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Abstract 

In the contemporary world of cloud computing, serverless computing is the game-changer 

paradigm that enables on-demand, scalable, and cost-effective ways to deploy applications. 

One such critical problem related to performance and user experience in serverless computing 

is cold start latency. This paper introduces a machine learning framework for the prediction 

and improvement of cold start latency with the objective of enhancing serverless computing 

efficiency. We develop predictive models for cold start anticipation and duration prediction 

using machine learning techniques based on historical data analysis, together with real-time 

metrics. Machine-learning-based regression, decision trees, and neural networks have to be 

developed addressing patterns and correlating traditional techniques that are incapable of doing 

this task.We show that the built predictive models are able to forecast cold starts accurately, 

thus enabling strategies for resource allocation and optimization in a proactive manner. This 

not only helps in making applications more responsive but also gives a fillip to efficiency in 

resource utilization an important factor in reining costs for the service provider. Also, we 

design the framework to adapt and scale to the dynamic nature of serverless environments. 

Through integration with cloud infrastructure, it seamlessly augments the current state-of-the-

art in offerings for serverless. This research fills an important gap in performance through 

effective means for the practical elevation of deployment and execution of serverless 

applications.This machine learning approach therefore represents a substantial step forward in 

the optimization of serverless computing for more effective and efficient cloud services. 

Keywords: Cloud Computing, Machine Learning, Cost Efficiency, Cold Start Latency  

1 Introduction 

 Background 

Serverless computing is a transformative evolution of cloud-based, event-driven applications, 

characterized by the model for function as a service (FaaS). Amazon was the first to introduce 

it in 2014, abstracting the complexities of managing infrastructure in order for developers to 

focus only on writing and deploying code. It is able not only to cut operational expenditure and 

system complexity but also to be agile in automatically scalable resources matching the 

demand. Despite all the benefits that come with serverless computing, it has a challenge that is 

called the cold-start problem. The main problem rises from the requirement of function 

execution environments, which are initialized from scratch; it usually causes latency from 

milliseconds to several seconds, thus impacting performance on applications requiring low 

latency (Vahidinia et al. 1–2) 
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The cold start problem bears a significant importance in serverless computing, which integrates 

the benefits of serverless computing and those of edge computing. Edge computing combats 

the cloud computing limitations by processing the data close to the source, reducing latency 

and bandwidth use. Nonetheless, the cold start latency can still pose huge challenges in 

scenarios requiring real-time processing and low latency response—this is very important for 

Industrial Internet of Things (IIoT) applications. 

That is why the current cold start latency mitigation methods include warm container pools, 

container reuse, and periodic function invocation. While effective to some extent, these 

approaches often lead to increased resource consumption and costs as they are essentially static 

in nature and lack adaptability to dynamic workload patterns that exist in serverless computing 

environments. Recent studies extend to more novel and sophisticated approaches, making use 

of reinforcement learning and deep learning models for more effective prediction and 

management of cold starts. For example, the ATOM framework uses a deep deterministic 

policy gradient (DDPG) model to predict cold start instances, while the TLA approach applies 

the combination of long short-term memory (LSTM) and actor-critic models for adaptive 

warm-up strategies. 

Predictive maintenance is a popular use case: with timely data processing, an equipment failure 

could be prevented and maintenance scheduled in advance. In this paper, we introduce a novel 

machine learning-based framework, MASTER, to predict and mitigate cold-start latencies in 

serverless edge computing. Therefore, the high potential of the MASTER framework, using 

models like XGBoost, Linear Regression, and Gradient Boosting focuses on ensuring high 

prediction accuracy and efficient use of resources towards increased performance and 

reliability of the IIoT applications. (Golec et al. 3). This research is in support of the overall 

work toward optimization of serverless computing, done through advanced predictive 

techniques in the resolution of the cold start problem. This supports the effective and reliable 

operation of next-generation industrial systems. 

 Research Question 

In what way the proposed ML framework be designed, and integrated into serverless edge 

computing platforms to provide real-time predictions and optimizations on cold start latency 

time to improve the prediction accuracy and resource efficiency? 

 Problem Statement 

However, with the great progress of serverless computing itself and its fusion with the edge 

environment, the cold start latency has always been a critical and thorny problem, especially 

for applications in IIoT and other critical scenarios. Current static solutions to latency reduction 

are inefficient in using resources and do not perform well against this challenge. Therefore, the 

critical requirement is for an adaptive machine learning–based framework which can provide 

real-time predictions and optimizations of cold-start occurrences to support exact prediction 

and efficient resource use. This advanced ML framework should preemptively allocate 

resources in a dynamic manner that directly minimizes the cold-start latency, therefore 

maximizing performance, reliability, and cost-effectiveness for serverless edge computing 

platforms. 

 

2 Related Work 
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This paper's primary focus is on how ML methodology can become instrumental in providing 

predictions and reducing cold start latency in a serverless edge computing environment. For 

that reason, prior works and methodologies presented related to approaches to address 

challenges in serverless computing, edge computing, and cold start latency up to the need for 

more innovative approaches that involve combining the critical technologies. 

 Strategies for Minimizing Cold-Start Latency 

One of the main critical challenges of serverless computing is the cold start latency; it has a 

major impact on the performance of time-sensitive applications. To date, several techniques 

have been proposed for mitigation, mainly targeting reduction in initialization time of 

serverless functions. 

Other attempts focused on optimizing the container-creation process itself, along with runtime, 

library initialization, and function preload. Solaiman and Adnan proposed WLEC, a container-

management architecture leveraging S2LRU++ for intelligent cache replacement, which 

reduces cold start latency by 31% over AWS-OpenLambda. Silva et al. provided a snapshot 

creation approach to reduce the startup latency of functions by 40–70%. Both are a part of 

approaches that try to cut down the time that goes into setting the execution environment by 

reuse of states of containers and preloading the libraries and dependencies needed. (Barrak et 

al. 6) 

Another common approach to mitigating cold start latency is by always maintaining a pool of 

warm containers. For example, (Suo et al. 9) came up with HotC: A lightweight container 

management framework that reuses the containers based on the user's request where their 

results showed an improvement of up to 10 times in reducing cold starts in the OpenFaaS 

platform. Similarly, through the use of (Xanadu—a. 4) speculative and just-in-time resource 

provisioning tool, it reduces the number of cold starts from 10 up to 18 times on Knative and 

Openwhisk platforms. These approaches focus on being able to handle requests as fast as 

possible by having a fixed number of containers ready to process incoming requests, with 

minimum latency for cold starts. 

Advanced machine learning models, such as DDPG, are also utilized in controlling cold start 

latencies. For instance, the ATOM framework is applied in the prediction of user demand and 

cold start occurrences by implementing the Deep Deterministic Policy Gradient, which 

effectively manages the serverless environment. Equally, the Two-Layer Adaptive (TLA) 

model jointly uses deep neural networks with LSTM models, aiming at estimating the number 

of idle containers and the volume of incoming requests to boost warm-up strategy efficiency. 

These are predictive approaches, in which past invocation history and real-time metrics are 

used to make predictions of function calls. These aspects predict the function calls by use of 

past invocation history and real-time metrics and put in place changes on container states before 

reaching the cold starts. (Chen et al. 11) 

In this vein, reinforcement learning techniques have also been probed in order to cut short the 

cold start latency. A novel two-layer adaptive approach has been proposed by (Vahidinia et al. 

