figurations; may not
Scheduling for | and load address all types of
Green Cloud | scheduling power  management
Datacenters scenarios.
A Carbon- | Workload | Cloud Reduced carbon emis- | The  approach  is
aware Work- | dispatch- Com- sions through work- | highly dependent on
load Dis- | ing based | puting, load scheduling based | accurate real-time
patcher in | on carbon | Carbon on the carbon intens- | data of carbon in-
Cloud Com- | footprint Footprint | ity of different data | tensity and might not
puting Sys- Reduction | centers. be applicable in all
tems geographic locations.
Green-aware Workload | Geographi- | Improved energy ef- | The approach may
Workload scheduling | cally Dis- | ficiency and reduced | face challenges in
Scheduling in | consider- tributed operational costs by | real-time work-
Geographic- ing  geo- | Datacen- leveraging geograph- | load prediction and
ally  Distrib- | graphical ters ical distribution and | scheduling, as well as
uted Data | distribu- time-zone differences. | in handling dynamic
Centers tion changes in energy
availability across
regions.




An  Approx- | Approxi- Cloud Com- | Developed an al- | The algorithm’s ef-
imation Al- | mation puting, Carbon | gorithm to minimize | fectiveness is depend-
gorithm for | algorithm | Footprint Min- | the cloud’s carbon | ent on accurate pre-
Minimizing for work- | imization footprint through | diction models and
the Cloud | load workload scheduling; | may require frequent
Carbon Foot- | scheduling achieved reduced | recalibration to ad-
print through energy consumption | apt to changing condi-
Workload and emissions. tions in cloud environ-
Scheduling ments.

Evaluating Analytical | Cloud Comput- | Analyzed the profit- | The study is limited
the Impact of | modeling ing, Green En- | ability and sustain- | by its reliance on spe-
Green Energy | and case | ergy Utilization | ability of cloud pro- | cific case studies and
Availability study viders when integrat- | assumptions about en-
on the Prof- | analysis ing green energy, high- | ergy prices and avail-
itability and lighting potential eco- | ability, which may not
Sustainabil- nomic and environ- | generalize to all cloud
ity of Cloud mental benefits. providers.

Providers

3 Methodology

This research focuses on developing a green scheduler for KubernetesCheng et al.| (2023))
to optimize workload distribution based on the availability of low-carbon energy sources.
The methodology involves several stages, including requirement analysis, algorithm de-
velopment, scheduler integration with Kubernetes, experimental setup, testing and eval-
uation, and deployment.

1. Requirement Analysis The first step involves identifying the requirements for the
green scheduler. The research utilizes the data from the given base paper. The base
paper includes the data for which the carbon emission has been included for the given
algorithms. This paper will be using the same carbon emission for the Cakss algorithm
to compare the results with other two algorithms. The metrics will be calculated for
different number of jobs that and it will be represented on the graphical basis.

2. Algorithm Development of Kubernetes Pods Assignment Using Custom Pod Auto-

scalerd]
As stated in |Ascensao et al.| (2024) Kubernetes, a robust container orchestration platform,
provides mechanisms for managing the lifecycle of containerized applications across a
cluster. One of the key features of Kubernetes is its ability to scale applications dynam-
ically based on demand. This is typically handled by Horizontal Pod Autoscalers (HPA)
that adjust the number of pods in a deployment based on observed metrics. However,
for more complex scaling requirements, such as integrating custom metrics or advanced
scaling logic, Custom Pod Autoscalers (CPA) are used. Custom Pod Autoscalers are the
kubernetes pods that runs within the cluster and manage resources just like deployments.
Custom Pod Autoscalers abstract the Kubernetes API interactions, allowing developers
to focus on the scaling logic. Each CPA includes a base program that handles API inter-
actions and executes custom logic provided by the developer via shell commands.

‘https://discuss.kubernetes.io/t/custom-load-balancing-in-kubernetes/16273
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Structure and Functionality

e Base Program: It manages Kubernetes API interactions and triggers custom logic
by executing shell commands with piped information.

e Custom Logic: Developers provide custom logic scripts in any language (e.g., Py-
thon, Go) to gather metrics and evaluate scaling decisions. The custom logic is
responsible for:

Metric Gathering: Collecting metrics from Kubernetes metrics API or other
sources.

Evaluation: Deciding the number of replicas needed based on gathered metrics.

Workflow

The CPA receives input (such as Pod or Deployment JSON) through a shell command.
Custom scripts calculate or retrieve necessary metrics and output the results. The base
program reads these outputs, determines scaling actions, and interacts with the Kuber-
netes API to adjust the number of pod replicas accordingly.

To simplify the setup and management of CPAs, an operator can be used. The Custom
Pod Autoscaler Operator automates the provisioning of necessary Kubernetes resources
(e.g., Roles, Service Accounts) to run CPAs efficiently. By defining a CustomPodAuto-
scaler in YAML, developers can deploy it to the cluster with minimal manual configur-
ation. The Horizontal Pod Autoscaler (HPA) can be re implemented as a Custom Pod
Autoscaler to leverage custom metrics and advanced scaling logic. This approach retains
the familiar features of HPA while extending its functionality to meet specific scaling re-
quirements. When deploying services that require external accessibility, an external load
balancer can be created to provide an IP address that routes traffic to the appropriate
cluster nodes. This is particularly useful for services that need to be accessible from
outside the cluster.

Steps to Create an External Load Balancei]:

e Define Service with LoadBalancer Type. Add the type LoadBalancer line to the
manifest the service.

e Using kubectl to Create the Service: Alternatively, use the kubectl expose command
with the —type=LoadBalancer flag to create the service.

e Finding the IP Address and retrieve the external IP address assigned to the service
by running:

e Preserving Client Source IP

e To ensure the client’s original IP address is preserved, configure the .’spec.external TrafficPolicy’
field in the Service manifest. Setting it to the local preserves the client source IP
and avoids a second hop for LoadBalancer and NodePort type Services.

Garbage Collecting Load Balancers Kubernetes v1.17 introduced Finalizer Protection for
Service LoadBalancers to prevent orphaned cloud resources. A finalizer ensures that a
Service resource is not deleted until the corresponding load balancer resources are cleaned
up. By implementing these methodologies, Kubernetes can efficiently manage and scale

Shttps://discuss.kubernetes.io/t/custom-load-balancing-in-kubernetes/16273
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applications, ensuring optimal resource utilization and maintaining high performance
even under varying load conditions.

3. Scheduler Integration to develop algorithm with Kubernetes and custom Scheduler
Development and Extend Kubernetes with a custom scheduler written in python or java.
Then, Implement resource requests and limits to guide workload distribution. Then,
Configure Kubernetes priority classes to favor low-carbon energy usage.

4. Experimental Setup Set up a test environment to validate the scheduler Test Cluster
Deployment: Deploy a Kubernetes cluster for testing. Workload Simulation: Use syn-
thetic workloads that mimic real world applications. Incorporate real time and previous
carbon intensity data.

5. Testing and Evaluation

We need to evaluate the scheduler’s performance: Gather data on energy consumption,
carbon emissions, and workload performance. Compare the green scheduler with tradi-
tional scheduling approaches. Analyze performance data to identify strengths, weaknesses,
and areas for improvement.

6. Deploy the scheduler in a real-world environment and implement the scheduler in a
live Kubernetes environment. Continuously monitor performance and adjust as neces-
sary. Document the deployment process and outcomes for future reference.

To Creating an External Load Balancer, we need to Create a Kubernetes Service with
type LoadBalancer to automatically create an external load balancer with an externally-
accessible IP address. Use YAML manifest or kubectl expose command to set up the
Service.Retrieve the load balancer’s IP address using kubectl describe services. Configure
externalTrafficPolicy to Local to preserve client source IPs. Use finalizers to ensure
proper cleanup of load balancer resources upon Service deletion. Measure reduction in
energy consumption and quantify the reduction in carbon footprint. Assess impact on
workload performance and system responsiveness and evaluate the scheduler’s ability to
handle varying workloads. Ensure compliance with data privacy regulations. Assess both
positive and negative impacts on the environment. Avoid biases in resource distribution
among tasks and users.

4 Design Specification
Carbon Aware Kubernetes Scheduler (CAKS)

Current methods are designed to solve a wide range of optimization problems. How-
ever, the CAKS problem involves specific constraints like minimizing carbon intensity,
scheduling based on real-time data, and managing resource availability dynamically across
multiple data centers. These real-time characteristics and resource limitations required
a custom-designed solution tailored to green computation needs.General optimization
algorithms may not be efficient for problems requiring real-time decision-making due to
their computational complexity but CAKS is designed to work efficiently within real-time
constraints, scheduling jobs dynamically based on real-time carbon intensity and resource
availability across geographically distributed data centers. The goal of CAKS is to re-
duce carbon emissions by factoring in the carbon intensity of different data centers while
maintaining efficient resource usage. Both RRAPX and SRRAPX rely on fractional or
randomized approaches, which, although simpler, can lead to suboptimal decisions and
increased execution times due to the need for re-evaluation or adjustments when resources



are insufficient. CAKS’s more structured approach results in better performance in terms
of both scheduling time and energy usage.
Below is the proposed algorithm and description of it.

