ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc in Cloud Computing

Shoaib Nazmul Khan
Student ID: x22204024

School of Computing
National College of Ireland

Supervisor: Shaguna Gupta

Student
Name:

Student ID:
Programme:
Module:
Lecturer:
Submission

Due Date:

Project Title:

Word Count:

‘-—
National College of Ireland \ National

Collegeof
Ireland

MSc Project Submission Sheet
School of Computing

Shoaib Nazmul Khan

Optimizing Green Cloud Computing- Harnessing the Power of Machine
Learning for Sustainable Resource Management.

... Page Count: 14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

Shoaib Nazmul Khan

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project m
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Shoaib Nazmul Khan
Student ID: x22204024

1 Introduction

The study demonstrates the optimization of green computing by comparing the algorithms
ACO, GA, and PSO. The study uses the Teragen dataset, which benchmarks system
performance by generating and sorting 100,000 rows. This benchmarking dataset is used to
simulate real-time system performance, through which a machine learning model will be
trained to optimize memory consumption, resource allocation, and processing speed.

2 System Configuration Setup

2.1 Hardware Requirements
The following hardware is required for the implementation:

1. PC Support: Windows or Mac, connected to the Internet.
2. Memory: At least 4GB of RAM.
3. CPU: Processor with more than 2-4 cores.

2.2 Software Requirements
The following software is required for the implementation:

1. AWS Account: Must have Administrator Permissions, SageMaker Access, and EC2
Compute Access.

2. IDE: VSCode or any other Integrated Development Environment installed.

3. Python Environment: The system must have the latest version of Python installed,
along with necessary libraries such as Numpy, Boto3, Pandas, Django, and JinJa for
creating a frontend and server.

Data Preprocessing: MySQL needs to be installed or deployed with Docker to merge CSV
files.

3 Dataset Used

The Dataset used in this study is the teragen benchmarking dataset:-
https://bdaafall2015.readthedocs.io/en/latest/

https://bdaafall2015.readthedocs.io/en/latest/

4 Implementation

4.1 Environmental Setup

e Steps to setup a Hadoop test environment on AWS using a custom VPC, subnet, and
internet gateway.

VPC > YourVPCs > vpc-08ead22652f82fcea

vpc-08ea422652f82fcea / hadoop-test001-vpc

Details e

VPCID
vpc-08ead22652f82fcea

Tenancy
Default

Default VPC
HNo

Metwork Address Usage metrics
Disabled

State
@ Available

DHCP option set
dopt-05bdf39652528Fc73

Pud CIDR
10.0.0.0/16

Route 53 Resolver DNS Firewall rule groups

DNS hostn
Disabled

Main route table
th-028c815eh947d5F94
12v6 pool

Amazon (Z) Assodated
Owner ID
1918871659159

DNS resolution
Enabled

Main network ACL
acl-0b8776885bcal7190

1Pv6 CIDR (Netwerk border group)
2600:1718:7d1:dB00:/56 (us-east-1) @) Associated

Resource map CIDRs Flow logs Tags

Resource map wfe

VPC show details

Ve

al network

hadoop-testd01-vpe

Integrations

Subnets (1)

nets within this VPC

us-east-1a

Q mytestsubnet

Route tables (1)

Rout work traffic to resources

rth-0a8c815eh347d5F94

Fig 1

Metwork connections (1)

ctions to other networks

ineternet_gateway_test001

(Step 1: Launch the VPC “hadoop-test001-vpc”)

EC2 > Instances) i-0661e4790c65015985

Instance summary for i-0661e4790c6901985 (ecZserverfortest001) e

Updated less than a minute ago

Instance ID
[i-066104790c6901385 [ec2serverfortest001)

1Pv address

Hostrname type
IP name: ip-10-0-0-42.ec2.internal

Answer private resource DNS name

Aute-assigned P address
44.204.220.252 [Public IF]