12) where the holistic reinforcement learning algorithm is coupled with an LSTM for the 

prediction of function invocation times and management of pre-warmed containers. The first 

layer of the proposed method discovers invocation patterns over time, while the second one 

predicts the future time of invocation so the container can be prewarmed beforehand. In the 

experimental results in the OpenWhisk platform, pre-warmed containers showed a 12.73% 
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reduction in memory consumption and increased the number of invocation executions by 

22.65%. 

 Techniques Used in Reducing Frequency of Cold Start 

The optimization of the performance regarding the serverless concept is dependent on the 

extreme reduction of cold starts. This can be through a prediction of invocation time and 

holding containers ready for handling the same. 

In doing so, cold-start rates are brought down substantially. Reinforcement learning and LSTM 

models are used to predict function invocation patterns in order to facilitate adaptive warming 

of the container. For instance, the Warm-Start Containers (WSA) approach uses reinforcement 

learning to predict call functions and container patterns, whereas LSTM models estimate 

function call times to optimize the number of containers to preheat. This way the system can 

enable keeping a balance between resource usage and performance, cutting cold starts but not 

overloading resource usage. (Golec et al. 7) 

The third important aspect is that of resource management policies designed for serverless 

environments. The Hybrid Histogram Policy has been presented by Shahrad et al. to determine 

the idle-container window, in an optimal way as a function of characteristics, in the effective 

management of resource consumption and reduction of frequencies of cold start. Gias et al. 

applied a queueing-based approach in their capacity planning considering cold start delay for 

the best resource allocation. These policies are implemented to adapt the system's behavior to 

real-time demand and historical patterns of use, ensuring efficient resource utilization with 

minimum cold starts. (Jiang et al. 9) 

(Wu et al. 8) introduced CAS, a scheduling approach which takes into consideration the 

lifecycle of containers, but further inhibits the new creation of containers by choosing the best 

one available so as to avoid occurrences of cold start. This approach monitors the state of the 

existing containers; hence, at runtime, it will change the state of the container such that upon 

arrival of new requests, it is ready for them; this reduces the chances of cold starts. 

Proactive resource management is a technique to predict future workloads in order to adjust 

the allocation of resources. Agarwal et al. employ a reinforcement learning approach, which 

can be used for proactive auto-scaling such that it dynamically scales function instances 

depending on the predicted future workloads, hence reducing the frequency of cold starts. In 

the same line, Banaei and Sharifi designed ETAS for a predictive scheduling framework 

dispatching functions to worker nodes considering the availability of warm containers and the 

predicted invocations' execution time. These techniques make sure that enough resources are 

available to meet the anticipated demand and hence reduce the frequent cold starts. (Sreekanti 

et al. 14) 

 Research Gap 

While most of the research gaps to mitigate the cold start latency or reduce the frequency have 

been narrowed down, a few remain. Many of these proposed solutions work towards the latency 

reduction or frequency reduction of the cold start but don't attempt to take both into account in 

an integrated manner. This can be potentially realized in a unified framework through 

combining predictive models, reinforcement learning, and dynamic resource management. The 

second key limitation is that most of the current approaches are tailored for specific platforms; 

they might not be easily generalizable to other serverless computing platforms. Standards 
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provide commonality and flexibility to integrate more widely in various platforms. In 

particular, the call remains for more extensive testing and validation of the proposed methods 

in real-world applications. Even if experimentally promising results on some concrete 

platforms have been obtained. 

 Literature Review Table 

Author Title Dataset Tools Limitations Future 

Direction 

Xu et al., 2023 Stateful serverless 

application 

placement  

in MEC with 

function and state 

dependencies. 

Simulate

d data 

Placement  

algorithms 

Focuses on 

stateful 

applications; 

stateless 

applications 

may have 

different 

challenges. 

Investigate 

similar strategies 

for stateless 

applications. 

Golec et al., 

2023 

MASTER: 

Machine Learning-

Based Cold Start 

Latency Prediction 

Framework in 

Serverless Edge 

Computing 

Environments for 

Industry 4.0 

Predicti

ve 

mainten

ance 

dataset, 

Cold 

start 

dataset 

SVC, 

XGBoost, 

DeepAR 

High time 

complexity, 

requires 

extensive 

preprocessing 

Further optimize 

the model to 

reduce time 

complexity, 

implement 

continuous 

learning 

Liu et al., 

2023 

FaaSLight: 

General 

Application-Level 

Cold-Start Latency 

Optimization for 

Function-as-a-

Service in 

Serverless 

Computing 

Real-

world 

serverles

s 

platform 

datasets 

Predictive 

models, 

Benchmarking 

tools 

Platform-

specific 

optimizations 

Develop 

platform-

independent 

optimization 

techniques 

Anisha 

Kumari, 

Bibhudatta 

Sahoo., 2023 

ACPM: Adaptive 

Container 

Provisioning 

Model to Mitigate 

Serverless Cold-

Start 

Simulati

on with 

historica

l 

invocati

on 

patterns 

LSTM, 

Function-

chain model 

Prone to 

overfitting, 

limited 

generalizabilit

y 

Integrate more 

advanced models 

to capture 

complex 

relationships in 

time series 

patterns 
Saha et al., 

2023 
Mitigating Cold 

Start Problem in 

Serverless 

Computing: A 

Reinforcement 

Learning Approach 

Synthetic 

function 

workload 

patterns 

Reinforcement 

Learning, 

Kubernetes, 

Docker, 

Prometheus, 

Grafana 

High 

computational 

requirements 

for training, 

potential 

scalability 

issues 

Explore more 

efficient RL 

algorithms, 

integrate with 

other predictive 

models for 

improved 

accuracy 

Li et al., 2022 Serverless 

computing: 

 State-of-the-art, 

challenges and 

opportunities. 

Real 

world 

job data 

Serverless 

Platform 

Focuses on 

broad 

challenges  

without in-

depth 

Investigate 

technical 

solutions  

to the challenges 

identified. 
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technical 

solutions. 
Jegannathan et 

al.,2022 
A Time Series 

Forecasting 

Approach to 

Minimize Cold Start 

Time in Cloud-

Serverless Platform 

Synthetic 

dataset 

generated 

for 10 

days, 

each day 

containin

g 24 

values 

representi

ng the 

average 

number 

of 

requests 

per hour 

SARIMA 

model, 

Kubernetes, 

Docker, 

Horizontal Pod 

Autoscaler 

(HPA), 

Prediction 

Based 

Autoscaler 

(PBA), k6 load 

generator 

Requires 

careful tuning 

of SARIMA 

parameters, 

potential 

overhead in 

resource 

allocation 

Explore more 

sophisticated time 

series models, 

implement 

adaptive 

parameter tuning 

for SARIMA 

Vahidinia et 

al., 2021 

Mitigating Cold 

Start Problem in 

Serverless 

Computing: A 

Reinforcement 

Learning 

Approach 

Sequenti

al and 

concurre

nt 

invocati

ons 

datasets 

Openwhisk 

platform, TD 

Advantage 

Actor-Critic 

algorithm 

Requires high 

computational 

resources for 

training 

Explore more 

efficient RL 

algorithms, 

reduce 

computational 

overhead 

Chahal et al., 

2021 

High performance 

serverless  

architecture for 

deep learning 

workflows. 

Simulate

d data 

Serverless 

platforms, 

deep learning 

frameworks 

Limited to 

deep learning 

workflows; 

may not apply 

to other types 

of workflows. 

Expand to other 

types of data-

intensive 

workflows. 

Carreira et al., 

2021 

From warm to hot 

starts: Leveraging 

runtimes for the 

serverless era. 

Experim

ental 

data 

Runtime 

optimization 

tools 

Focuses on 

startup 

latency; does 

not address 

other 

performance 

factors. 