Notation

e T Time horizon for executing the jobs.

e M: Set of m data centers (Kubernetes clusters).

e N: Set of n jobs currently in the queue.

e Bj;: Available capacity of data center j in time slot ¢.

e [;;: Carbon intensity of data center j in time slot ¢.

e 7;: Computational resource requested by job i.

o R;: Total CPU demand in time slot ¢.

e [;: Duration time of job i.

e d;: Deadline to complete job .

e 7;;;: Binary variable indicating if job 7 is started on data center j in time slot t.

e ~: Prioritization factor.

Algorithm: Carbon-Aware Kubernetes Scheduler (CAKS)
Input: (M, M, T)
1. Initialize Variables:

L4 Xbest — {0}
[ ] GRUbest +~—0
L Fbest «— N

The algorithm initializes variables to keep track of the best scheduling matrix, the
best GRU value, and the best number of failed jobs.

2. Fetch Real-time Data:

e For each data center j € M:

— I} < fetchCarbonIntensity(j, t)
— Bj < fetchResourceAvailability(j, ¢)

The algorithm fetches real time data for carbon intensity and resource availability
for each data center and each time slot.

3. Preprocess Jobs:

e Sort jobs i € N based on their deadlines d; and resource requirements r;.

10



Jobs are sorted based on their deadlines and resource requirements to prioritize jobs
with more stringent deadlines and higher resource needs.

4. Initial Scheduling:

e For each job i € N:
— scheduleJob(i)
Each job is scheduled using the scheduleJob function, which aims to find the best

time slot and data center that minimizes the carbon intensity while satisfying re-
source constraints.

5. Function scheduleJob(i):

e minCost < oo

o (j*,1*) < null

e For each data center j € M:

— For each time slot t € {0,...,T — [;}:
« If B > r; and t +1; < d:

. Calculate cost: cost ¢ S 5! It
- If cost < minCost:
- minCost < cost

) (j*7t*> — (j7 t)
o If (5%,t*) # null:
— Assign job ¢ to data center j* at time slot t*
— Update zl;. 1
— For each ' € {t*,...,t* + 1, — 1}:
* B;’ — B;; -1
The function iterates over all data centers and time slots to find the best slot that
minimizes the carbon cost for the given job. If a feasible slot is found (i.e., the data

center has enough resources and the job can complete before its deadline), the job
is assigned to that slot, and resource availability is updated.

6. Calculate GRU:

S ien Thams
e GRU « Zje/v( PIREE_

t
I;

The GRU is calculated by summing the resource usage divided by the carbon in-
tensity across all scheduled jobs, data centers, and time slots.

7. Update Best Solution:

o If GRU > GRUjpeg:

— GRUpest <+ GRU
- Xbest — X

11



If the current scheduling provides a higher GRU than the best found so far GRU
and scheduling matrix are updated.

8. Output: (GRUpest, Xpest)

The algorithm outputs the best GRU value and the corresponding scheduling matrix.

This algorithm offers several key differences when compared to other two algorithm
CAKS explicitly aims to minimize carbon emissions by leveraging real time carbon in-
tensity data whereas, RRAPX and SRRAPX focus on approximating an optimal job
allocation solution with a primary goal of minimizing computational costs. CAKS uses a
direct approach to assign jobs to the least carbon intensive slots while ensuring resource
and deadline constraints. RRAPX uses a fractional assignment followed by deterministic
rounding. SRRAPX enhances RRAPX by incorporating stochastic elements for rounding
and performs multiple iterations for improved results. CAKS continuously fetches real
time carbon intensity and resource availability data, making it highly adaptive to chan-
ging environmental conditions. RRAPX and SRRAPX primarily focus on pre computed
fractional solutions and rounding procedures, without real-time data integration. CAKS
outputs the best GRU and corresponding scheduling matrix based on carbon intensity
optimization. RRAPX and SRRAPX provide job schedules optimized for computational
cost, potentially leading to different resource utilization patterns.

CAks scheduler is designed to be compatible with Kubernetes as described in [Poulton
(2024)), leveraging container technology for efficient workload management and resource
utilization. Workloads are encapsulated within containers, enabling seamless deployment,
scaling, and management across different clusters. By focusing on reducing carbon emis-
sions and adapting to real time data, CAKS offers a unique approach to job scheduling in
distributed computing environments, distinct from the cost centric methods of RRAPX

and SRRAPX.

5 Implementation

Since establishing real time data centres and deploying the algorithm on kubernetes re-
quires lot of cost, energy and lots of time, this project was simulated in IFogsim using
Java language as here are several perks of simulating it in Ifogsim as described in |Agrawal
and Singh (2023) and [Yousuf Khan and Rahim Soomro (2022)). It is mostly suitable for
simulating container based algorithms of Fog Computing. The entire environment of the
project has been simulated using IFogSim too]ﬂ In Kubernetes, workloads are managed
using pods, which run containers. In iFogSim, these were mapped to application mod-
ules. Each module represents a specific component of an application, and Kubernetes
pods were mapped to iFogSim’s application modules, allowing the management of con-
tainerized workloads.Kubernetes nodes represent the physical or virtual machines that
run workloads. In iFogSim, these were mapped to fog devices. Each fog device in iFogSim
simulates a node where modules (pods) are deployed, and these nodes are interconnected
in a hierarchical fog architecture. Kubernetes’ scheduling policies were integrated into
iFogSim by customizing the module placement policies (ModulePlacementMapping and
ModulePlacementEdgewards). This allowed the simulation to handle Kubernetes-style
scheduling, where containers are placed based on resource availability, CPU, memory,

Shttps://github.com/Cloudslab/iFogSim/releases/tag/v2.0.0
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Figure 2: Architectural diagram

and custom policies like minimizing carbon footprint or energy consumption. Kuber-
netes dynamically manages resources like CPU and memory across its nodes. iFogSim’s
AppModuleAllocationPolicy was extended to use Kubernetes’ logic, ensuring that work-
loads are scheduled on fog devices based on real-time resource monitoring and require-
ments. The integration allowed for the simulation of container orchestration across a
distributed fog environment, where latency, resource constraints, and workload demands
are crucial factors. iFogSim is specifically designed to simulate fog computing environ-
ments, which involve the deployment of applications and services closer to the edge of
the network. iFogSim’s architecture is built to handle such distributed scenarios, making
it a more suitable tool than CloudSim for this project

iFogSim includes advanced models for both energy consumption and network latency,
which are critical for fog computing simulations. These models allowed us to calculate
the carbon intensity and energy consumption across multiple fog nodes in our study.
CloudSim, while efficient in simulating large-scale cloud environments, does not provide
the same level of granularity for modeling energy consumption and latency in fog or edge
environments, which are key considerations in our project.

5.1 Simulated Architecture

Attribute Value
System Architecture x86
Operating System Linux

Virtual Machine Manager  Xen

Table 2: Architecture used in Simulation

13



5.2 Main function

The main function the entire simulation setup and execution, from initializing the jobs
and fog devices to configuring the application modules and running the scheduling al-
gorithms. The 'CloudSim.init” method is called to initialize the CloudSim library, which
provides the underlying simulation infrastructure, including the simulation clock and
event management system. Then, the ’initializeJobs” method is invoked to create a list
of jobs that need to be scheduled. Every job has given defined parameters - required
MIPS (Million Instructions Per Second), duration, and deadline that are stored stat-
istically. After the initialization, the ’createFogDevices’ method is called up to set up
the fog devices which represents Kubernetes clusters and the cloud data centers. All
the fog device is created with number of computational resources, memory, bandwidth
and storage. The ’createApplication’” method defines the application modules and its
interconnections. This method sets up the ”client”, ”scheduler” and ”cloud” modules to
simulate the components of a distributed application running on the fog and cloud infra-
structure. A Controller object is instantiated to manage the fog devices and application
modules. The controller is responsible to deploying the application onto the fog devices
based on the module mapping.

5.3 RunCAKSSimulation function

This functions reflects the algorithm that is mentioned in the above section. This func-
tion is a critical component of the simulation which is designed to evaluate the CAKS
algorithm’s performance in terms of minimizing carbon intensity while scheduling jobs
across multiple data centers. It aims to find the optimal scheduling strategy that minim-
izes the carbon footprint by utilizing available resources.

The function begins by initializing variables to keep track of the best GRU (Green Re-
source Usage) and the current GRU with matrices to store scheduling information. The
‘schedulingMatrix’ records the resource allocation for each data center and the ’best-
SchedulingMatrix’ keeps track of the best scheduling configuration found during the en-
tire simulation. The main task of the function involves iterating over each job in the list
of given jobs to be scheduled. Based on the carbon intensity and resource availability for
each job, the ’scheduleJobCAKS’ function is called to find out optimal data center and
start time for the job, The scheduling matrix records the work’s resource requirements,
and the resource availability matrix deducts the relevant resources once a valid assign-
ment is done. The energy consumption for the job is calculated and added to the total
energy consumption of the assigned data center. This ensures that the simulation records
the energy usage associated with running the job, contributing to the overall carbon foot-
print. After all jobs have been processed, the function calculates the GRU for the current
scheduling configuration using the 'calculateGRU’ function. If the current GRU is higher
than the best GRU found so far, the best GRU and best scheduling matrix are updated
accordingly. Then, the function returns the best GRU that we get during the simulation,
representing the most carbon efficient scheduling strategy found for the given jobs and
data centers.

The ’scheduleJobCAKS’ function is responsible for determining the best data center and
start time for a given job.Main aim of this function is to minimize the carbon cost and
satisfy resource constrains. This function iterates over all data centers and possible start
times within the time horizon. It checks the feasibility of scheduling the job at each time
slot. For each combination of data center and start time, the function calculates the total
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carbon cost incurred by running the job. If the data center has sufficient resources and if
the job can be completed before its deadline, then carbon cost is computed by adding the
carbon intensities over the job’s duration. The function also keeps track of the minimum
carbon cost used and the corresponding data center and start time. If a feasible and
less costly assignment is found, it updates the best assignment accordingly. Finally, the
function returns the best assignment of data center and start time for the job, or null
if no feasible assignment is found. The ‘runCAKSSimulation’ and ‘scheduleJobCAKS’
functions work together to simulate the CAKS algorithm, aiming to achieve an optimal
scheduling strategy that minimizes carbon intensity while efficiently utilizing available
resources in a distributed computing environment.

5.4 SolveLPRelaxation function

SRR APX algorithm uses this function and RRAPX algorithm for determining faction
of solution to job scheduling problem with the help of LP relaxation. This function is
designed to ideally allocate job to the data centres, this will reduce carbon emission while
keeping resource constraints on track. Three primary inputs are used in this function,
first, an matrix of carbon emission value for each data centres, second, job deadline and
finally a matrix of all the available resources for each data centres with time slots (resource
availability). The fraction solution matrix is the output of the function which provides
optimal allocation of jobs to the data centres across different time slots. The function
starts by determining the number of jobs, number of data centres and available and
time horizon. ‘FranctionalSolution’ matrix is then initialized this will store the results
of LP relaxation process. Also, ‘objectiveFunction’ array is set up to define the linear
objective function for LP solver. All these steps involves iterating through each jobs, data
centres and time slots, and these sets the corresponds value in the ‘objectiveFunction’
array to carbon emission for that specific data centre and time slots. To make certain
feasible scheduling, this function provides set of liner limitations after objective function
is created. Just like Breukelman et al. (2024), the first set of constraints are resource
constraint, this makes sure that overall resources are used with coefficients that are set
to MIPS requirements of the workloads which are created for each data centres and time
slot. The second set of constraints are the job scheduling constraints, this guarantees that
every job is scheduled precisely once for every data centre and time slot. To perform this,
one more constrains is created for each job with coefficient set to one for all possible job
allocations. The main aim of this job solver is to minimise the objective function while
meting all constraints. The function extracts the solution values into ’fractionalsolution’
matrix if the solver finds solution. This matrix will act as an guide for more detailed
scheduling algorithm by indicating the percentage of each job that should be assigned to
each data centre and time slot

5.5 RunRRAPXSimulation function

Even this function tries to optimize the job scheduling in IfogSim environment. It aims
to minimize the carbon intensity and given resource constraints. This function has two
inputs, the matrix of carbon intensity and deadline of each job. This function returns
the best GRU that we get while executing the function.

'bestGRU’ is initialized to zero in the beginning and empty ’schedulingMatrix’ is cre-
ated to keep track of job that scheduled across all the fog devices and deadlines of the
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jobs. It uses the ’solveLPRelaxation’ function to obtain a fractional solution for the job
scheduling problem. This fractional solution gives the path for initial allocation of jobs
based on carbon intensity and available resources. The main part of the function is it-
erating through the list of jobs and schedule each job using the ’scheduleJobRRAPX’
function. This function compares the fractional solution with the available resources and
carbon intensity to determine whether it is feasible to schedule a job at each data centre
and time slot. When a feasible assignment is identified, the ’schedulingMatrix’ and 're-
sourceAvailability’ matrices are modified accordingly and the job is scheduled. The total
energy consumption of the relevant fog device is increased by the energy used by each job.
The function computes the GRU by adding the scheduled resource usage to the carbon
intensity for every data centre and time slot once all tasks have been scheduled. This
calculation provides a measure of the efficiency of the resource utilization of the carbon
intensity. The function then returns the bestGRU value, representing the optimal GRU
achieved during the simulation. Based on the fractional solution generated from the LP
relaxation, the ’scheduleJobRRAPX’ function is an assist function used within the main
runRRAPXSimulation function to identify the optimal assignment for each work. It it-
erates through each data center and time slot to check if the fractional solution indicates
a positive allocation for the job. If the data center has enough resources and the job can
be completed within the given time slot, then job is assigned to that slot. The function
returns the best assignment found and the start time slot. If no feasible assignment is
found, the function returns null value.

5.6 RunSRRAPXSimulation function

SRR APX(Stochastic Relaxed Resource Allocation for APX) algorithm is the extension
of the RR APX algorithm. By balancing resource availability and carbon intensity, this
function tries to optimise job scheduling in a fog computing environment and minimise
the overall carbon impact while meeting resource restrictions.

The function begins by initializing the bestGRU to zero and creating empty matrices for
the 'bestSchedulingMatrix’ and the current schedulingMatrix as it indicates the single
simulation iteration. Just like above function, the ’solveLPRelaxation’ function is then
called to obtain a fractional solution for the job scheduling problem, providing a guideline
for the initial allocation of jobs based on carbon intensity and resource availability. The
main part of the function involves iterating through the number of iterations S. For each
iteration, it initializes a new ’schedulingMatrix’ and a counter for 'failedJobs’. It then at-
tempts to schedule each job from the JOBS list using the scheduleJobSRRAPX function.
This function checks the feasibility of scheduling a job at each data center and time slot
based on the fractional solution, resource availability, and carbon intensity. If a feasible
assignment is found, the job is scheduled, and the ’schedulingMatrix’ and 'resourceAvail-
ability’ matrices are updated accordingly. If the job cannot be scheduled, the 'failedJobs’
counter is incremented. The function uses the ’calculateGRU’ function to determine the
GRU for the current scheduling matrix after trying to schedule every job.Then, the ratio
of scheduled resource utilisation to carbon intensity for each data centre and time slot is
added up to determine the GRU. Next, the function compares the present GRU with the
best GRU discovered so far and then ’best GRU’ and ’bestSchedulingMatrix’ are updated
if the current GRU performs better Based on the fractional solution obtained from the
LP relaxation, the scheduleJobSRRAPX function is an assist function used within the
main runSRRAPXSimulation function to identify the optimal assignment for each work.
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It iterates through each data center and time slot, checking if the fractional solution in-
dicates a positive allocation for the job. If the the data center has enough resources and
the job can be completed within the given time slot then the job is assigned to that slot.
The function returns the best possible assignment, which is indicated by an array with
the data centre index and the start time slot. The function returns null in the case that
no workable assignment is discovered.

6 Evaluation

This section analyzes the performance and efficiency of the proposed Carbon Aware
Kubernetes Scheduler (CAKS) algorithm in comparison with the RRAPX and SRRAPX
algorithms.The results are obtained from the simulations that are done in Ifogsim frame-
work. simulations. It mainly focuses on metrics such as the Green Resource Utilization
(GRU) and energy consumption. By examining these metrics, research aims to demon-
strate the effectiveness of the CAKS algorithm in reducing the carbon footprint of data
center operations while maintaining efficient resource utilization.

Simulation contains total of five data centres. The parameters such as carbon intens-
ity and resource availability of three of the data centers(Ontario-Canada, Newyork-USA,
Greater Britain) were taken from the real time carbon intensity that was recorded on
2023/07/22. Parameters for the other two data centre are given statistically in the im-
plementation. The simulations were run several times with different parameters each
time to compare the results of all three algorithms. The results of given parameters are
shown below table.

Steps in GRU Calculation:

1. Job Scheduling: Jobs are assigned to data centers and time slots, and for each
assignment, a binary decision variable xﬁj is set to 1 if job 7 is scheduled on data
center j at time ¢, otherwise it remains 0.

2. Carbon Intensity: For each scheduled job, the carbon intensity at the assigned
data center and time slot is considered. Higher carbon intensity increases the en-
vironmental cost.