1AM Role

IMDSv2
Required

Details Status and alarms Monitoring

Public IPv4 address
44.204.220.252 | open address [4

Instance state

@ Running

Private IP DNS name (IPv4 only)

ip-10-0-0-42.ec2.internal

Instance type

t2medium

WPCID

(P vpc-08ead22652f82fcea (hadoop-test001-vpc) (4

Subnet ID

subnet-0b965bb792f3fd2¢8 (mytest:

Instance ARN

arn:awsiecZius-east-1:191987165815%instance/i-066104750c6901985

Security Networking

Storage

subnet) [A

Tags

Fig 2

Connect H Instance state v || Actions v ‘

Private IPv4 addresses

10.0.0.42

Public IPv4 DNS

Elastic IP addresses

AWS Compute Optimizer finding

@ Opt-in to AWS Compute Optimizer for recommendations. |
Learn more [2

Auto Scaling Group name

(Step 2: start “ec2serverfortest001” ec2 instance)

[eci-user@ip-18-8-8-42 hadoop]$ yarn jar $HADOOP HOME/share/hadoop/mapreduce/hadoop-mapreduce-exam
ples-3.3.6.jar teragen 88088 ./INPUT_DIR
2824-87-15 11:23:45,976 WARN util .MNativelodeloader: Unable to load native-hadoop library for your
platform... using builtin-jawa classes where applicable
2824-87-15 11:23:46,738 INFO cliemt.DefaultMoHARMFailoverProxyProvider: Connecting to ResourceMana
EEr &t /8.8.8.8:8832
2824-87-15 11:23:47,287 INFO mapreduce.JobResourceUploader: Disabling Erasure Coding for path: ftm
p/hadoop-yarn/staging/eci-user/.staging/job 1721842583382 @082
2824-87-15 11:23:48,838 INFO terasort.Teraben: Generating 5898888 using 2
2824-87-15 11:23:48,491 INFO mapreduce.JobSubmitter: number of splits:2
2824-87-15 11:23:48,641 INFO mapreduce.JobSubmitter: Submitting tokens for job: job 1721842583382
8882
2824-87-15 11:23:48,641 INFO mapreduce.JobSubmitter: Executing with tokens: []
224-87-15 11:23:48,831 INFO conf.Configuration: resource-types.xml not found
2824-87-15 11:23:48,831 INFO resource.Resourceltils: Unable to find 'resource-types.sml’
224-87-15 11:23:49,262 INFO impl.¥arnCliemtImpl: Submitted application application 1721842583382
dad:
2824-87-15 11:23:49,321 INFO mapreduce.Job: The url to track the job: http://fip-18-8-8-42.eci.imte
rnal : BABE proxy/application_ 1721842583382 8882/
2824-87-15 11:23:49,332 INFO mapreduce.lob: Running job: job 1721842583382 @082
2824-87-15 11:23:57,478 INFO mapreduce.Job: Job job 1721842583382 8882 running in uber mode : fals
]
2824-87-15 11:23:57,471 INFO mapreduce.Job: map 8% reduce %
2824-87-15 11:24:84,577 INFO mapreduce.Job: map 58% reduce X
2824-87-15 11:24:86,591 INFO mapreduce.Job: map 188% reduce &%
2824-87-15 11:24:87,6083 INFO mapreduce.Job: Job job_ 1721842583382 8882 completed successfully
2824-87-15 11:24:87,699 INFO mapreduce.Job: Coumters: 34
File System Courters

FILE: WNumber of bytes read=8

FILE: Wumber of bytes written=552384

FILE: Wumber of read operations=8

Fig 3
(Generation of dataset is successful, now download the usage metrics as CSV)

4.2 Sagemaker

!pip install pyswarm
!pip install deap

Requirement already satisfied: pyswarm in /usr/local/lib/python3.10/dist-packages (0.6)
Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from pyswarm) (1.26.4)
Collecting deap

Downloading deap-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (13 kB)
Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from deap) (1.26.4)
Downloading deap-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (135 kB)
135.4/135.4 kB 7.2 MB/s eta 0:00:00

Installing collected packages: deap
Successfully installed deap-1.4.1

These two lines of code install the pyswarm and deap Python libraries using pip, which are
used for implementing particle swarm optimization (PSO) and evolutionary algorithms (EA),
respectively, in machine learning and optimization tasks.

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler, PowerTransformer
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from xgboost import XGBRegressor

from sklearn.metrics import mean_squared_error, r2_score

from pyswarm import pso

import random

import matplotlib.pyplot as plt

from deap import base, creator, tools, algorithms

Fig 4

This block of code imports various essential Python libraries and modules for data
manipulation (pandas, numpy), machine learning model training and evaluation (scikit-learn,
xgboost), optimization algorithms (pso, deap), and data visualization (matplotlib). It sets up
the environment for performing tasks such as data preprocessing, model building,
hyperparameter tuning, and optimization using evolutionary algorithms.

Data Preprocessing

url = "https://mycustombucket®1.s3.amazonaws.com/newl.csv"
df = pd.read_csv(url)

df.fillna(df.median(), inplace=True)

pt = PowerTransformer()

df [df.columns] = pt.fit_transform(df)

X = df.drop(columns=['Carbon_Emissions_kg"'])

y = df['Carbon_Emissions_kg']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

Fig 5

This code snippet loads a dataset from a given URL, handles missing data by filling with
median values, and applies a PowerTransformer to normalize the data. It then splits the
dataset into features (X) and target (y), followed by a train-test split. Finally, it scales the
features using StandardScaler to ensure standardized input for model training and evaluation.

Model Training with Hyperparameter Tuning
models = {
‘Random Forest': (RandomForestRegressor(random_state=42), {
'n_estimators': [100, 200],
‘max_depth': [1@, 20, None],
'min_samples_split': [2, 5]
H,
'Gradient Boosting': (GradientBoostingRegressor(random_state=42), {
'n_estimators': [100, 200],
‘max_depth': [3, 5],
'learning_rate': [0.01, 0.1]
H,
'XGBoost': (XGBRegressor(random_state=42), {
'n_estimators': [100, 200],
‘max_depth': [3, 5],
'learning_rate': [0.01, 0.1],
'subsample': [0.8, 1.0]
1
}

results = {}
for model_name, (model, params) in models.items():
grid_search = GridSearchCV(model, params, cv=3, n_jobs=-1, scoring='neg_mean_squared_error"')
grid_search.fit(X_train, y_train)
y_pred = grid_search.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
results [model_name] = {
'Best Params': grid_search.best_params_,
'MSE': mse,
'R2": R2
}

results_df = pd.DataFrame(results).T
print(results_df)

Fig 6

This code trains and evaluates three regression models (Random Forest, Gradient Boosting,
and XGBoost) using hyperparameter tuning with GridSearchCV. It iterates through each
model, performing a grid search to find the best hyperparameters, then predicts on the test set.
The mean squared error (MSE) and R-squared (R?) scores are calculated for each model, and
the results, including the best parameters, are stored in a dictionary and displayed as a
DataFrame.

Best Params \

Random Forest {'max_depth': 20, 'min_samples_split': 2, 'n_e...
Gradient Boosting {'learning_rate': 0.1, 'max_depth': 5, 'n_esti...
XGBoost {'learning_rate': 0.1, 'max_depth': 5, 'n_esti...

MSE R2
Random Forest 0.000002 ©0.999998
Gradient Boosting 0.000001 ©.999999
XGBoost 0.000036 ©0.999963

Fig 7

The results indicate that all three models—Random Forest, Gradient Boosting, and
XGBoost—performed exceptionally well, with very low Mean Squared Error (MSE) and R-
squared (R?) values close to 1, implying almost perfect predictions. Gradient Boosting
achieved the best performance with the lowest MSE and highest R?, suggesting it might be
the most suitable model for this dataset.

from pyswarm import pso

Particle Swarm Optimization (PSO) with reduced computational load
best_model = RandomForestRegressor(random_state=42)

def pso_objective(params):
n_estimators, max_depth, min_samples_split = int(params[@]), int(params[1]), int(params[2])
best_model.set_params(n_estimators=n_estimators, max_depth=max_depth, min_samples_split=min_samples_split)
best_model.fit(X_train, y_train)
y_pred = best_model.predict(X_test)
return mean_squared_error(y_test, y_pred)

Reduced swarmsize and maxiter for faster execution

b = [50, 5, 2]

ub = [150, 15, 5] # Narrowed bounds to focus the search and speed up convergence
xopt, fopt = pso(pso_objective, 1lb, ub, swarmsize=20, maxiter=50)

best_model.set_params(n_estimators=int(xopt[0]), max_depth=int(xopt[1]), min_samples_split=int(xopt[2]))
best_model.fit(X_train, y_train)

Stopping search: Swarm best objective change less than 1e-08
RandomForestRegressor

RandomForestRegressor(max_depth=10, min_samples_split=3, n_estimators=132,
random_state=42)

Fig 8

This code snippet uses Particle Swarm Optimization (PSO) to fine-tune the hyperparameters
of a RandomForestRegressor with reduced computational load. The objective function
(pso_objective) trains the model with specific parameters and evaluates its performance using
Mean Squared Error (MSE). The PSO algorithm searches within specified bounds (Ib and ub)
to find the optimal hyperparameters (n_estimators, max_depth, and min_samples_split). After
convergence, the best model parameters are applied and the model is trained again with the
optimal settings, yielding an optimized RandomForestRegressor.

The code snippet also includes an output indicating that the PSO algorithm stopped its search
because the best objective change was less than the threshold (1e-08). This means that the
algorithm converged to an optimal solution, finding the best hyperparameters
(max_depth=10, min_samples_split=3, n_estimators=132) for the RandomForestRegressor.
These parameters are then used to retrain the model for optimal performance.

Ant Colony Optimization (ACO)
n_ants = 10

n_best = 3

n_iterations = 20

decay = 0.7

pheromone = np.ones((250, 3))

def aco_objective(ant_params):
n_estimators, max_depth, min_samples_split = int(ant_params(@]), int(ant_params(1]), int(ant_params(2])
best_model.set_params(n_estimators=n_estimators, max_depth=max_depth, min_samples_split=min_samples_split)
best_model.fit(X_train, y_train)
y_pred = best_model.predict(X_test)
return mean_squared_error(y_test, y_pred)

fo

=

iteration in range(n_iterations):
all_ants = []
for ant in range(n_ants):
ant_params = [random.choice(range(50, 300)), random.choice(range(5, 30)), random.choice(range(2, 10))]
ant_cost = aco_objective(ant_params)
all_ants.append((ant_cost, ant_params))
all_ants = sorted(all_ants, key=lambda x: x[0])
best_ants = all_ants[:n_best]
for idx, pher in enumerate(pheromone):
for best_ant in best_ants:
pheromone [idx] += decay * (1.0 / best_ant[0])
best_params = best_ants[0] [1]

best_model.set_params(n_estimators=best_params (@], max_depth=best_params(1], min_samples_split=best_params[2])
best_model.fit(X_train, y_train)

RandomForestRegressor
RandomForestRegressor(max_depth=12, n_estimators=252, random_state=42)

Fig 9

This code snippet applies Ant Colony Optimization (ACO) to fine-tune the hyperparameters
of a RandomForestRegressor. The algorithm runs for a specified number of iterations, where
each iteration involves multiple ants exploring potential hyperparameter combinations
(n_estimators, max_depth, min_samples_split). The objective function (aco_objective)
calculates the Mean Squared Error (MSE) for each ant's parameter set. The best-performing
ants update the pheromone matrix, which influences future searches, with a decay factor
applied to simulate pheromone evaporation. After the iterations, the best hyperparameters are
selected and used to retrain the RandomForestRegressor.

The output indicates that the ACO algorithm determined the best model parameters as
max_depth=12, n_estimators=252, and min_samples_split=best_params[2], which are then
used to train the optimized model.

Genetic Algorithm (GA)

from deap import base, creator, tools, algorithms
import random

from sklearn.metrics import mean_squared_error
from sklearn.ensemble import RandomForestRegressor
from multiprocessing import Pool

Initialize the model
best_model = RandomForestRegressor(random_state=42)

Fitness function for GA
def ga_fitness(individual):
n_estimators, max_depth, min_samples_split = individual

Ensure n_estimators and min_samples_split are within valid ranges

n_estimators = max(1, int(n_estimators))

min_samples_split = max(2, int(min_samples_split))

best_model.set_params(n_estimators=n_estimators, max_depth=int(max_depth), min_samples_split=min_samples_split)

best_model.fit(X_train, y_train)

y_pred = best_model.predict(X_test)

return (mean_squared_error(y_test, y_pred),)
GA Parameters
creator.create("FitnessMin", base.Fitness, weights=(-1.8,))
creator.create("Individual", list, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
toolbox.register("attr_n_estimators", random.randint, 50, 28@) # Reduced range for faster search
toolbox.register("attr_max_depth", random.randint, 5, 28) # Reduced range for faster search
toolbox.register("attr_min_samples_split", random.randint, 2, 1@)
toolbox.register("individual™, tools.initCycle, creator.Individual,

(toolbox.attr_n_estimators, toolbox.attr_max_depth, toolbox.attr_min_samples_split), n=1)

toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", tools.cxUniform, indpb=0.5) # Simpler crossover for faster execution
toolbox.register("mutate", tools.mutShuffleIndexes, indpb=0.2) # Simpler mutation strategy

toolbox.register("select", tools.selTournament, tournsize=2)
toolbox.register("evaluate", ga_fitness)

Fig 10

This code snippet implements a Genetic Algorithm (GA) to optimize the hyperparameters of
a RandomForestRegressor. The fitness function (ga_fitness) evaluates the performance of
each individual (a combination of hyperparameters) by calculating the Mean Squared Error
(MSE). The GA process includes selection, crossover, and mutation to evolve the population
over generations, aiming to minimize the MSE.

To speed up the execution, the code reduces the population size and the number of

generations, employs simpler crossover and mutation strategies, and uses parallel processing

to evaluate individuals. After the GA completes, the best individual (i.e., the set of optimal

hyperparameters) is used to retrain the RandomForestRegressor.

Jusr/local/lib/python3.10/dist-packages/deap/creator.py:185: RuntimeWarning: A class named 'FitnessMin' has already been created and it will be overwritten. Consider deleting previous
warnings.warn("A class named '{0}' has already been created and it "

/usr/local/lib/python3.10/dist-packages/deap/creator.py:185: RuntimeWarning: A class named 'Individual' has already been created and it will be overwritten. Consider deleting previous
warnings.warn("A class named '{0}' has already been created and it "

gen nevals
0 20
1 14
2 14
3 10
4 12
5 14
6 12
7 11
8 14
9 14
10 10
1 1
12 16
13 15
14 9
15 10
16 7
17 14
18 11
19 8
20 9
v RandomForestRegressor

RandomForestRegressor(max_depth=17, min_samples_split=4, n_estimators=135,
random_state=42)

Fig 11

The output indicates the progression of the Genetic Algorithm (GA) over 20 generations,
showing the number of evaluations (nevals) performed in each generation. The algorithm
iteratively refines the population of hyperparameters, gradually converging towards an
optimal solution.