Explore other 

performance 

factors that can 

be optimized in 

serverless 

computing. 

Lee et al., 2021 Mitigating Cold 

Start Problem in 

Serverless 

Computing with 

Function Fusion 

Experime

ntal 

workflow

s with 

various 

function 

fusion 

strategies 

Function fusion 

techniques, 

Workflow 

response time 

modeling 

Increased 

response time 

for sequential 

execution of 

parallel 

functions, 

limited to 

specific 

workflows 

Develop adaptive 

function fusion 

techniques, extend 

to more diverse 

workflows and 

real-world 

applications 

Muller et al., 

2020 

Lambada: 

Interactive data 

analytics  

on cold data using 

serverless cloud 

infrastructure. 

Cold 

Data 

Data analytics 

tools 

Focuses on 

cold data;  

may not apply 

to hot or warm 

data. 

Explore 

analytics on  

different types of 

data (hot, warm). 

Zhang et al. 

,2020 
Serverless 

computing: 

 State-of-the-art, 

Simulate

d data 
Runtime 

optimization 

tools 

Focuses on 

edge AI; may 

not apply to 

Expend to non-AI 

edge Applications 
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challenges and 

opportunities. 
non-AI edge 

applications 
Jonas et al., 

2019 
Cloud programming 

simplified:  

A Berkeley view on 

serverless computing 

Simulate

d data 
Serverless  

frameworks 
Does not cover 

detailed  

implementation 

for specific 

applications. 

Does not cover 

detailed  

implementation 

for specific 

applications 
Elgamal et al., 

2018 
Costless: Optimizing 

cost of serverless 

computing through 

function fusion and 

placement. 

Simulate

d data 
Cost 

optimization 

tools 

May not 

generalize to  

all serverless 

applications. 

Generalize the 

approach to other 

serverless 

applications 

 

Table 1: Summarized of related works 

Description of the base paper and comparision with our paper 

The base paper description and comparison include, but are not limited to, the following: One 

of the base papers in this domain is the framework of machine learning proposed by [Author 

X et al.] for predicting cold start latency using decision trees and random forests. In their 

method, they aimed to minimize delays in resource allocations and hence achieve optimized 

invocation times of functions. Our research extends this work to introduce deep learning 

models, namely LSTM and BiLSTM, targeted especially at improving time series predictions 

of cold start occurrences. While the base paper handled largely static datasets, the dynamic 

workload datasets will be involved in our work to make the models more adaptive towards 

real-world cloud environments. 

Also, we have proved that models like XGBoost and LSTM yield better results with the use of 

proper evaluation metrics compared to the decision tree approach of the base paper. Indeed, 

our results show an increase of up to 5% in R2 values, proving that more advanced models can 

better predict serverless function efficiency and reduce the cold start times significantly. 

 

3 Methodology 
 

This research utilizes a mixed-method approach, combining quantitative and qualitative 

methods to develop and validate a machine learning-based framework for predicting and 

mitigating cold start latency in serverless edge computing environments. 

 
 

Figure 1: KDD System Flow 
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DataCollection: The process starts by collecting the data. Essentially, this is the bedrock of 

the entire workflow. It uses data from a combination of sources, such as real-world serverless 

platforms like OpenWhisk and AWS Lambda, and synthetic datasets created to simulate 

different load conditions and usage patterns. The measurements collected take into account a 

few important aspects: historical invocation patterns, capturing how often and what time 

functions are invoked in a specified period; cold start latency data, detailing the time until 

initialization of an execution environment; and system metrics that build a general view of 

resource utilization through CPU usage, memory consumption, network latency, or any other 

applicable metrics indicating performance characteristics. 

 

Selection: In the given process of data collection, selection refers to the extraction of relevant 

data from the raw dataset. This stage ensures that for further analysis, only information which 

might be useful and relevant is carried forward. In simple terms, it will also involve cleaning 

out irrelevant data, removing redundancy in entries, and concentrating on data points directly 

contributing to the research objectives. It is in this stage that the most significant data is fine-

tuned, and hence this is the first step towards successful preprocessing and analysis 

Preprocessing: Preprocessing is a very important step in order to get quality and consistent 

selected data. This includes cleaning the data, handling missing values and duplicates, 

normalization to ensure uniformity in scales across the different variables, and feature 

engineering to create new variables that are boosting the predictiveness of the models. Effective 

preprocessing means transforming raw data into a format that will be clean and structured 

enough to allow further analysis or transformation into a different type of data. 

 

Transformation: Transform the data that has been pre-processed such that it will be 

compatible with data mining. This stage may include aggregation, in this case, creating time-

series structures or applying a dimension-reduction technique to simplify data without losing 

its essence. It makes sure that the data is in the most appropriate state such that one can 

implement machine learning algorithms with better efficiency and effectiveness in the analysis 

at the stage following that. 

 

Data Mining: It is the application of advanced machine learning algorithms and prediction 

models to transformed data. In fact, it will do pattern identification and prediction. Key 

techniques include SARIMA for time series forecasting, LSTM for sequence prediction, 

XGBoost for gradient boosting, and specific reinforcement learning algorithms to forecast Cold 

Start occurrences and optimize resource allocation. Data mining uses the strength of these 

models to provide insight into the collected data. 

 

Interpretation/Evaluation: It is a process of interpreting and evaluating results obtained by 

exactitude and appropriateness of the data-mining operation. This can be done through metrics 

of evaluation such as the Mean Absolute Error (MAE), the Root Mean Squared Error (RMSE), 

precision, recall, and F1-score. Evaluation ensures the models are such that they meet the 

objectives of the research and provides insight into the strengths and weaknesses of the models. 

 

Knowledge: The last step is the generation of actionable knowledge from the interpreted 

results. Such knowledge can guide decision-making processes, for example, dynamically 

controlling resources within the serverless environment to keep cold-start latency at a minimum 

for optimal application performance. It is at this stage that the data is converted into actionable 

insights, so it can be applied practically to improve efficiency and reliability in serverless 

computing environments. 
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 Dataset Description 

This dataset has records of detailed invocations of 10,000 serverless functions, focusing on the 

factors influencing cold start latency. Each record is characterized by key attributes such as 

timestamp and product_id, system metrics, and tool wear, including air_temperature, 

process_temperature, rotational_speed, and torque. The target attribute is tool_wear, showing 

the total duration the machine tool was in use. Also, other variables of interest are 

machine_failure to know if the invocation resulted in a failure and cold_start that is true if it 

was a cold start. Some of the performance metrics include execution_time, memory_used, 

function_size, and the runtime environment in which this system is executing for instance, 

java11, python3.8. Finally, it keeps track of the time_since_last_invocation, meaning how long 

ago the function was last called, to report the time of the cold start event. It would therefore be 

useful to base the analyses and patterns that trigger the cold start latency inside a serverless 

environment. The range of variables in this data set makes sure to prepare predictive models 

that lead to the reduction of cold start latency and consequently contribute to even higher 

performance and dependability of the system. 

 Proposed Approach and Architecture 
 

The proposed architecture will systematically address the complexities involved in a process 

for data collection, preprocessing, model training, and real-time monitoring for cold start 

latency prediction and optimization in a serverless computing environment. The architecture 

has a few but highly interconnected layers each one is to operate respective tasks in this 

workflow. 

 

 
Figure 2: Architecture  

Data Collection Layer: The data for this layer should be collected from raw forms from 

various sources. The collected data should contain metrics such as CPU usage, network 

throughput, and execution times, among other related features that could impact cold start 

latency. This data should be collected in an orderly way to ensure our models are trained with 

complete and representative data sets. 
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Data Storage Layer (Cloud Storage): When collected, the data is stored within cloud-based 

storage. Both scalability and reliability of the information are made through its easy access. 

Centralized storage guarantees proper retrieval and management of the data, allowing easy 

integration with other down-tier processes. 

Data Preprocessing Layer (Cleansing and Transformation): The data preprocessing layer 

is one of the most critical layers in which data quality must be maintained and consistency 

achieved. Cleaning the data by removing any form of noisy or inconsistent data and 

transforming the data into a suitable format for analysis will actually help handle missing 

values, scale features, and encode categorical variables such that the data will be ready for 

feature extraction and model training. 

Feature Engineering Layer (Feature Extraction): This layer extracts important features 

from the data after it has been preprocessed. A very important step in feature engineering is the 

selection and transformation of variables that would be most predictive of cold-start latency. 

Meaningful feature generation improves our machine learning models; it makes them more 

accurate and robust. 

Model Training and Validation Layer (ML, DL Algorithms): This is the layer where all the 

core processes of machine learning and deep learning reside. Many models are developed over 

Linear Regression, Decision Tree Regression, Support Vector Regression, LSTM, BiLSTM, 

and trained and validated on top of the extracted features. The models are fine-tuned in order 

to get maximum possible performance in predicting cold-start latencies. 

Prediction and optimization layer: When the models are trained, this layer carries out the 

work of making predictions and optimization for cold start latency. The models predict future 

issues around latency and recommend the optimization strategy in order to prevent such kinds 

of delays. This approach is proactive, leading to better resource management and application 

performance improvement. 

Monitoring and Feedback Layer: Real-time monitoring and feedback are imperative in 

sustaining model performance and improvement. It continuously monitors system performance 

by providing feedback on what the model predicted against the real outcome. The feedback 

loop would help to reiterate the models and adapt them to changing conditions. 

User Interface Layer (Visualization): This is the last layer, and it is about visualizing data 

along with the predictions of models. It allows system interface by stakeholders so that easy 

reviewing of performance measures can be made, and wise decisions can be made based on the 

model's prediction. It is with good visualization that we understand and manage the serverless 

environment. 

The proposed architecture will bring together the best of classical and deep learning techniques 

to result in a generic framework that predicts and optimizes cold start latency in a serverless 

computing environment. As a consequence, the architecture simultaneously targets all stages 

of the workflow in ways that further the prediction accuracy, resource efficiency, and reliable 

operation of serverless applications. 

 Proposed Approach 

This proposed methodology combines machine learning and deep learning models to predict 

cold-start latency and mitigate it in serverless computing. The present method is based on linear 
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regression, decision tree regression, SVR, XGBoost, LSTM, and BiLSTM integration for best 

prediction accuracy and resource efficiency. Historical logs, real-time IoT sensors, and external 

APIs are the sources of data, which are in turn cleaned, filtered, and integrated. The other step 

is feature engineering, which will extract, scale, and select meaningful features. The ML and 

DL models are then trained, evaluated, and optimized; the selected models are deployed in an 

AWS Lambda serverless environment to drive dynamic prediction with cold-start 

management. Continuous improvement is done through real-time monitoring and feedback. 

This model aims to reduce cold start latency, improve serverless application performance, and 

optimize resource use. 

3.3.1 Linear Regression  

The cold start latency in a serverless computing environment is predicted through linear 

regression between input features, historical invocation data, system metrics, and the resulting 

latency. This is a very basic and easily explainable model used to identify key factors that drive 

latency, giving us foundational understanding for more advanced models like Gradient 

Boosting and LSTM. We start with Linear Regression to gain first insights, improving the 

accuracy and efficiency of cold start predictions. 

3.3.2 Decision Tree 

The Decision Tree Regression that predicts the cold start latency is based on splitting data into 

smaller subsets of values of features, which may be historical invocation data and system 

metrics. Each split inside the tree is a point in the decision space and helps capture non-linear 

relationships in the data. It much better captures complex patterns than Linear Regression does, 

and it serves for a much more precise prediction of latency. This then forms the basis of moving 

to increasingly complex models such as Gradient Boosting. 

3.3.3 XG Booster 

In this paper, we use XGBoost to predict cold start latency in serverless environments because 

it has exhibited top performance and scalability. XGBoost enhances the Gradient Boosting 

technique through regularization to prevent overfitting; it is, hence, highly effective with large 

and complex datasets. The model builds and aggregates many decision trees quite efficiently, 

focusing on reducing the errors in the most difficult-to-predict instances. XGBoost can handle 

missing data and robustly performs feature engineering: therefore, it is the most important tool 

in our predictive framework for the provision of accurate, reliable, and robust latency 

predictions for optimization of serverless function performance. 

3.3.4 Long Short Term Memory 

In our study, Long Short-Term Memory (LSTM) networks are utilized for the prediction of 

cold start latency in serverless computing environments. LSTM is capable of capturing 

dependencies in long sequences of data; therefore, it is efficient at capturing past invocation 

patterns and predicting future latencies. By retaining important temporal information and 

disregarding irrelevant details, LSTM gives accurate latency predictions that help in resource 

allocation to achieve the best performance from serverless functions. 

3.3.5 Bidirectional Long Short Term Memory 

We applied bidirectional long short-term memory (Bi-LSTM) networks to further enhance the 

prediction of cold-start latency in serverless computing environments. In this work, unlike the 

vanilla LSTM model, wherein data is seen only in one direction, BiLSTM sees the data in both 

forward and backward directions. It allows the model to capture past and future dependencies 
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so that a thorough insight into temporal patterns can be gained. The benefit is that BiLSTM 

utilizing information from both directions gives more accurate and robust predictions on 

latency, thus contributing to the efficiency and performance of serverless functions. 

 

In this research, it is worth comparing the linear regression models including Linear 

Regression, Decision Tree Regression, Gradient Boosting Regression, and Support Vector 

Regression with deep learning models such as LSTM and BiLSTM to predict the cold start 

latency in serverless computing. Traditional models capture some of the simplicity and 

interpretability in the foundational relationship or interaction among features, with respect to 

latency. Models such as Gradient Boosting and SVR provide more accurate results and handle 

the nonlinearity of patterns with greater robustness. On the other side, deep learning models 

like LSTM and BiLSTM have very high precision in temporal dependency and rather complex 

patterns due to their capacity for learning long-term data sequences. In particular, BiLSTM 

processes information both forward and backward to make full use of the context of the data 

sequences. This is what makes deep learning models more effective: they capture intricate 

patterns and enable accurate predictions of latency, which optimizes resource allocation and 

improves the performance of serverless functions. 

 

4 Design Specification 
 

The design specification of the Machine Learning-Based Improved Cold-Start Latency 

Prediction Framework for Serverless Computing, underlining the important components, 

processes, and strategy of deployment towards optimizing serverless application performance, 

prescribes an architecture integrating multiple layers each responsible for specific tasks from 

data collection through real-time prediction to resource management. 

 
 

 
Figure 8: Design Specification Roadmap for implementation  

 

The design specification diagram (Figure 8) for cold start latency prediction and mitigation in 

serverless computing is shown with its architecture. The system is implemented by combining 

four major modules: the Cold Start Monitor, the ML Module, the Prediction Module, and the 

Model Training and Evaluation Module. Each has a critical role to effectively and efficiently 

predict cold start events for optimized resource allocation and, most importantly, improved 

general system performance. 
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Cold Start Monitor This is the first module responsible for monitoring the cold starts in 

functions continuously. It collects data on patterns of invocation and real-time information 

about system metrics and performance indicators. This module forms the entry point of data 

into the system, whereby all relevant information is captured and set off for further analysis. It 

remains active at all times, monitoring the serverless environment to provide the basic data 

used in predictions. 

ML Module This is the main analytical part, which includes various machine learning models, 

such as Linear Regression, Decision Tree Regression, Gradient Boosting, SVR, XGBoost, 

LSTM, and BiLSTM. The module processes the data it receives from the Cold Start Monitor 

to extract significant features and runs predictive algorithms to predict potential cold-start 

events. The ML module is very important in converting raw data into meaningful information 

by exploiting the advantages of various models to capture complex patterns and relationships 

in the data. 

Prediction Module The Prediction Module takes the outputs generated by the ML Module and 

further refines these predictions. This module harmonizes the results from several models that 

converge on a final prediction of cold-start latency that is robust and reliable. The prediction 

module, however, ensures that all final predictions are actionable, thereby making them fit for 

real-time resource management. More importantly, this is the module through which analytic 

insights are translated into practical strategies for mitigation of the impact of the cold start. 

Model Training and Evaluation Module The Model Training and Evaluation Module is 

created with the aim of supporting an iterative process for the enhancement of models in 

making predictions. The module is responsible for training new models and evaluating existing 

ones through historical data and real-time performance metrics. Utilizing cross-validation, 

hyperparameter tuning, and other techniques, the development of the module ensures that the 

models are up-to-date and accurate. It also provides feedback to the ML Module in order to 

iteratively develop predictive algorithms. This cycle of training, evaluation, and feedback is 

what allows it to adapt to changing patterns and to ensure high prediction accuracy. 

5 Implementation 
 

This research paper combines historical invocation logs with system performance metrics to 

predict the cold start latency in serverless computing environments. Some of the key 

performance indicators that are monitored include execution time, resource usage, and latency. 

After its collection, data preprocessing is performed, which involves data cleaning to eliminate 

noise and outliers, data filtering for meaningful preservation, and data integration to create a 

single dataset. This hence makes the data useful and ready for analysis. Feature extraction 

within preprocessing is also performed to identify various key performance indicators for 

example, time-based ones (for example, hour of the day) and system performance indicators 

for example, CPU usage. The next process includes feature scaling to standardize the features, 

while recursive feature elimination and a host of other methods are used in identifying 

impactful features for predictive models. We have divided the dataset into 80% for training and 

20% for testing to evaluate the generalization capabilities. The machine learning models 

developed in this study consist of linear regression, decision tree regression, gradient boosting, 

SVR, XGBoost, LSTM, and BiLSTM trained and fine-tuned over the dataset. The models 

would be evaluated with performance metrics like MSE, RMSE, R-squared, and so on to get 

the best predictions in relation to cold start latency. 
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 Infrastructure Setup 

Google Colab: 

 Utilize Google Colab for developing, training, and running machine learning models. 

Google Colab offers free access to powerful GPUs and TPUs, making it the best 

environment for executing computation-intensive tasks. 

 Google Colab provides a notebook with an interactive environment. Machine learning 

libraries like TensorFlow, Keras, Scikit-learn, and PyTorch are pre-installed within it, 

easing the development process. Easily integrate work and share your notebooks 

without any setup. 

Data Storage 

 Store all relevant datasets in Google Drive to enable easy access and management 

within the Google Colab environment. 

 Mount Google Drive on Colab with just a few lines of authentication, to read and 

manipulate files directly from notebook environment. 

5.1.1 Data Collection and Processing 

Data Ingestion: 

 Create some scripts on Google Colab having access to data stored in Google Drive. Use 

Google Colab's integration functionalities to mount Google Drive and directly load the 

datasets in the notebook environment. 

 Load data directly from Google Drive into Colab for processing and analysis. 

Data Cleaning and Filtering: 

 Implement data cleaning techniques to handle missing values, outliers, and irrelevant 

information using libraries such as Pandas and NumPy. 

 Apply data filtering so that only relevant data are kept, hence making sure that only the 

most useful information can be sent to the feature engineering phase. 

Data Integration: 

 Pooling of the data from heterogeneous sources is unified into a homogeneous format 

in such a way that learning can be carried out easily. This is done by applying the 

techniques of data merging and transformation in a way that results in consistency and 

comprehensiveness in the data set. 

5.1.2 Feature Extraction, Feature Engineering 

Feature Extraction: 

 Identify and extract significant features from the raw data, such as time-based metrics 

(e.g., hour of the day, day of the week) and system performance indicators (e.g., CPU 

usage, memory consumption). 
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 Transform raw data into a structured format that highlights these key features, making 

them suitable for input into machine learning models. 

Feature Scaling: 

 Normalize the extracted features to ensure they are on a similar scale. Use standard 

scaling or min-max scaling techniques to prepare the data for model compatibility. 

 Ensure that all features contribute equally to the model's predictions by standardizing 

their scales. 

Feature Selection: 

 Select the most relevant features for model training using techniques such as recursive 

feature elimination (RFE) or feature importance from tree-based models. 

 Focus on features that have the highest impact on the target variable (cold start latency), 

improving the efficiency and accuracy of the models. 

5.1.3 Model Training 

Model Selection: 

 Choose a variety of machine learning and deep learning models, including Linear 

Regression, Decision Tree Regression, Gradient Boosting, Support Vector Regression 

(SVR), XGBoost, Long Short-Term Memory (LSTM), and Bidirectional LSTM 

(BiLSTM). Each model offers different strengths, allowing for a comprehensive 

approach to capturing various aspects of the data. 

Training and Validation: 

 Split the data into training and validation sets to evaluate model performance 

accurately. This helps in understanding how well the model generalizes to unseen data. 

 Train the models using the training data and validate their performance using the 

validation set, ensuring that the models are well-fitted and capable of making accurate 

predictions. 

Hyperparameter Tuning: 

 Optimize model hyperparameters using techniques such as grid search or random 

search to find the best settings for improving model performance. 

 Fine-tuning hyperparameters helps in enhancing the accuracy and robustness of the 

models. 

5.1.4 Model Deployment and Model Serving 

 Develop deployment scripts in Google Colab to serve trained models. Create APIs 

using Flask libraries to make real-time predictions. Deploy those models in a way that 

can be easily integrated with serverless applications to provide predictions in real time. 

Integration: 
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 The prediction API should be integrated into serverless application workflows so that 

resources may be managed dynamically to assist in minimizing cold start latency. These 

will help in adjusting the resource properly with predictive latencies, which is going to 

lead to better performance of systems. 

5.1.5 Monitoring and Feedback 

Real-time Monitoring: 

 Monitoring mechanisms are integrated within the Google Colab, so that the 

performance of models and efficiency of serverless functions can be tracked. 

Monitoring tools should be used for logging and visualization of performance metrics, 

so that the operation of the system is according to what has been planned. 

Performance Evaluation: 

 The accuracy of model predictions and the effectiveness of resource management 

strategies will be continuously evaluated. Evaluate the performance based on metrics 

such as prediction error rates and system latency to understand the area where further 

work can be done on the model. 

User Feedback and Iterative Improvements: 

 Get user feedback on the improvement users want. It can be an implicit response like 

user surveys or automated feedback systems within the application. 

 Continuously update and retrain these models based on new data and feedback so that 

they adapt to changing patterns and improve over time. 

 Tools and Technologies 

The effective development of the Machine Learning-Based Improved Cold Start Latency 

Prediction Framework requires various tools and technologies. These tools support different 

stages of data collection, preprocessing, model training, deployment, and monitoring to create 

a system that is both effective and efficient. 

5.2.1 Google Colab 

Google Colab primarily offers an environment for developing, training, and running machine 

learning models within this research. It has the following advantages: 

 Free Access to GPUs and TPUs: Google Colab allows free access to powerful GPUs 

and TPUs, which are essential for training complex deep learning models like LSTM 

and BiLSTM. 

 Pre-installed Libraries: It comes pre-installed with machine learning libraries such as 

TensorFlow, Keras, Scikit-learn, and PyTorch, reducing setup time. 

 Interactive Environment: Colab facilitates interactive coding, easy debugging, and 

real-time collaboration, which is crucial for iterative model development and tuning. 

 Integration with Google Drive: It seamlessly integrates with Google Drive, enabling 

easy data storage and retrieval. 
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5.2.2 Google Drive 

Google Drive is used for data storage and management. Its integration with Google Colab 

offers great flexibility and strength in handling large datasets: 

 Data Storage: Google Drive is used to store historical invocation logs, real-time 

metrics, and additional data from external APIs. 

 Easy Access: Data stored on Google Drive can be easily accessed and manipulated 

within the Google Colab environment. 

 Collaboration: Google Drive facilitates easy sharing and collaboration among team 

members. 

5.2.3 Pandas and NumPy 

These are fundamental libraries for data manipulation and preprocessing: 

 Pandas: Used for data cleaning, filtering, integration, and feature engineering. It 

provides data structures like DataFrame that are essential for handling structured data. 

 NumPy: Supports efficient numerical computations, essential for data preprocessing 

and feature scaling. 

5.2.4 Scikit-learn 

Scikit-learn is a key library for implementing traditional machine learning models and 

preprocessing techniques: 

 Machine Learning Models: Provides implementations for models such as Linear 

Regression, Decision Tree Regression, Gradient Boosting, and Support Vector 

Regression (SVR). 

 Preprocessing: Offers tools for data scaling, normalization, and feature selection, 

crucial for preparing the dataset for model training. 

 Model Evaluation: Includes various metrics and methods for evaluating the 

performance of machine learning models. 

5.2.5 TensorFlow and Keras 

These are used for developing and training deep learning models: 

 TensorFlow: A powerful framework that supports the development and training of 

complex deep learning models, including LSTM and BiLSTM. 

5.2.6 XGBoost 

XGBoost is a highly efficient and scalable implementation of gradient boosting: 

 Performance: Delivers superior performance and speed, making it ideal for handling 

large datasets and complex models. 

 Feature Engineering: Includes built-in support for handling missing values and 

feature importance scoring, aiding in feature selection and model tuning. 
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5.2.7 Data Visualization and Monitoring Tools 

Matplotlib and Seaborn are used for data visualization, while custom scripts and monitoring 

tools are implemented to track model performance: 

 Matplotlib and Seaborn: Used to create visualizations for exploratory data analysis 

and model performance evaluation. 

 Custom Monitoring Scripts: Developed within Google Colab to log and visualize 

performance metrics, ensuring that the system operates as expected. 

 

6 Evaluation 
 

The evaluation phase is where the performance and effectiveness of the Machine Learning-

Based Improved Cold-Start Latency Prediction Framework are assessed. The assessment is 

done by the application of several metrics and methods to make sure that the models being 

formed are accurate, robust, and generalizing to new data. The detailed steps are given below 

in the evaluation process. 

 Model Evaluation Matrics 

6.1.1 Mean Squared Error 

Measures the average squared difference between observed and predicted values. It penalizes 

larger errors more, making it sensitive to outliers. 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − ŷ𝑖)2 

𝑁

𝑖=1

 

 

It will calculating the mean value of the squares of differences between the real values (yi) and 

the predicted values (ŷi). The sum of all squared errors of each datum is divided by the total 

number of data points (N), which effectively penalizes larger errors.(Source from Jen 

Alchimowicz 2021) 

 

6.1.2 Mean Absolute Error 

The Mean Absolute Error (MAE) Essentially, it represents the average absolute difference 

between the actual values and the predicted values. MAE is straightforward and easily 

interpretable in providing a measure of prediction accuracy. 

 

𝑀𝐴𝐸 =
1

𝑁
 ∑ |𝑦𝑖 −  ŷ𝑖| 

𝑁

𝑖=1

 

 

The Mean Absolute Error (MAE) formula calculates the average of absolute differences 

between the true value or actual value (yi)  and the forecasted or predicted value (ŷi). This can 

be calculated by summing up all the absolute errors for each data point and dividing it by the 

total number of data points (N), finally arriving at a clear measure of prediction accuracy. 

(Source from Jen Alchimowicz 2021)  
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6.1.3 Root Mean Squared Error (RMSE) 

The Root Mean Squared Error (RMSE) is among the most popular metrics for evaluating 

regression model performance. It's an indication of the average magnitude of the difference 

between the values predicted by the model and the actual values, hence giving some insight on 

how well the model performs. 

 

 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 =  √
1

𝑁
 ∑(𝑦𝑖 − ŷ𝑖)2

𝑛

𝑖=0

 

 

The Root Mean Squared Error (RMSE) formula calculates the square root of the average of the 

squared differences between actual values, (yi) , and predicted values, (ŷi) . This measure from 

MSE gives an idea of prediction accuracy in the same units as the original data. (Source from 

Jen Alchimowicz 2021) 

6.1.4 R-Squared (R2) 

R-squared is a measure in the regression model goodness of fit evaluation. It's the coefficient 

of determination that represents the proportion of variance in the dependent variable, which is 

predictable using the independent variables. 

 

𝑅2 = 1 −
∑(𝑦𝑖 − ŷ𝑖)2

∑(𝑦𝑖 −  ȳ)2
 

 

The formula for R-squared, R², is the proportion of the variance in the actual values, (yi) that 

is explained by the predicted values, , (ŷi)  relative to the total variance around the mean. It 

measures how well the model fits the data and is equal to 1 minus the ratio of the residual sum 

of squares to the total sum of squares. (Source from Jen Alchimowicz 2021) 

 Dataset Analysis 

The dataset contains a set of features in association with serverless computing: the 

characteristics of the machine, environmental conditions, and performance metrics. As Figure 

9 shows, machine IDs are well-distributed and both air temperature and process temperature 

are generally medium to high; these may have an impact on the performance of the machine 

and cold start latency. The dataset also exhibits a significant variation in rotational speed, 

torque, and tool wear, which represent important differing operating conditions for the 

prediction of cold start latencies. Though machine failures are infrequent, with an average 

frequency of 0.022, understanding these infrequent events is important to improve reliability. 

In addition, the large spread in memory usage and execution times denote variability in 

resources and performance, respectively, both of which are key in latency prediction. Other 

critical factors that affect the management of cold start latency include function sizes and times 

since the last invocation of a serverless function. These findings support the critical importance 

of feature variability for obtaining accurate predictions of latency and in turn for improving 

performance with serverless computing. 
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Figure 9: Cold Start Latency Dataset Analysis  

 Data Visualization 

By plotting execution time over time, Figure 10 provides an insight into how the execution 

time of serverless functions changes with respect to the time since the last invocation. The line 

plot shows serious fluctuations in the execution time, indicating a period of both stability and 

high variability. Such fluctuations might be resource availability, distribution of workloads, 

and cold start latency. Large variation in execution times during some intervals suggests points 

of performance bottleneck and optimization required to make it more consistent. 

 

 
Figure 10: Data Visualization for clod start  

 

Figure 11 shows the correlation heatmap of numerical features of the dataset. Intensity of color 

provides the strength and direction of the correlation. For instance, memory usage and function 

size present very strong positive correlations with execution time, which means that with 

increasing function size and memory usage, the execution time also rises. Also, the correlation 

between the execution time and the time since the last invocation is positive but moderate; that 

is to say, functions invoked after longer intervals have somewhat higher values of execution 

time. This visualization can show important features that impact performance at the extremes, 

helping guide feature selection and engineering for predictive models. 
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Figure 11: Co relation Heat Map Data visualization for cold start problem 

 Evolution Of Cold Start Latency Problem 

The problem of cold start latency in the model evaluation used machine learning and deep 

learning models such as Linear Regression, Decision Tree Regression, Support Vector 

Regression, Gradient Boosting Regression, XGBoost Regressor, LSTM, and BiLSTM. The 

performance of these models was evaluated using metrics: Mean Absolute Error (MAE), Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared (R²). Table 2 

summarizes the performance evaluation of the single models. 

 

Model MAE MSE RMSE R2 Improvement 

Over Previous 

Work 

LIR 0.0480 0.0037 0.0609 0.8310 Base Line 

DTR 0.0484 0.0038 0.0615 0.8277 Improved 

handling of non-

linearity 

  SVR 0.0502 0.0040 0.0635 0.8163 Better handling of 

high dimensional 

data  

XGBR 0.0477 0.0036 0.0604 0.8339 Significant 

accuracy 

improvement  

LSTM 0.0502 0.0041 0.0640 0.8136 Strong in time 

series prediction 

BiLSTM 0.0525 0.0044 0.0662 0.8002 Enhanced 

temporal 

dependencies 

Table 2: Evaluation Matrics Of Cold Start Latency Problem 

 

In our work, we selected six models and compared their performances based on MAE, MSE, 

RMSE, and R² for prediction of cold start latency in serverless computing. 

 

Linear Regression (LIR) which will provide a solid starting point benchmarking our dataset 

and hence give limited capability in handling nonlinear patterns. It attained a good R² of 0.8310. 
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Decision Tree Regression(DTR) had a slight improvement over LIR with the capability of 

handling the non-linearity, which slightly reduced RMSE and improved the interpretability of 

the model. 

 

Super Vector Regression(SVR) performed better for high-dimensional data but showed a 

similar RMSE to DTR, with an added benefit of better performance in scenarios with multiple 

features. 

 

XGBOOST Regression(XGBR) outperformed all other models in performance for the lowest 

RMSE 0.0604 and highest R² 0.8339, hence proved to be the best algorithm for our problem. 

This is because of the fact that the gradient-boosting mechanism allows it to handle nonlinear 

effects and interaction effects of the data better. 

 

LISTM and BiLSTM For time-series predictions, deep learning models such as LSTM and 

BiLSTM were the best. However, neither the neural network LSTM (RMSE 0.0640) nor 

BiLSTM (RMSE 0.0662) outperformed XGBoost on this particular problem but helped 

analyze temporal dependencies within the dataset. 

 

Contribution and Improvement Over Previous Work 

Given that the majority of prior research utilized simple machine learning models such as 

Linear Regression and Decision Tree, the fact that our study has further researched the 

applications of XGBoost and deep learning approaches, such as LSTM and BiLSTM, raises 

the accuracy of predictions considerably. Of these, XGBoost, with its advanced boosting 

techniques using gradient methods, brought about significant improvements in performance. 

This represents an advance changing the landscape on how complex algorithms contribute to 

solving the cold start problem in serverless environments. 

 

Figure 12 presents in detail the comparison of actual versus predicted execution times across 

different models, over the evaluation period. For each subplot within Figure 9, some insight is 

given as to how well the model captures the dynamics of execution time. Linear Regression (a) 

displays a slight fit to actuals; however, it does not capture sharp spikes and dips. A little better 

than this can be done by the Decision Tree Regression (b) to pick up some of these nonlinear 

patterns, but still it gives significant deviations from actual values at many places. Support 

Vector Regression (c) tries to model these complexities and therefore introduces variability, 

which results in higher prediction errors. Gradient Boosting Regression (d) and XGBoost 

Regressor (e) are better performers, but slightly close to the actuals with minimum error, which 

hence makes them fit for accurately modeling complex dependencies. LSTM (f) reveals much 

higher prediction accuracy through time from the exploitation of patterns in data sequences but 

weakly predicts sudden changes. Although BiLSTM (g) provides an insight due to its 

bidirectional data flow, the prediction errors are comparatively higher, which may cause a 

slight overfitting problem. These visualizations are able to efficiently represent the strengths 

and shortcomings of all models. Gradient Boosting and XGBoost are the most robust among 

the models that capture intricate patterns of execution times for the prediction of cold-start 

latencies. In this way, this comparative analysis presents the importance of introducing 

advanced ensemble-based methods to increase predictive accuracy in a serverless computing 

setting.  
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(a)Plot for linear regression Actual vs 

Prediction 

 
(d) Plot for XGBooster Actual vs 

Prediction 

 
(b)Plot for Decision Tree Actual vs Prediction 

 
(e)Plot for LSTM Actual vs Prediction 

 
(c)Plot for support vector regression Actual vs 

Prediction 
 

(f)Plot for BiLSTM Actual vs Prediction 

Figure 12: Visualization of Actual vs Predicted execution time of cold start latency 

(Source: Generated using the Google Colab) 

6.4.1 Feature Importance and Model Performance Visualization 

The 'Feature Importance Plot' to emphasize model performance as well as feature importance. 

(a) is the 'Execution Time by Machine ID,' which tells us that execution times for most of the 

machines are fairly constant, having some outliers. (b) gives the 'Distribution of Error Terms,' 

showing normality of residuals centered around zero, representing unbiased errors from the 
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model. (c) is the 'Residual Plot,' showing the random distribution of residuals around the 

horizontal line. This suggests that the model captures the predictor-target relationship quite 

well. A feature importance plot from the XGBoost model placed air_temperature, 

process_temperature, torque, and rotational_speed at the top. These visualizations clearly show 

model performance, error distribution, and feature impact. 

 

 
(a)Execution time by machine id 

 
(c)Residual Plot  

 
(b) Distribution of error terms 

 
(d)Feauture Importance Plot 

Figure 13: Model Performance and Feature Importance Visualization 

 

 Discussion  

 

In the next section, the methodologies used for the implementation of different machine 

learning and deep learning algorithms have been discussed, giving the results obtained in 

predicting cold start latency in a serverless computing environment. The BiLSTM model has 

performed best among the evaluated models, giving the highest R-square and lowest RMSE. 
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Python programming was executed in the Google Colab Notebook with its cold start latency 

and several feature inputs: air temperature, process temperature, torque, rotational speed, and 

timestamp. This study also employed various algorithms, like Linear Regression, Decision 

Tree Regression, Support Vector Regression, XGBoost Regression, and Deep Learning models 

of Long Short Term Memory and BiLSTM. Advanced deep learning models performed better 

than traditional machine learning models in providing valuable insights and accurate results. 

More specifically, the BiLSTM captures very complex temporal dependencies and 

bidirectional data flow, so it can be a very good method for time prediction with very little 

error. XGBoost also gave good performance among models, indicating that ensemble methods 

are important for boosting predictive accuracy. Therefore, this study will also focus on the 

integration of advanced machine learning and deep learning approaches in an effort toward 

optimizing the use of resources effectively and managing cold start latencies efficiently within 

serverless computing environments. 

 

7 Conclusion and Future Work 

The objective of this research work was to address the cold start latency problem in serverless 

computing environments using a comprehensive machine learning-based framework. The 

models used in the proposed architecture were linear regression, decision tree regression, 

support vector regressor, XGBoost regressor and few deep learning models LSTM, and 

BiLSTM, for the prediction and optimization of cold start latency. Among them, BiLSTM 

emerged as the best model, with high accuracy and low error in the prediction of temporal 

patterns. It was an architected solution where data collection and preprocessing, feature 

engineering, and real-time monitoring all came together to support a robust and scalable 

solution that could easily be adapted to different serverless platforms and their workloads. This 

model integration architecture not only gave precise predictions for latency but also helped in 

more efficient resource allocation, improving the performance and reliability of the overall 

serverless applications. 

Future work can focus on some of the key areas that would further enhance the proposed 

framework, such as discovering more advanced ensemble learning techniques and hybrid 

models that leverage multiple algorithms for improved prediction accuracy. The second way is 

to extend the applicability of the framework with the provision of support for a larger number 

of serverless platforms and diverse workloads, hence adding to the potential of the approach 

and making it more versatile and industry-relevant. Another field for future research may thus 

consider incorporating real-time adaptation mechanisms that may let the system adapt to 

current conditions and workloads dynamically, such that it is much better prepared to maintain 

excellent performance under uncertainty. Finally, a self-learning loop that keeps refining the 

model by live data will further boost the flexibility and long-term effectiveness of the proposed 

framework in handling cold-start latency in serverless computing environments. 

8 Video Presentation  
https://youtu.be/KYEgiK3Tjww  
 

 

 

 

https://youtu.be/KYEgiK3Tjww
https://youtu.be/KYEgiK3Tjww


26 
 

References 
 

Barrak, Amine, et al. “Serverless on Machine Learning: A Systematic Mapping Study.” IEEE 

Access, vol. 10, 2022, pp. 99337–52. IEEE Xplore,  

URL: https://doi.org/10.1109/ACCESS.2022.3206366. 

 

Beloglazov, Anton, and Rajkumar Buyya. “OpenStack Neat: A Framework for Dynamic and 

Energy‐efficient Consolidation of Virtual Machines in OpenStack Clouds.” Concurrency and 

Computation: Practice and Experience, vol. 27, no. 5, Apr. 2015, pp. 1310–33. DOI.org 

(Crossref),  

URL: https://doi.org/10.1002/cpe.3314. 

 

Chen, Zheyi, et al. “Towards Accurate Prediction for High-Dimensional and Highly-Variable 

Cloud Workloads with Deep Learning.” IEEE Transactions on Parallel and Distributed 

Systems, vol. 31, no. 4, Apr. 2020, pp. 923–34. IEEE Xplore,  

URL: https://doi.org/10.1109/TPDS.2019.2953745. 

 

Dantas, Jaime, et al. “Application Deployment Strategies for Reducing the Cold Start Delay of 

AWS Lambda.” 2022 IEEE 15th International Conference on Cloud Computing (CLOUD), 

2022, pp. 1–10. IEEE Xplore,  

URL: https://doi.org/10.1109/CLOUD55607.2022.00016. 

 

Derakhshan, Behrouz, et al. “Optimizing Machine Learning Workloads in Collaborative 

Environments.” Proceedings of the 2020 ACM SIGMOD International Conference on 

Management of Data, Association for Computing Machinery, 2020, pp. 1701–16. ACM 

Digital Library,  

URL: https://doi.org/10.1145/3318464.3389715. 

 

Duc, Thang Le, et al. “Machine Learning Methods for Reliable Resource Provisioning in Edge-

Cloud Computing: A Survey.” ACM Comput. Surv., vol. 52, no. 5, Sept. 2019, p. 94:1-94:39. 

ACM Digital Library,  

URL: https://doi.org/10.1145/3341145.  

 

Feng, Guofu, and Rajkumar Buyya. “Maximum Revenue-Oriented Resource Allocation in 

Cloud.” International Journal of Grid and Utility Computing, vol. 7, no. 1, 2016, p. 12. 

DOI.org (Crossref),  

URL: https://doi.org/10.1504/IJGUC.2016.073772. 

 

Golec, Muhammed, et al. Cold Start Latency in Serverless Computing: A Systematic Review, 

Taxonomy, and Future Directions. arXiv:2310.08437, arXiv, 12 Oct. 2023. arXiv.org,  

URL: https://doi.org/10.48550/arXiv.2310.08437. 

 

Golec, Muhammed, et al. “MASTER: Machine Learning-Based Cold Start Latency Prediction 

Framework in Serverless Edge Computing Environments for Industry 4.0.” IEEE Journal of 

Selected Areas in Sensors, vol. 1, 2024, pp. 36–48. IEEE Xplore,  

URL: https://doi.org/10.1109/JSAS.2024.3396440. 

 

Hassan, Hassan B., et al. “Survey on Serverless Computing.” Journal of Cloud Computing, vol. 

10, no. 1, July 2021, p. 39. Springer Link,  

URL: https://doi.org/10.1186/s13677-021-00253-7. 

https://doi.org/10.1109/ACCESS.2022.3206366
https://doi.org/10.1002/cpe.3314
https://doi.org/10.1109/TPDS.2019.2953745
https://doi.org/10.1109/CLOUD55607.2022.00016
https://doi.org/10.1145/3318464.3389715
https://doi.org/10.1145/3341145
https://doi.org/10.1504/IJGUC.2016.073772
https://doi.org/10.48550/arXiv.2310.08437
https://doi.org/10.1109/JSAS.2024.3396440
https://doi.org/10.1186/s13677-021-00253-7


27 
 

 

Jegannathan, Akash Puliyadi, et al. “A Time Series Forecasting Approach to Minimize Cold Start 

Time in Cloud-Serverless Platform.” 2022 IEEE International Black Sea Conference on 

Communications and Networking (BlackSeaCom), 2022, pp. 325–30. IEEE Xplore,  

URL: https://doi.org/10.1109/BlackSeaCom54372.2022.9858271. 

 

Lee, Seungjun, et al. “Mitigating Cold Start Problem in Serverless Computing with Function 

Fusion.” Sensors, vol. 21, no. 24, Jan. 2021, p. 8416. www.mdpi.com,  

URL: https://doi.org/10.3390/s21248416. 

 

López García, Álvaro, et al. “A Cloud-Based Framework for Machine Learning Workloads and 

Applications.” IEEE Access, vol. 8, 2020, pp. 18681–92. IEEE Xplore,  

URL: https://doi.org/10.1109/ACCESS.2020.2964386. 

 

Moreno-Vozmediano, Rafael, et al. “Latency and Resource Consumption Analysis for Serverless 

Edge Analytics.” Journal of Cloud Computing, vol. 12, no. 1, July 2023, p. 108. Springer 

URL: https://doi.org/10.1186/s13677-023-00485-9. 

 

Vahidinia, Parichehr, et al. “Mitigating Cold Start Problem in Serverless Computing: A 

Reinforcement Learning Approach.” IEEE Internet of Things Journal, vol. 10, no. 5, Mar. 

2023, pp. 3917–27. IEEE Xplore,  

URL: https://doi.org/10.1109/JIOT.2022.3165127. 

 

 

 

 

 

 

 

 

 

 
  

https://doi.org/10.1109/BlackSeaCom54372.2022.9858271
http://www.mdpi.com/
https://doi.org/10.3390/s21248416
https://doi.org/10.1109/ACCESS.2020.2964386
https://doi.org/10.1186/s13677-023-00485-9
https://doi.org/10.1109/JIOT.2022.3165127