3. Summation: The summation is taken over all jobs 7, time slots ¢, and data centers
j, dividing the resource usage of each job r; by the carbon intensity [;.Bahreini
et al.| (2023)

Table 3: Comparison of Algorithms for Set 1

Metric CAKS RRAPX | SRRAPX
Best GRU 162850.80 7.67 268.12
Energy of dcl 2039678.00 | 2039678.00 | 2039678.00
Energy of dc2 2328063.27 | 2328063.27 | 2328063.27
Energy of dc3 11426740.87 | 11426740.87 | 11426740.87
Energy of dc4 200963.27 200963.27 200963.27
Energy of dcb 201218.89 201218.89 201218.89
Energy of cloud 166866.60 166866.60 166866.60
Best GRUBahreini et al[ (2023) 89450.06 8.33 226.54
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Table 4: Comparison of Algorithms for Set 2

Metric CAKS RRAPX | SRRAPX
Energy of dcl 2338678.00 | 2338678.00 | 2338678.00
Energy of dc2 2641063.27 | 2641063.27 | 2641063.27
Energy of dc3 10924740.87 | 10924740.87 | 10924740.87
Energy of dc4 203463.27 203463.27 203463.27
Energy of dcb 201378.89 201378.89 201378.89
Energy of cloud 166866.60 166866.60 166866.60
Best GRU [Bahreini et al| (2023) | 51,880.66 8.44 204.27
Table 5: Comparison of Algorithms for Set 3
Metric CAKS RRAPX | SRRAPX
Energy of dcl 2530678.00 | 2530678.00 | 2530678.00
Energy of dc2 2784063.27 | 2784063.27 | 2784063.27
Energy of dc3 11590740.87 | 11590740.87 | 11590740.87
Energy of dc4 205963.27 205963.27 205963.27
Energy of dcb 203818.89 203818.89 203818.89
Energy of Cloud 166866.60 166866.60 166866.60
Best GRU [Bahreini et al[(2023) | 64972.87 8.39 224.16
Table 6: Comparison of Algorithms for Set 4
Metric CAKS RRAPX | SRRAPX
Energy of dcl 2902678.00 | 2902678.00 | 2902678.00
Energy of dc2 2931063.27 | 2931063.27 | 2931063.27
Energy of dc3 12276740.87 | 12276740.87 | 12276740.87
Energy of dc4 208623.27 208623.27 208623.27
Energy of dcb 206378.89 206378.89 206378.89
Energy of cloud 166866.60 166866.60 166866.60
Best GRU [Bahreini et al[(2023) | 51880.66 8.44 204.27
Table 7: Comparison of Algorithms for Set 5
Metric CAKS RRAPX | SRRAPX
Energy of dcl 3084678.00 | 3084678.00 | 3084678.00
Energy of dc2 3082063.27 | 3082063.27 | 3082063.27
Energy of dc3 12982740.87 | 12982740.87 | 12982740.87
Energy of dc4 211443.27 211443.27 211443.27
Energy of dcb 209058.89 209058.89 209058.89
Energy of cloud 166866.60 166866.60 166866.60
Best GRU Bahreini et al.| (2023) | 43673.06 8.48 206.17

In this table:

The execution time is in seconds (s).
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The energy consumed by data centers and the cloud is in watt-hours (Wh).
GRU (Green Resource Utilization) is measured in MIPS per gram of COy (%).
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Figure 3: GRU by algorithm simulation set Figure 4: Job scheduling success rate ratio

6.1 Evaluation 1

This evaluation involves the comparison of the Green resource utilization of all three
algorithms in all the simulations. The higher GRU indicates a more effective scheduling
algorithm in terms of optimizing resource usage and minimizing carbon footprint. The
following graph Figure Bprovides a visual representation of the GRU comparison across
all sets for the three algorithms:

e Set 1: CAKS achieved a GRU of 162850.80, RRAPX achieved 7.67, and SRRAPX
achieved 268.12.

e Set 2: CAKS achieved a GRU of 89450.06, RRAPX achieved 8.33, and SRRAPX
achieved 226.54.

e Set 3: CAKS achieved a GRU of 64972.87, RRAPX achieved 8.39, and SRRAPX
achieved 224.16.

e Set 4: CAKS achieved a GRU of 51880.66, RRAPX achieved 8.44, and SRRAPX
achieved 204.27.

e Set 5: CAKS achieved a GRU of 43673.06, RRAPX achieved 8.48, and SRRAPX
achieved 206.17.

From above results, it is clearly seen that the CAKS algorithm consistently produces a
significantly higher GRU compared to RRAPX and SRRAPX. This proves that CAKS is
more efficient in utilizing available resources. The main difference in GRU values between
CAKS and the other two algorithms underscores its superiority in optimizing for both
resource efficiency and sustainability.
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6.2 FEvaluation 2

The second metric for measuring the performance of the algorithms is the Job Schedul-
ing Success Ratio. This metric measures the proportion of jobs successfully scheduled
and executed within their specified deadlines and resource constraints. The higher job
scheduling success ratio tells that algorithm is more reliable to meet the deadline of the
jobs and it uses available resources effectively. Figure 4| shows the jobs scheduled by all
the algorithms in different sets of simulations. The job scheduling success ratios for each
algorithm across the five sets are as follows:

e Set 1: CAKS successfully scheduled all 10 jobs, RRAPX successfully scheduled all
10 jobs, and SRRAPX successfully scheduled 8 out of 10 jobs.

e Set 2: CAKS successfully scheduled all 10 jobs, RRAPX successfully scheduled all
10 jobs, and SRRAPX successfully scheduled 8 out of 10 jobs.

e Set 3: CAKS successfully scheduled all 10 jobs, RRAPX successfully scheduled all
10 jobs, and SRRAPX successfully scheduled 8 out of 10 jobs.

e Set 4: CAKS successfully scheduled all 10 jobs, RRAPX successfully scheduled all
10 jobs, and SRRAPX successfully scheduled 8 out of 10 jobs.

e Set 5: CAKS successfully scheduled all 10 jobs, RRAPX successfully scheduled all
10 jobs, and SRRAPX successfully scheduled 8 out of 10 jobs.

From these results, it is clear that CAKS has assigned all the jobs in four out of five assign-
ments which shows the efficiency if the algorithms. This indicates that these algorithms
are highly effective in managing the available resources and meeting job deadlines. Al-
though, RRAPX algorithm was able to schedule 100% of the jobs, SRRAPX failing to
schedule 2 out of 10 jobs in each set.

6.3 Discussion

In this study, five sets of simulations were conducted, evaluating the performance of
three different algorithms: CAKS, RRAPX, and SRRAPX. Across all simulation sets,
the CAKS algorithm consistently demonstrated superior performance by achieving the
highest GRU (Green Resource Usage) values. This highlights CAKS’s ability to optimize
resource utilization more effectively, making it highly efficient in leveraging available com-
putational resources while minimizing environmental impact. By incorporating real-time
carbon intensity data into the scheduling process, CAKS dynamically adjusts its de-
cisions to strike a balance between resource optimization and carbon footprint reduction.
In contrast, while RRAPX and SRRAPX offer less computational complexity and lower
processing overhead, they were unable to match CAKS in terms of resource utilization
and efficiency. The results underscore the importance of incorporating environmental
factors into workload scheduling, as CAKS’s carbon-aware approach proved more ad-
ept at handling both energy consumption and resource distribution in the simulated fog
environment.
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7 Conclusion and Future Work

This simulated an algorithm on IfogSim platform and try to reduce the carbon emission
by utilizing more renewable energy from the sources. Main focus of this research was
on how can a green scheduler can be designed to effectively optimize workload distri-
bution across multiple clusters based on the availability of low carbon energy sources.
This research states that the CAKS algorithm outperformed the other two algorithms
across all key metrics. It achieved significantly higher GRU values, suggesting better
resource utilization and a more efficient scheduling process. Additionally, CAKS demon-
strated a higher job scheduling success rate and a more balanced energy consumption
across devices, highlighting its capacity to distribute workloads effectively while consid-
ering both resource availability and carbon intensity. The findings in this research is
significant development towards green computing. By integrating carbon intensity data
into scheduling decisions, CAKS not only optimizes resource usage but also contributes
to reducing the overall carbon footprint of computing operations. This approach aligns
with the growing emphasis on environmental sustainability in technology, making CAKS
a promising solution for future fog and cloud computing environments. These results
carry significant implications, especially when considering sustainable computing. Using
carbon intensity data into scheduling decisions allows CAKS to minimize total carbon
footprint of computing processes while simultaneously optimizing resource utilization.
Because of its potential uses in cloud and fog computing, CAKS is a promising solution
that fits with the increasing focus on environmental sustainability in technology.

While the study successfully demonstrated the benefits of CAKS, this research still has
some limitations. As shown in above results, this research completely drain out the re-
newable resources out the data centres. By using the heterogeneous approach of using
both renewable and non- renewable energy, the energy sources can be balanced out. Fu-
ture works includes the implementation of this algorithm in actual data centres and would
the compare the actual results with simulated results. It also proposes the upgrade an
algorithm to use the balanced renewable and non renewable energy and still maintain
the carbon intensity level in the atmosphere. In conclusion, there is still a great deal of
potential for improvement even though this research has made great progress in assessing
and optimizing job scheduling methods for fog computing environments. Further studies
can expand on these results to further the subject of sustainable computing by addressing
the drawbacks and looking into novel directions for development.
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