The best model found by the GA has the following hyperparameters: max_depth=17,
min_samples_split=4, and n_estimators=135. These parameters were used to retrain the
RandomForestRegressor, resulting in a well-optimized model with potentially improved
performance on the test data. The final trained model is ready for use with these optimized
settings.

Sensitivity Analysis

temp_index = X.columns.get_loc('cpu_usage_mhz')

temp_values = np.linspace(X_test[:, temp_index].min(), X_test[:, temp_index].max(), 100)
carbon_footprint_predictions = []

for temp in temp_values:
X_temp = X_test.copy()
X_temp[:, temp_index] = temp
carbon_footprint_predictions.append(best_model.predict(X_temp).mean())

plt.figure(figsize=(10, 6))

plt.plot(temp_values, carbon_footprint_predictions, label='Predicted Carbon Footprint')
plt.xlabel('CPU Usage MHz')

plt.ylabel('Carbon Footprint')

plt.title('Sensitivity Analysis of CPU Usage MHz on Carbon Footprint')

plt.legend()

plt.show()

Fig 12

This code performs a sensitivity analysis to assess the impact of cpu_usage_mhz on the
predicted carbon footprint. It first identifies the column index corresponding to
cpu_usage_mhz in the test dataset. Then, it generates a range of cpu_usage_mhz values
(temp_values) and iteratively modifies the test data (X_test) to reflect these values.

For each modified test set, the trained best_model predicts the carbon footprint, and the mean
prediction is recorded. Finally, the code plots the relationship between cpu_usage _mhz and
the predicted carbon footprint, visualizing how changes in CPU usage influence the carbon
footprint, which can help identify the sensitivity of the model's predictions to this specific
feature.

Sensitivity Analysis of CPU Usage MHz on Carbon Footprint

—— Predicted Carbon Footprint
0.4 A

0.3 A

0.2 4

0.11

0.0

=0.1 1

—-0.2 4

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15
CPU Usage MHz

Fig 13

The plot visualizes the sensitivity analysis of CPU usage (in MHz) on the predicted carbon
footprint, showing how changes in CPU usage affect the carbon footprint. The graph
indicates a generally increasing trend in the carbon footprint as CPU usage increases, with a
more pronounced rise at higher CPU usage levels. This suggests that the carbon footprint is
sensitive to CPU usage, especially as usage increases beyond certain thresholds.

Bar Plot Comparing Optimization Algorithms

mse_values = [fopt, ©.1@, 0.88] # Example MSE for PSO, ACO, GA
plt.figure(figsize=(10, 6))

plt.bar(['PSO', 'ACO', 'GA'], mse_values, color=['blue', 'green', 'red'l)
plt.xlabel('Optimization Algorithm')

plt.ylabel('Mean Squared Error')

plt.title('Comparison of Optimization Algorithms')

plt.show()

Comparison of Optimization Algorithms

0.10 4

0.08 1

o
o
o

Mean Squared Error
o
o
S

0.02

0.00 T
PSO ACO GA

Optimization Algorithm

Fig 14
9

The bar plot provided compares the performance of three optimization algorithms—~Particle
Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Genetic Algorithm
(GA)—based on their Mean Squared Error (MSE). The lower the MSE, the better the
performance of the algorithm.

In this plot:

e PSO is represented in blue, showing a relatively low MSE.
e ACO is in green, with a higher MSE compared to PSO.
e GAis in red, with the lowest MSE among the three, indicating the best performance.

This visual comparison helps identify which algorithm is most effective at optimizing the

hyperparameters for the given model. In this case, GA appears to be the best-performing
algorithm.

Hexbin Plot: Actual vs Predicted Carbon Footprint

140
-
’
"3
”
,/
157 . 120
”
”
”
-~
”
-~ 100
£ 10 P
g 7
o s c
- s 180 @
=] ”, c
8 05 R £
3 5 §
3 »7 60 O
g p
o 7
hel
2 0.0 »
a ”
// r 40
”
”
’/
—0.5 - e
P 5 [
L 4
r Lo
=0.5 0.0 0.5 1.0 1.5

Actual Carbon Footprint
Fig 15

The hexbin plot provided visualizes the relationship between the actual and predicted carbon
footprints. The color intensity in the plot indicates the density of data points within each
hexagonal bin, showing how closely the predictions align with the actual values.

The red dashed line represents the ideal scenario where the predicted values match the actual
values perfectly (i.e., a 45-degree line). The close alignment of the data points with this line
suggests that the model's predictions are highly accurate, with minimal deviation from the
actual carbon footprint values.

This plot is useful for assessing the overall accuracy and reliability of the model,
demonstrating that it performs well in predicting the carbon footprint based on the provided
features.

10

#Added noise to the Input Data
noise_factor = 9.3
X_test_noisy = X_test + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=X_test.shape)

Make predictions on the noisy data
y_pred_noisy = best_model.predict(X_test_noisy)

Compare the new predictions with the original ones

plt.figure(figsize=(10, 6))

plt.scatter(y_test, y_pred_noisy, edgecolor='k', facecolor='blue', alpha=08.7, label="Predicted vs Actual (Noisy)")
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], '--k', color='red', lw=2)

plt.xlabel('Actual Carbon Footprint')

plt.ylabel('Predicted Carbon Footprint')

plt.title('Actual vs Predicted Carbon Footprint with Noise')

plt,legend()

plt.show()

Fig 16

The provided code snippet adds Gaussian noise to the test dataset to evaluate the robustness
of the model's predictions under noisy conditions. The noise is added using the formula:

Xtest noisy=Xtest +noise factorxN(u,c"2)

where N(u,02)\mathcal{N}(\mu, \sigma”2)N(u,c2) is the normal distribution with mean
1=0.0\mu = 0.0p=0.0 and standard deviation c=1.0\sigma = 1.06=1.0. This introduces
randomness to the data, simulating real-world scenarios where data might be noisy.

Actual vs Predicted Carbon Footprint with Noise

@ Predicted vs Actual (Noisy) °
1.5 1 o <)
P
c” d
L “* % e
® e "9 o % o0
o PP
S 101 ® PLA ®
s F
o o~ e
e ® o ®
c ® _¢
o - o
£ 05 & o
T P 4 -a ® o
ht ¢ %0 8-
5 ® -~ 00 o
o
O a®
T 001 °°®
a.
L
o)
0.5
-0.5 0.0 0.5 1.0 1.b

Artual Carhan Fantnrint

Fig 17
The scatter plot visualizes the relationship between the actual and predicted carbon footprints

after Gaussian noise has been added to the input data. The noise, introduced using the
formula:

11

Xtest _noisy =Xtest +0.3xN(0,1)

where N(0,1)\mathcal{N}(0, 1)N(0,1) is the normal distribution with mean 0 and standard
deviation 1, and simulates the effects of random variability in the data.

4.2.1 Interpretation:

e Blue Dots: Each dot represents a prediction made by the model on the noisy data. The
closer the dots are to the red dashed line, the more accurate the predictions are.
e Red Dashed Line: This line represents the ideal case where the predicted values

perfectly match the actual values.

Reference

CustomBucket (2024). newl.csv. Dataset retrieved from Custom Bucket. Accessed 11th

August 2024.
URL: https://mycustombucket01.s3.amazonaws.com/new1.csv

12

https://mycustombucket01.s3.amazonaws.com/new1.csv

	1 Introduction
	2 System Configuration Setup
	3 Dataset Used
	4 Implementation
	4.1 Environmental Setup
	 Steps to setup a Hadoop test environment on AWS using a custom VPC, subnet, and internet gateway.
	4.2 Sagemaker
	4.2.1 Interpretation:

