

Configuration Manual

MSc Research Project

MSc in Cloud Computing

Shoaib Nazmul Khan

Student ID: x22204024

School of Computing

National College of Ireland

Supervisor: Shaguna Gupta

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Shoaib Nazmul Khan
……. ………

Student ID:

X22204024
………..……

Programme:

MSc in cloud Computing
………………………………………………………………

Year:

2023-2024
…………………………..

Module:

Research Project
…….………

Lecturer:

Shaguna Gupta
…….………

Submission
Due Date:

12th August 2024
…….………

Project Title:

Optimizing Green Cloud Computing- Harnessing the Power of Machine
Learning for Sustainable Resource Management.
…….………

Word Count:

1875
……………………………………… Page Count: 14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Shoaib Nazmul Khan
……

Date:

16th September 2024
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Shoaib Nazmul Khan

Student ID: x22204024

1 Introduction

The study demonstrates the optimization of green computing by comparing the algorithms

ACO, GA, and PSO. The study uses the Teragen dataset, which benchmarks system

performance by generating and sorting 100,000 rows. This benchmarking dataset is used to

simulate real-time system performance, through which a machine learning model will be

trained to optimize memory consumption, resource allocation, and processing speed.

2 System Configuration Setup

2.1 Hardware Requirements

The following hardware is required for the implementation:

1. PC Support: Windows or Mac, connected to the Internet.

2. Memory: At least 4GB of RAM.

3. CPU: Processor with more than 2-4 cores.

2.2 Software Requirements

The following software is required for the implementation:

1. AWS Account: Must have Administrator Permissions, SageMaker Access, and EC2

Compute Access.

2. IDE: VSCode or any other Integrated Development Environment installed.

3. Python Environment: The system must have the latest version of Python installed,

along with necessary libraries such as Numpy, Boto3, Pandas, Django, and JinJa for

creating a frontend and server.

Data Preprocessing: MySQL needs to be installed or deployed with Docker to merge CSV

files.

3 Dataset Used

The Dataset used in this study is the teragen benchmarking dataset:-

https://bdaafall2015.readthedocs.io/en/latest/

https://bdaafall2015.readthedocs.io/en/latest/

2

4 Implementation

4.1 Environmental Setup

 Steps to setup a Hadoop test environment on AWS using a custom VPC, subnet, and

internet gateway.

Fig 1

(Step 1: Launch the VPC “hadoop-test001-vpc”)

Fig 2

(Step 2: start “ec2serverfortest001” ec2 instance)

3

Fig 3

(Generation of dataset is successful, now download the usage metrics as CSV)

4.2 Sagemaker

These two lines of code install the pyswarm and deap Python libraries using pip, which are

used for implementing particle swarm optimization (PSO) and evolutionary algorithms (EA),

respectively, in machine learning and optimization tasks.

4

Fig 4

This block of code imports various essential Python libraries and modules for data

manipulation (pandas, numpy), machine learning model training and evaluation (scikit-learn,

xgboost), optimization algorithms (pso, deap), and data visualization (matplotlib). It sets up

the environment for performing tasks such as data preprocessing, model building,

hyperparameter tuning, and optimization using evolutionary algorithms.

Fig 5

This code snippet loads a dataset from a given URL, handles missing data by filling with

median values, and applies a PowerTransformer to normalize the data. It then splits the

dataset into features (X) and target (y), followed by a train-test split. Finally, it scales the

features using StandardScaler to ensure standardized input for model training and evaluation.

Fig 6

5

This code trains and evaluates three regression models (Random Forest, Gradient Boosting,

and XGBoost) using hyperparameter tuning with GridSearchCV. It iterates through each

model, performing a grid search to find the best hyperparameters, then predicts on the test set.

The mean squared error (MSE) and R-squared (R²) scores are calculated for each model, and

the results, including the best parameters, are stored in a dictionary and displayed as a

DataFrame.

Fig 7

The results indicate that all three models—Random Forest, Gradient Boosting, and

XGBoost—performed exceptionally well, with very low Mean Squared Error (MSE) and R-

squared (R²) values close to 1, implying almost perfect predictions. Gradient Boosting

achieved the best performance with the lowest MSE and highest R², suggesting it might be

the most suitable model for this dataset.

Fig 8

This code snippet uses Particle Swarm Optimization (PSO) to fine-tune the hyperparameters

of a RandomForestRegressor with reduced computational load. The objective function

(pso_objective) trains the model with specific parameters and evaluates its performance using

Mean Squared Error (MSE). The PSO algorithm searches within specified bounds (lb and ub)

to find the optimal hyperparameters (n_estimators, max_depth, and min_samples_split). After

convergence, the best model parameters are applied and the model is trained again with the

optimal settings, yielding an optimized RandomForestRegressor.

6

The code snippet also includes an output indicating that the PSO algorithm stopped its search

because the best objective change was less than the threshold (1e-08). This means that the

algorithm converged to an optimal solution, finding the best hyperparameters

(max_depth=10, min_samples_split=3, n_estimators=132) for the RandomForestRegressor.

These parameters are then used to retrain the model for optimal performance.

Fig 9

This code snippet applies Ant Colony Optimization (ACO) to fine-tune the hyperparameters

of a RandomForestRegressor. The algorithm runs for a specified number of iterations, where

each iteration involves multiple ants exploring potential hyperparameter combinations

(n_estimators, max_depth, min_samples_split). The objective function (aco_objective)

calculates the Mean Squared Error (MSE) for each ant's parameter set. The best-performing

ants update the pheromone matrix, which influences future searches, with a decay factor

applied to simulate pheromone evaporation. After the iterations, the best hyperparameters are

selected and used to retrain the RandomForestRegressor.

The output indicates that the ACO algorithm determined the best model parameters as

max_depth=12, n_estimators=252, and min_samples_split=best_params[2], which are then

used to train the optimized model.

7

Fig 10

This code snippet implements a Genetic Algorithm (GA) to optimize the hyperparameters of

a RandomForestRegressor. The fitness function (ga_fitness) evaluates the performance of

each individual (a combination of hyperparameters) by calculating the Mean Squared Error

(MSE). The GA process includes selection, crossover, and mutation to evolve the population

over generations, aiming to minimize the MSE.

To speed up the execution, the code reduces the population size and the number of

generations, employs simpler crossover and mutation strategies, and uses parallel processing

to evaluate individuals. After the GA completes, the best individual (i.e., the set of optimal

hyperparameters) is used to retrain the RandomForestRegressor.

Fig 11

8

The output indicates the progression of the Genetic Algorithm (GA) over 20 generations,

showing the number of evaluations (nevals) performed in each generation. The algorithm

iteratively refines the population of hyperparameters, gradually converging towards an

optimal solution.

The best model found by the GA has the following hyperparameters: max_depth=17,

min_samples_split=4, and n_estimators=135. These parameters were used to retrain the

RandomForestRegressor, resulting in a well-optimized model with potentially improved

performance on the test data. The final trained model is ready for use with these optimized

settings.

Fig 12

This code performs a sensitivity analysis to assess the impact of cpu_usage_mhz on the

predicted carbon footprint. It first identifies the column index corresponding to

cpu_usage_mhz in the test dataset. Then, it generates a range of cpu_usage_mhz values

(temp_values) and iteratively modifies the test data (X_test) to reflect these values.

For each modified test set, the trained best_model predicts the carbon footprint, and the mean

prediction is recorded. Finally, the code plots the relationship between cpu_usage_mhz and

the predicted carbon footprint, visualizing how changes in CPU usage influence the carbon

footprint, which can help identify the sensitivity of the model's predictions to this specific

feature.

9

Fig 13

The plot visualizes the sensitivity analysis of CPU usage (in MHz) on the predicted carbon

footprint, showing how changes in CPU usage affect the carbon footprint. The graph

indicates a generally increasing trend in the carbon footprint as CPU usage increases, with a

more pronounced rise at higher CPU usage levels. This suggests that the carbon footprint is

sensitive to CPU usage, especially as usage increases beyond certain thresholds.

Fig 14

10

The bar plot provided compares the performance of three optimization algorithms—Particle

Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Genetic Algorithm

(GA)—based on their Mean Squared Error (MSE). The lower the MSE, the better the

performance of the algorithm.

In this plot:

● PSO is represented in blue, showing a relatively low MSE.

● ACO is in green, with a higher MSE compared to PSO.

● GA is in red, with the lowest MSE among the three, indicating the best performance.

This visual comparison helps identify which algorithm is most effective at optimizing the

hyperparameters for the given model. In this case, GA appears to be the best-performing

algorithm.

Fig 15

The hexbin plot provided visualizes the relationship between the actual and predicted carbon

footprints. The color intensity in the plot indicates the density of data points within each

hexagonal bin, showing how closely the predictions align with the actual values.

The red dashed line represents the ideal scenario where the predicted values match the actual

values perfectly (i.e., a 45-degree line). The close alignment of the data points with this line

suggests that the model's predictions are highly accurate, with minimal deviation from the

actual carbon footprint values.

This plot is useful for assessing the overall accuracy and reliability of the model,

demonstrating that it performs well in predicting the carbon footprint based on the provided

features.

11

Fig 16

The provided code snippet adds Gaussian noise to the test dataset to evaluate the robustness

of the model's predictions under noisy conditions. The noise is added using the formula:

Xtest_noisy=Xtest +noise_factor×N(μ,σ^2)

where N(μ,σ2)\mathcal{N}(\mu, \sigma^2)N(μ,σ2) is the normal distribution with mean

μ=0.0\mu = 0.0μ=0.0 and standard deviation σ=1.0\sigma = 1.0σ=1.0. This introduces

randomness to the data, simulating real-world scenarios where data might be noisy.

Fig 17

The scatter plot visualizes the relationship between the actual and predicted carbon footprints

after Gaussian noise has been added to the input data. The noise, introduced using the

formula:

12

Xtest_noisy =Xtest +0.3×N(0,1)

where N(0,1)\mathcal{N}(0, 1)N(0,1) is the normal distribution with mean 0 and standard

deviation 1, and simulates the effects of random variability in the data.

4.2.1 Interpretation:

● Blue Dots: Each dot represents a prediction made by the model on the noisy data. The

closer the dots are to the red dashed line, the more accurate the predictions are.

● Red Dashed Line: This line represents the ideal case where the predicted values

perfectly match the actual values.

Reference

CustomBucket (2024). new1.csv. Dataset retrieved from Custom Bucket. Accessed 11th

August 2024.

URL: https://mycustombucket01.s3.amazonaws.com/new1.csv

https://mycustombucket01.s3.amazonaws.com/new1.csv

	1 Introduction
	2 System Configuration Setup
	3 Dataset Used
	4 Implementation
	4.1 Environmental Setup
	 Steps to setup a Hadoop test environment on AWS using a custom VPC, subnet, and internet gateway.
	4.2 Sagemaker
	4.2.1 Interpretation:

