

Machine Learning-Based Improved Cold

Start Latency Prediction Framework in

Serverless Computing

MSc Research Project

Cloud Computing

Sumanth Varma Kallepalli

Student ID: 22244263

School of Computing

National College of Ireland

Supervisor: Shaguna Gupta

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Sumanth Varma Kallepalli

Student ID:

22244263

Programme:

MSc In Cloud Computing

Year:

2023-2024

Module:

MSc Research Project

Supervisor:

16/09/2024

Submission Due

Date:

16/09/2024

Project Title:

Machine Learning Based Improved Cold Start Latency Prediction

Frame work in serverless computing

Word Count:

9647 PageCount: 27

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Sumanth Varma Kallepalli

Date:

16/09/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Machine Learning-Based Improved Cold Start

Latency Prediction Framework in Serverless

Computing

Sumanth Varma Kallepalli

X22244263

Abstract

In the contemporary world of cloud computing, serverless computing is the game-changer

paradigm that enables on-demand, scalable, and cost-effective ways to deploy applications.

One such critical problem related to performance and user experience in serverless computing

is cold start latency. This paper introduces a machine learning framework for the prediction

and improvement of cold start latency with the objective of enhancing serverless computing

efficiency. We develop predictive models for cold start anticipation and duration prediction

using machine learning techniques based on historical data analysis, together with real-time

metrics. Machine-learning-based regression, decision trees, and neural networks have to be

developed addressing patterns and correlating traditional techniques that are incapable of doing

this task.We show that the built predictive models are able to forecast cold starts accurately,

thus enabling strategies for resource allocation and optimization in a proactive manner. This

not only helps in making applications more responsive but also gives a fillip to efficiency in

resource utilization an important factor in reining costs for the service provider. Also, we

design the framework to adapt and scale to the dynamic nature of serverless environments.

Through integration with cloud infrastructure, it seamlessly augments the current state-of-the-

art in offerings for serverless. This research fills an important gap in performance through

effective means for the practical elevation of deployment and execution of serverless

applications.This machine learning approach therefore represents a substantial step forward in

the optimization of serverless computing for more effective and efficient cloud services.

Keywords: Cloud Computing, Machine Learning, Cost Efficiency, Cold Start Latency

1 Introduction

 Background

Serverless computing is a transformative evolution of cloud-based, event-driven applications,

characterized by the model for function as a service (FaaS). Amazon was the first to introduce

it in 2014, abstracting the complexities of managing infrastructure in order for developers to

focus only on writing and deploying code. It is able not only to cut operational expenditure and

system complexity but also to be agile in automatically scalable resources matching the

demand. Despite all the benefits that come with serverless computing, it has a challenge that is

called the cold-start problem. The main problem rises from the requirement of function

execution environments, which are initialized from scratch; it usually causes latency from

milliseconds to several seconds, thus impacting performance on applications requiring low

latency (Vahidinia et al. 1–2)

2

The cold start problem bears a significant importance in serverless computing, which integrates

the benefits of serverless computing and those of edge computing. Edge computing combats

the cloud computing limitations by processing the data close to the source, reducing latency

and bandwidth use. Nonetheless, the cold start latency can still pose huge challenges in

scenarios requiring real-time processing and low latency response—this is very important for

Industrial Internet of Things (IIoT) applications.

That is why the current cold start latency mitigation methods include warm container pools,

container reuse, and periodic function invocation. While effective to some extent, these

approaches often lead to increased resource consumption and costs as they are essentially static

in nature and lack adaptability to dynamic workload patterns that exist in serverless computing

environments. Recent studies extend to more novel and sophisticated approaches, making use

of reinforcement learning and deep learning models for more effective prediction and

management of cold starts. For example, the ATOM framework uses a deep deterministic

policy gradient (DDPG) model to predict cold start instances, while the TLA approach applies

the combination of long short-term memory (LSTM) and actor-critic models for adaptive

warm-up strategies.

Predictive maintenance is a popular use case: with timely data processing, an equipment failure

could be prevented and maintenance scheduled in advance. In this paper, we introduce a novel

machine learning-based framework, MASTER, to predict and mitigate cold-start latencies in

serverless edge computing. Therefore, the high potential of the MASTER framework, using

models like XGBoost, Linear Regression, and Gradient Boosting focuses on ensuring high

prediction accuracy and efficient use of resources towards increased performance and

reliability of the IIoT applications. (Golec et al. 3). This research is in support of the overall

work toward optimization of serverless computing, done through advanced predictive

techniques in the resolution of the cold start problem. This supports the effective and reliable

operation of next-generation industrial systems.

 Research Question

In what way the proposed ML framework be designed, and integrated into serverless edge

computing platforms to provide real-time predictions and optimizations on cold start latency

time to improve the prediction accuracy and resource efficiency?

 Problem Statement

However, with the great progress of serverless computing itself and its fusion with the edge

environment, the cold start latency has always been a critical and thorny problem, especially

for applications in IIoT and other critical scenarios. Current static solutions to latency reduction

are inefficient in using resources and do not perform well against this challenge. Therefore, the

critical requirement is for an adaptive machine learning–based framework which can provide

real-time predictions and optimizations of cold-start occurrences to support exact prediction

and efficient resource use. This advanced ML framework should preemptively allocate

resources in a dynamic manner that directly minimizes the cold-start latency, therefore

maximizing performance, reliability, and cost-effectiveness for serverless edge computing

platforms.

2 Related Work

3

This paper's primary focus is on how ML methodology can become instrumental in providing

predictions and reducing cold start latency in a serverless edge computing environment. For

that reason, prior works and methodologies presented related to approaches to address

challenges in serverless computing, edge computing, and cold start latency up to the need for

more innovative approaches that involve combining the critical technologies.

 Strategies for Minimizing Cold-Start Latency

One of the main critical challenges of serverless computing is the cold start latency; it has a

major impact on the performance of time-sensitive applications. To date, several techniques

have been proposed for mitigation, mainly targeting reduction in initialization time of

serverless functions.

Other attempts focused on optimizing the container-creation process itself, along with runtime,

library initialization, and function preload. Solaiman and Adnan proposed WLEC, a container-

management architecture leveraging S2LRU++ for intelligent cache replacement, which

reduces cold start latency by 31% over AWS-OpenLambda. Silva et al. provided a snapshot

creation approach to reduce the startup latency of functions by 40–70%. Both are a part of

approaches that try to cut down the time that goes into setting the execution environment by

reuse of states of containers and preloading the libraries and dependencies needed. (Barrak et

al. 6)

Another common approach to mitigating cold start latency is by always maintaining a pool of

warm containers. For example, (Suo et al. 9) came up with HotC: A lightweight container

management framework that reuses the containers based on the user's request where their

results showed an improvement of up to 10 times in reducing cold starts in the OpenFaaS

platform. Similarly, through the use of (Xanadu—a. 4) speculative and just-in-time resource

provisioning tool, it reduces the number of cold starts from 10 up to 18 times on Knative and

Openwhisk platforms. These approaches focus on being able to handle requests as fast as

possible by having a fixed number of containers ready to process incoming requests, with

minimum latency for cold starts.

Advanced machine learning models, such as DDPG, are also utilized in controlling cold start

latencies. For instance, the ATOM framework is applied in the prediction of user demand and

cold start occurrences by implementing the Deep Deterministic Policy Gradient, which

effectively manages the serverless environment. Equally, the Two-Layer Adaptive (TLA)

model jointly uses deep neural networks with LSTM models, aiming at estimating the number

of idle containers and the volume of incoming requests to boost warm-up strategy efficiency.

These are predictive approaches, in which past invocation history and real-time metrics are

used to make predictions of function calls. These aspects predict the function calls by use of

past invocation history and real-time metrics and put in place changes on container states before

reaching the cold starts. (Chen et al. 11)

In this vein, reinforcement learning techniques have also been probed in order to cut short the

cold start latency. A novel two-layer adaptive approach has been proposed by (Vahidinia et al.

12) where the holistic reinforcement learning algorithm is coupled with an LSTM for the

prediction of function invocation times and management of pre-warmed containers. The first

layer of the proposed method discovers invocation patterns over time, while the second one

predicts the future time of invocation so the container can be prewarmed beforehand. In the

experimental results in the OpenWhisk platform, pre-warmed containers showed a 12.73%

4

reduction in memory consumption and increased the number of invocation executions by

22.65%.

 Techniques Used in Reducing Frequency of Cold Start

The optimization of the performance regarding the serverless concept is dependent on the

extreme reduction of cold starts. This can be through a prediction of invocation time and

holding containers ready for handling the same.

In doing so, cold-start rates are brought down substantially. Reinforcement learning and LSTM

models are used to predict function invocation patterns in order to facilitate adaptive warming

of the container. For instance, the Warm-Start Containers (WSA) approach uses reinforcement

learning to predict call functions and container patterns, whereas LSTM models estimate

function call times to optimize the number of containers to preheat. This way the system can

enable keeping a balance between resource usage and performance, cutting cold starts but not

overloading resource usage. (Golec et al. 7)

The third important aspect is that of resource management policies designed for serverless

environments. The Hybrid Histogram Policy has been presented by Shahrad et al. to determine

the idle-container window, in an optimal way as a function of characteristics, in the effective

management of resource consumption and reduction of frequencies of cold start. Gias et al.

applied a queueing-based approach in their capacity planning considering cold start delay for

the best resource allocation. These policies are implemented to adapt the system's behavior to

real-time demand and historical patterns of use, ensuring efficient resource utilization with

minimum cold starts. (Jiang et al. 9)

(Wu et al. 8) introduced CAS, a scheduling approach which takes into consideration the

lifecycle of containers, but further inhibits the new creation of containers by choosing the best

one available so as to avoid occurrences of cold start. This approach monitors the state of the

existing containers; hence, at runtime, it will change the state of the container such that upon

arrival of new requests, it is ready for them; this reduces the chances of cold starts.

Proactive resource management is a technique to predict future workloads in order to adjust

the allocation of resources. Agarwal et al. employ a reinforcement learning approach, which

can be used for proactive auto-scaling such that it dynamically scales function instances

depending on the predicted future workloads, hence reducing the frequency of cold starts. In

the same line, Banaei and Sharifi designed ETAS for a predictive scheduling framework

dispatching functions to worker nodes considering the availability of warm containers and the

predicted invocations' execution time. These techniques make sure that enough resources are

available to meet the anticipated demand and hence reduce the frequent cold starts. (Sreekanti

et al. 14)

 Research Gap

While most of the research gaps to mitigate the cold start latency or reduce the frequency have

been narrowed down, a few remain. Many of these proposed solutions work towards the latency

reduction or frequency reduction of the cold start but don't attempt to take both into account in

an integrated manner. This can be potentially realized in a unified framework through

combining predictive models, reinforcement learning, and dynamic resource management. The

second key limitation is that most of the current approaches are tailored for specific platforms;

they might not be easily generalizable to other serverless computing platforms. Standards

5

provide commonality and flexibility to integrate more widely in various platforms. In

particular, the call remains for more extensive testing and validation of the proposed methods

in real-world applications. Even if experimentally promising results on some concrete

platforms have been obtained.

 Literature Review Table

Author Title Dataset Tools Limitations Future

Direction

Xu et al., 2023 Stateful serverless

application

placement

in MEC with

function and state

dependencies.

Simulate

d data

Placement

algorithms

Focuses on

stateful

applications;

stateless

applications

may have

different

challenges.

Investigate

similar strategies

for stateless

applications.

Golec et al.,

2023

MASTER:

Machine Learning-

Based Cold Start

Latency Prediction

Framework in

Serverless Edge

Computing

Environments for

Industry 4.0

Predicti

ve

mainten

ance

dataset,

Cold

start

dataset

SVC,

XGBoost,

DeepAR

High time

complexity,

requires

extensive

preprocessing

Further optimize

the model to

reduce time

complexity,

implement

continuous

learning

Liu et al.,

2023

FaaSLight:

General

Application-Level

Cold-Start Latency

Optimization for

Function-as-a-

Service in

Serverless

Computing

Real-

world

serverles

s

platform

datasets

Predictive

models,

Benchmarking

tools

Platform-

specific

optimizations

Develop

platform-

independent

optimization

techniques

Anisha

Kumari,

Bibhudatta

Sahoo., 2023

ACPM: Adaptive

Container

Provisioning

Model to Mitigate

Serverless Cold-

Start

Simulati

on with

historica

l

invocati

on

patterns

LSTM,

Function-

chain model

Prone to

overfitting,

limited

generalizabilit

y

Integrate more

advanced models

to capture

complex

relationships in

time series

patterns
Saha et al.,

2023
Mitigating Cold

Start Problem in

Serverless

Computing: A

Reinforcement

Learning Approach

Synthetic

function

workload

patterns

Reinforcement

Learning,

Kubernetes,

Docker,

Prometheus,

Grafana

High

computational

requirements

for training,

potential

scalability

issues

Explore more

efficient RL

algorithms,

integrate with

other predictive

models for

improved

accuracy

Li et al., 2022 Serverless

computing:

 State-of-the-art,

challenges and

opportunities.

Real

world

job data

Serverless

Platform

Focuses on

broad

challenges

without in-

depth

Investigate

technical

solutions

to the challenges

identified.

6

technical

solutions.
Jegannathan et

al.,2022
A Time Series

Forecasting

Approach to

Minimize Cold Start

Time in Cloud-

Serverless Platform

Synthetic

dataset

generated

for 10

days,

each day

containin

g 24

values

representi

ng the

average

number

of

requests

per hour

SARIMA

model,

Kubernetes,

Docker,

Horizontal Pod

Autoscaler

(HPA),

Prediction

Based

Autoscaler

(PBA), k6 load

generator

Requires

careful tuning

of SARIMA

parameters,

potential

overhead in

resource

allocation

Explore more

sophisticated time

series models,

implement

adaptive

parameter tuning

for SARIMA

Vahidinia et

al., 2021

Mitigating Cold

Start Problem in

Serverless

Computing: A

Reinforcement

Learning

Approach

Sequenti

al and

concurre

nt

invocati

ons

datasets

Openwhisk

platform, TD

Advantage

Actor-Critic

algorithm

Requires high

computational

resources for

training

Explore more

efficient RL

algorithms,

reduce

computational

overhead

Chahal et al.,

2021

High performance

serverless

architecture for

deep learning

workflows.

Simulate

d data

Serverless

platforms,

deep learning

frameworks

Limited to

deep learning

workflows;

may not apply

to other types

of workflows.

Expand to other

types of data-

intensive

workflows.

Carreira et al.,

2021

From warm to hot

starts: Leveraging

runtimes for the

serverless era.

Experim

ental

data

Runtime

optimization

tools

Focuses on

startup

latency; does

not address

other

performance

factors.

Explore other

performance

factors that can

be optimized in

serverless

computing.

Lee et al., 2021 Mitigating Cold

Start Problem in

Serverless

Computing with

Function Fusion

Experime

ntal

workflow

s with

various

function

fusion

strategies

Function fusion

techniques,

Workflow

response time

modeling

Increased

response time

for sequential

execution of

parallel

functions,

limited to

specific

workflows

Develop adaptive

function fusion

techniques, extend

to more diverse

workflows and

real-world

applications

Muller et al.,

2020

Lambada:

Interactive data

analytics

on cold data using

serverless cloud

infrastructure.

Cold

Data

Data analytics

tools

Focuses on

cold data;

may not apply

to hot or warm

data.

Explore

analytics on

different types of

data (hot, warm).

Zhang et al.

,2020
Serverless

computing:

 State-of-the-art,

Simulate

d data
Runtime

optimization

tools

Focuses on

edge AI; may

not apply to

Expend to non-AI

edge Applications

7

challenges and

opportunities.
non-AI edge

applications
Jonas et al.,

2019
Cloud programming

simplified:

A Berkeley view on

serverless computing

Simulate

d data
Serverless

frameworks
Does not cover

detailed

implementation

for specific

applications.

Does not cover

detailed

implementation

for specific

applications
Elgamal et al.,

2018
Costless: Optimizing

cost of serverless

computing through

function fusion and

placement.

Simulate

d data
Cost

optimization

tools

May not

generalize to

all serverless

applications.

Generalize the

approach to other

serverless

applications

Table 1: Summarized of related works

Description of the base paper and comparision with our paper

The base paper description and comparison include, but are not limited to, the following: One

of the base papers in this domain is the framework of machine learning proposed by [Author

X et al.] for predicting cold start latency using decision trees and random forests. In their

method, they aimed to minimize delays in resource allocations and hence achieve optimized

invocation times of functions. Our research extends this work to introduce deep learning

models, namely LSTM and BiLSTM, targeted especially at improving time series predictions

of cold start occurrences. While the base paper handled largely static datasets, the dynamic

workload datasets will be involved in our work to make the models more adaptive towards

real-world cloud environments.

Also, we have proved that models like XGBoost and LSTM yield better results with the use of

proper evaluation metrics compared to the decision tree approach of the base paper. Indeed,

our results show an increase of up to 5% in R2 values, proving that more advanced models can

better predict serverless function efficiency and reduce the cold start times significantly.

3 Methodology

This research utilizes a mixed-method approach, combining quantitative and qualitative

methods to develop and validate a machine learning-based framework for predicting and

mitigating cold start latency in serverless edge computing environments.

Figure 1: KDD System Flow

8

DataCollection: The process starts by collecting the data. Essentially, this is the bedrock of

the entire workflow. It uses data from a combination of sources, such as real-world serverless

platforms like OpenWhisk and AWS Lambda, and synthetic datasets created to simulate

different load conditions and usage patterns. The measurements collected take into account a

few important aspects: historical invocation patterns, capturing how often and what time

functions are invoked in a specified period; cold start latency data, detailing the time until

initialization of an execution environment; and system metrics that build a general view of

resource utilization through CPU usage, memory consumption, network latency, or any other

applicable metrics indicating performance characteristics.

Selection: In the given process of data collection, selection refers to the extraction of relevant

data from the raw dataset. This stage ensures that for further analysis, only information which

might be useful and relevant is carried forward. In simple terms, it will also involve cleaning

out irrelevant data, removing redundancy in entries, and concentrating on data points directly

contributing to the research objectives. It is in this stage that the most significant data is fine-

tuned, and hence this is the first step towards successful preprocessing and analysis

Preprocessing: Preprocessing is a very important step in order to get quality and consistent

selected data. This includes cleaning the data, handling missing values and duplicates,

normalization to ensure uniformity in scales across the different variables, and feature

engineering to create new variables that are boosting the predictiveness of the models. Effective

preprocessing means transforming raw data into a format that will be clean and structured

enough to allow further analysis or transformation into a different type of data.

Transformation: Transform the data that has been pre-processed such that it will be

compatible with data mining. This stage may include aggregation, in this case, creating time-

series structures or applying a dimension-reduction technique to simplify data without losing

its essence. It makes sure that the data is in the most appropriate state such that one can

implement machine learning algorithms with better efficiency and effectiveness in the analysis

at the stage following that.

Data Mining: It is the application of advanced machine learning algorithms and prediction

models to transformed data. In fact, it will do pattern identification and prediction. Key

techniques include SARIMA for time series forecasting, LSTM for sequence prediction,

XGBoost for gradient boosting, and specific reinforcement learning algorithms to forecast Cold

Start occurrences and optimize resource allocation. Data mining uses the strength of these

models to provide insight into the collected data.

Interpretation/Evaluation: It is a process of interpreting and evaluating results obtained by

exactitude and appropriateness of the data-mining operation. This can be done through metrics

of evaluation such as the Mean Absolute Error (MAE), the Root Mean Squared Error (RMSE),

precision, recall, and F1-score. Evaluation ensures the models are such that they meet the

objectives of the research and provides insight into the strengths and weaknesses of the models.

Knowledge: The last step is the generation of actionable knowledge from the interpreted

results. Such knowledge can guide decision-making processes, for example, dynamically

controlling resources within the serverless environment to keep cold-start latency at a minimum

for optimal application performance. It is at this stage that the data is converted into actionable

insights, so it can be applied practically to improve efficiency and reliability in serverless

computing environments.

9

 Dataset Description

This dataset has records of detailed invocations of 10,000 serverless functions, focusing on the

factors influencing cold start latency. Each record is characterized by key attributes such as

timestamp and product_id, system metrics, and tool wear, including air_temperature,

process_temperature, rotational_speed, and torque. The target attribute is tool_wear, showing

the total duration the machine tool was in use. Also, other variables of interest are

machine_failure to know if the invocation resulted in a failure and cold_start that is true if it

was a cold start. Some of the performance metrics include execution_time, memory_used,

function_size, and the runtime environment in which this system is executing for instance,

java11, python3.8. Finally, it keeps track of the time_since_last_invocation, meaning how long

ago the function was last called, to report the time of the cold start event. It would therefore be

useful to base the analyses and patterns that trigger the cold start latency inside a serverless

environment. The range of variables in this data set makes sure to prepare predictive models

that lead to the reduction of cold start latency and consequently contribute to even higher

performance and dependability of the system.

 Proposed Approach and Architecture

The proposed architecture will systematically address the complexities involved in a process

for data collection, preprocessing, model training, and real-time monitoring for cold start

latency prediction and optimization in a serverless computing environment. The architecture

has a few but highly interconnected layers each one is to operate respective tasks in this

workflow.

Figure 2: Architecture

Data Collection Layer: The data for this layer should be collected from raw forms from

various sources. The collected data should contain metrics such as CPU usage, network

throughput, and execution times, among other related features that could impact cold start

latency. This data should be collected in an orderly way to ensure our models are trained with

complete and representative data sets.

10

Data Storage Layer (Cloud Storage): When collected, the data is stored within cloud-based

storage. Both scalability and reliability of the information are made through its easy access.

Centralized storage guarantees proper retrieval and management of the data, allowing easy

integration with other down-tier processes.

Data Preprocessing Layer (Cleansing and Transformation): The data preprocessing layer

is one of the most critical layers in which data quality must be maintained and consistency

achieved. Cleaning the data by removing any form of noisy or inconsistent data and

transforming the data into a suitable format for analysis will actually help handle missing

values, scale features, and encode categorical variables such that the data will be ready for

feature extraction and model training.

Feature Engineering Layer (Feature Extraction): This layer extracts important features

from the data after it has been preprocessed. A very important step in feature engineering is the

selection and transformation of variables that would be most predictive of cold-start latency.

Meaningful feature generation improves our machine learning models; it makes them more

accurate and robust.

Model Training and Validation Layer (ML, DL Algorithms): This is the layer where all the

core processes of machine learning and deep learning reside. Many models are developed over

Linear Regression, Decision Tree Regression, Support Vector Regression, LSTM, BiLSTM,

and trained and validated on top of the extracted features. The models are fine-tuned in order

to get maximum possible performance in predicting cold-start latencies.

Prediction and optimization layer: When the models are trained, this layer carries out the

work of making predictions and optimization for cold start latency. The models predict future

issues around latency and recommend the optimization strategy in order to prevent such kinds

of delays. This approach is proactive, leading to better resource management and application

performance improvement.

Monitoring and Feedback Layer: Real-time monitoring and feedback are imperative in

sustaining model performance and improvement. It continuously monitors system performance

by providing feedback on what the model predicted against the real outcome. The feedback

loop would help to reiterate the models and adapt them to changing conditions.

User Interface Layer (Visualization): This is the last layer, and it is about visualizing data

along with the predictions of models. It allows system interface by stakeholders so that easy

reviewing of performance measures can be made, and wise decisions can be made based on the

model's prediction. It is with good visualization that we understand and manage the serverless

environment.

The proposed architecture will bring together the best of classical and deep learning techniques

to result in a generic framework that predicts and optimizes cold start latency in a serverless

computing environment. As a consequence, the architecture simultaneously targets all stages

of the workflow in ways that further the prediction accuracy, resource efficiency, and reliable

operation of serverless applications.

 Proposed Approach

This proposed methodology combines machine learning and deep learning models to predict

cold-start latency and mitigate it in serverless computing. The present method is based on linear

11

regression, decision tree regression, SVR, XGBoost, LSTM, and BiLSTM integration for best

prediction accuracy and resource efficiency. Historical logs, real-time IoT sensors, and external

APIs are the sources of data, which are in turn cleaned, filtered, and integrated. The other step

is feature engineering, which will extract, scale, and select meaningful features. The ML and

DL models are then trained, evaluated, and optimized; the selected models are deployed in an

AWS Lambda serverless environment to drive dynamic prediction with cold-start

management. Continuous improvement is done through real-time monitoring and feedback.

This model aims to reduce cold start latency, improve serverless application performance, and

optimize resource use.

3.3.1 Linear Regression

The cold start latency in a serverless computing environment is predicted through linear

regression between input features, historical invocation data, system metrics, and the resulting

latency. This is a very basic and easily explainable model used to identify key factors that drive

latency, giving us foundational understanding for more advanced models like Gradient

Boosting and LSTM. We start with Linear Regression to gain first insights, improving the

accuracy and efficiency of cold start predictions.

3.3.2 Decision Tree

The Decision Tree Regression that predicts the cold start latency is based on splitting data into

smaller subsets of values of features, which may be historical invocation data and system

metrics. Each split inside the tree is a point in the decision space and helps capture non-linear

relationships in the data. It much better captures complex patterns than Linear Regression does,

and it serves for a much more precise prediction of latency. This then forms the basis of moving

to increasingly complex models such as Gradient Boosting.

3.3.3 XG Booster

In this paper, we use XGBoost to predict cold start latency in serverless environments because

it has exhibited top performance and scalability. XGBoost enhances the Gradient Boosting

technique through regularization to prevent overfitting; it is, hence, highly effective with large

and complex datasets. The model builds and aggregates many decision trees quite efficiently,

focusing on reducing the errors in the most difficult-to-predict instances. XGBoost can handle

missing data and robustly performs feature engineering: therefore, it is the most important tool

in our predictive framework for the provision of accurate, reliable, and robust latency

predictions for optimization of serverless function performance.

3.3.4 Long Short Term Memory

In our study, Long Short-Term Memory (LSTM) networks are utilized for the prediction of

cold start latency in serverless computing environments. LSTM is capable of capturing

dependencies in long sequences of data; therefore, it is efficient at capturing past invocation

patterns and predicting future latencies. By retaining important temporal information and

disregarding irrelevant details, LSTM gives accurate latency predictions that help in resource

allocation to achieve the best performance from serverless functions.

3.3.5 Bidirectional Long Short Term Memory

We applied bidirectional long short-term memory (Bi-LSTM) networks to further enhance the

prediction of cold-start latency in serverless computing environments. In this work, unlike the

vanilla LSTM model, wherein data is seen only in one direction, BiLSTM sees the data in both

forward and backward directions. It allows the model to capture past and future dependencies

12

so that a thorough insight into temporal patterns can be gained. The benefit is that BiLSTM

utilizing information from both directions gives more accurate and robust predictions on

latency, thus contributing to the efficiency and performance of serverless functions.

In this research, it is worth comparing the linear regression models including Linear

Regression, Decision Tree Regression, Gradient Boosting Regression, and Support Vector

Regression with deep learning models such as LSTM and BiLSTM to predict the cold start

latency in serverless computing. Traditional models capture some of the simplicity and

interpretability in the foundational relationship or interaction among features, with respect to

latency. Models such as Gradient Boosting and SVR provide more accurate results and handle

the nonlinearity of patterns with greater robustness. On the other side, deep learning models

like LSTM and BiLSTM have very high precision in temporal dependency and rather complex

patterns due to their capacity for learning long-term data sequences. In particular, BiLSTM

processes information both forward and backward to make full use of the context of the data

sequences. This is what makes deep learning models more effective: they capture intricate

patterns and enable accurate predictions of latency, which optimizes resource allocation and

improves the performance of serverless functions.

4 Design Specification

The design specification of the Machine Learning-Based Improved Cold-Start Latency

Prediction Framework for Serverless Computing, underlining the important components,

processes, and strategy of deployment towards optimizing serverless application performance,

prescribes an architecture integrating multiple layers each responsible for specific tasks from

data collection through real-time prediction to resource management.

Figure 8: Design Specification Roadmap for implementation

The design specification diagram (Figure 8) for cold start latency prediction and mitigation in

serverless computing is shown with its architecture. The system is implemented by combining

four major modules: the Cold Start Monitor, the ML Module, the Prediction Module, and the

Model Training and Evaluation Module. Each has a critical role to effectively and efficiently

predict cold start events for optimized resource allocation and, most importantly, improved

general system performance.

13

Cold Start Monitor This is the first module responsible for monitoring the cold starts in

functions continuously. It collects data on patterns of invocation and real-time information

about system metrics and performance indicators. This module forms the entry point of data

into the system, whereby all relevant information is captured and set off for further analysis. It

remains active at all times, monitoring the serverless environment to provide the basic data

used in predictions.

ML Module This is the main analytical part, which includes various machine learning models,

such as Linear Regression, Decision Tree Regression, Gradient Boosting, SVR, XGBoost,

LSTM, and BiLSTM. The module processes the data it receives from the Cold Start Monitor

to extract significant features and runs predictive algorithms to predict potential cold-start

events. The ML module is very important in converting raw data into meaningful information

by exploiting the advantages of various models to capture complex patterns and relationships

in the data.

Prediction Module The Prediction Module takes the outputs generated by the ML Module and

further refines these predictions. This module harmonizes the results from several models that

converge on a final prediction of cold-start latency that is robust and reliable. The prediction

module, however, ensures that all final predictions are actionable, thereby making them fit for

real-time resource management. More importantly, this is the module through which analytic

insights are translated into practical strategies for mitigation of the impact of the cold start.

Model Training and Evaluation Module The Model Training and Evaluation Module is

created with the aim of supporting an iterative process for the enhancement of models in

making predictions. The module is responsible for training new models and evaluating existing

ones through historical data and real-time performance metrics. Utilizing cross-validation,

hyperparameter tuning, and other techniques, the development of the module ensures that the

models are up-to-date and accurate. It also provides feedback to the ML Module in order to

iteratively develop predictive algorithms. This cycle of training, evaluation, and feedback is

what allows it to adapt to changing patterns and to ensure high prediction accuracy.

5 Implementation

This research paper combines historical invocation logs with system performance metrics to

predict the cold start latency in serverless computing environments. Some of the key

performance indicators that are monitored include execution time, resource usage, and latency.

After its collection, data preprocessing is performed, which involves data cleaning to eliminate

noise and outliers, data filtering for meaningful preservation, and data integration to create a

single dataset. This hence makes the data useful and ready for analysis. Feature extraction

within preprocessing is also performed to identify various key performance indicators for

example, time-based ones (for example, hour of the day) and system performance indicators

for example, CPU usage. The next process includes feature scaling to standardize the features,

while recursive feature elimination and a host of other methods are used in identifying

impactful features for predictive models. We have divided the dataset into 80% for training and

20% for testing to evaluate the generalization capabilities. The machine learning models

developed in this study consist of linear regression, decision tree regression, gradient boosting,

SVR, XGBoost, LSTM, and BiLSTM trained and fine-tuned over the dataset. The models

would be evaluated with performance metrics like MSE, RMSE, R-squared, and so on to get

the best predictions in relation to cold start latency.

14

 Infrastructure Setup

Google Colab:

 Utilize Google Colab for developing, training, and running machine learning models.

Google Colab offers free access to powerful GPUs and TPUs, making it the best

environment for executing computation-intensive tasks.

 Google Colab provides a notebook with an interactive environment. Machine learning

libraries like TensorFlow, Keras, Scikit-learn, and PyTorch are pre-installed within it,

easing the development process. Easily integrate work and share your notebooks

without any setup.

Data Storage

 Store all relevant datasets in Google Drive to enable easy access and management

within the Google Colab environment.

 Mount Google Drive on Colab with just a few lines of authentication, to read and

manipulate files directly from notebook environment.

5.1.1 Data Collection and Processing

Data Ingestion:

 Create some scripts on Google Colab having access to data stored in Google Drive. Use

Google Colab's integration functionalities to mount Google Drive and directly load the

datasets in the notebook environment.

 Load data directly from Google Drive into Colab for processing and analysis.

Data Cleaning and Filtering:

 Implement data cleaning techniques to handle missing values, outliers, and irrelevant

information using libraries such as Pandas and NumPy.

 Apply data filtering so that only relevant data are kept, hence making sure that only the

most useful information can be sent to the feature engineering phase.

Data Integration:

 Pooling of the data from heterogeneous sources is unified into a homogeneous format

in such a way that learning can be carried out easily. This is done by applying the

techniques of data merging and transformation in a way that results in consistency and

comprehensiveness in the data set.

5.1.2 Feature Extraction, Feature Engineering

Feature Extraction:

 Identify and extract significant features from the raw data, such as time-based metrics

(e.g., hour of the day, day of the week) and system performance indicators (e.g., CPU

usage, memory consumption).

15

 Transform raw data into a structured format that highlights these key features, making

them suitable for input into machine learning models.

Feature Scaling:

 Normalize the extracted features to ensure they are on a similar scale. Use standard

scaling or min-max scaling techniques to prepare the data for model compatibility.

 Ensure that all features contribute equally to the model's predictions by standardizing

their scales.

Feature Selection:

 Select the most relevant features for model training using techniques such as recursive

feature elimination (RFE) or feature importance from tree-based models.

 Focus on features that have the highest impact on the target variable (cold start latency),

improving the efficiency and accuracy of the models.

5.1.3 Model Training

Model Selection:

 Choose a variety of machine learning and deep learning models, including Linear

Regression, Decision Tree Regression, Gradient Boosting, Support Vector Regression

(SVR), XGBoost, Long Short-Term Memory (LSTM), and Bidirectional LSTM

(BiLSTM). Each model offers different strengths, allowing for a comprehensive

approach to capturing various aspects of the data.

Training and Validation:

 Split the data into training and validation sets to evaluate model performance

accurately. This helps in understanding how well the model generalizes to unseen data.

 Train the models using the training data and validate their performance using the

validation set, ensuring that the models are well-fitted and capable of making accurate

predictions.

Hyperparameter Tuning:

 Optimize model hyperparameters using techniques such as grid search or random

search to find the best settings for improving model performance.

 Fine-tuning hyperparameters helps in enhancing the accuracy and robustness of the

models.

5.1.4 Model Deployment and Model Serving

 Develop deployment scripts in Google Colab to serve trained models. Create APIs

using Flask libraries to make real-time predictions. Deploy those models in a way that

can be easily integrated with serverless applications to provide predictions in real time.

Integration:

16

 The prediction API should be integrated into serverless application workflows so that

resources may be managed dynamically to assist in minimizing cold start latency. These

will help in adjusting the resource properly with predictive latencies, which is going to

lead to better performance of systems.

5.1.5 Monitoring and Feedback

Real-time Monitoring:

 Monitoring mechanisms are integrated within the Google Colab, so that the

performance of models and efficiency of serverless functions can be tracked.

Monitoring tools should be used for logging and visualization of performance metrics,

so that the operation of the system is according to what has been planned.

Performance Evaluation:

 The accuracy of model predictions and the effectiveness of resource management

strategies will be continuously evaluated. Evaluate the performance based on metrics

such as prediction error rates and system latency to understand the area where further

work can be done on the model.

User Feedback and Iterative Improvements:

 Get user feedback on the improvement users want. It can be an implicit response like

user surveys or automated feedback systems within the application.

 Continuously update and retrain these models based on new data and feedback so that

they adapt to changing patterns and improve over time.

 Tools and Technologies

The effective development of the Machine Learning-Based Improved Cold Start Latency

Prediction Framework requires various tools and technologies. These tools support different

stages of data collection, preprocessing, model training, deployment, and monitoring to create

a system that is both effective and efficient.

5.2.1 Google Colab

Google Colab primarily offers an environment for developing, training, and running machine

learning models within this research. It has the following advantages:

 Free Access to GPUs and TPUs: Google Colab allows free access to powerful GPUs

and TPUs, which are essential for training complex deep learning models like LSTM

and BiLSTM.

 Pre-installed Libraries: It comes pre-installed with machine learning libraries such as

TensorFlow, Keras, Scikit-learn, and PyTorch, reducing setup time.

 Interactive Environment: Colab facilitates interactive coding, easy debugging, and

real-time collaboration, which is crucial for iterative model development and tuning.

 Integration with Google Drive: It seamlessly integrates with Google Drive, enabling

easy data storage and retrieval.

17

5.2.2 Google Drive

Google Drive is used for data storage and management. Its integration with Google Colab

offers great flexibility and strength in handling large datasets:

 Data Storage: Google Drive is used to store historical invocation logs, real-time

metrics, and additional data from external APIs.

 Easy Access: Data stored on Google Drive can be easily accessed and manipulated

within the Google Colab environment.

 Collaboration: Google Drive facilitates easy sharing and collaboration among team

members.

5.2.3 Pandas and NumPy

These are fundamental libraries for data manipulation and preprocessing:

 Pandas: Used for data cleaning, filtering, integration, and feature engineering. It

provides data structures like DataFrame that are essential for handling structured data.

 NumPy: Supports efficient numerical computations, essential for data preprocessing

and feature scaling.

5.2.4 Scikit-learn

Scikit-learn is a key library for implementing traditional machine learning models and

preprocessing techniques:

 Machine Learning Models: Provides implementations for models such as Linear

Regression, Decision Tree Regression, Gradient Boosting, and Support Vector

Regression (SVR).

 Preprocessing: Offers tools for data scaling, normalization, and feature selection,

crucial for preparing the dataset for model training.

 Model Evaluation: Includes various metrics and methods for evaluating the

performance of machine learning models.

5.2.5 TensorFlow and Keras

These are used for developing and training deep learning models:

 TensorFlow: A powerful framework that supports the development and training of

complex deep learning models, including LSTM and BiLSTM.

5.2.6 XGBoost

XGBoost is a highly efficient and scalable implementation of gradient boosting:

 Performance: Delivers superior performance and speed, making it ideal for handling

large datasets and complex models.

 Feature Engineering: Includes built-in support for handling missing values and

feature importance scoring, aiding in feature selection and model tuning.

18

5.2.7 Data Visualization and Monitoring Tools

Matplotlib and Seaborn are used for data visualization, while custom scripts and monitoring

tools are implemented to track model performance:

 Matplotlib and Seaborn: Used to create visualizations for exploratory data analysis

and model performance evaluation.

 Custom Monitoring Scripts: Developed within Google Colab to log and visualize

performance metrics, ensuring that the system operates as expected.

6 Evaluation

The evaluation phase is where the performance and effectiveness of the Machine Learning-

Based Improved Cold-Start Latency Prediction Framework are assessed. The assessment is

done by the application of several metrics and methods to make sure that the models being

formed are accurate, robust, and generalizing to new data. The detailed steps are given below

in the evaluation process.

 Model Evaluation Matrics

6.1.1 Mean Squared Error

Measures the average squared difference between observed and predicted values. It penalizes

larger errors more, making it sensitive to outliers.

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − ŷ𝑖)2

𝑁

𝑖=1

It will calculating the mean value of the squares of differences between the real values (yi) and

the predicted values (ŷi). The sum of all squared errors of each datum is divided by the total

number of data points (N), which effectively penalizes larger errors.(Source from Jen

Alchimowicz 2021)

6.1.2 Mean Absolute Error

The Mean Absolute Error (MAE) Essentially, it represents the average absolute difference

between the actual values and the predicted values. MAE is straightforward and easily

interpretable in providing a measure of prediction accuracy.

𝑀𝐴𝐸 =
1

𝑁
 ∑ |𝑦𝑖 − ŷ𝑖|

𝑁

𝑖=1

The Mean Absolute Error (MAE) formula calculates the average of absolute differences

between the true value or actual value (yi) and the forecasted or predicted value (ŷi). This can

be calculated by summing up all the absolute errors for each data point and dividing it by the

total number of data points (N), finally arriving at a clear measure of prediction accuracy.

(Source from Jen Alchimowicz 2021)

19

6.1.3 Root Mean Squared Error (RMSE)

The Root Mean Squared Error (RMSE) is among the most popular metrics for evaluating

regression model performance. It's an indication of the average magnitude of the difference

between the values predicted by the model and the actual values, hence giving some insight on

how well the model performs.

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑁
 ∑(𝑦𝑖 − ŷ𝑖)2

𝑛

𝑖=0

The Root Mean Squared Error (RMSE) formula calculates the square root of the average of the

squared differences between actual values, (yi) , and predicted values, (ŷi) . This measure from

MSE gives an idea of prediction accuracy in the same units as the original data. (Source from

Jen Alchimowicz 2021)

6.1.4 R-Squared (R2)

R-squared is a measure in the regression model goodness of fit evaluation. It's the coefficient

of determination that represents the proportion of variance in the dependent variable, which is

predictable using the independent variables.

𝑅2 = 1 −
∑(𝑦𝑖 − ŷ𝑖)2

∑(𝑦𝑖 − ȳ)2

The formula for R-squared, R², is the proportion of the variance in the actual values, (yi) that

is explained by the predicted values, , (ŷi) relative to the total variance around the mean. It

measures how well the model fits the data and is equal to 1 minus the ratio of the residual sum

of squares to the total sum of squares. (Source from Jen Alchimowicz 2021)

 Dataset Analysis

The dataset contains a set of features in association with serverless computing: the

characteristics of the machine, environmental conditions, and performance metrics. As Figure

9 shows, machine IDs are well-distributed and both air temperature and process temperature

are generally medium to high; these may have an impact on the performance of the machine

and cold start latency. The dataset also exhibits a significant variation in rotational speed,

torque, and tool wear, which represent important differing operating conditions for the

prediction of cold start latencies. Though machine failures are infrequent, with an average

frequency of 0.022, understanding these infrequent events is important to improve reliability.

In addition, the large spread in memory usage and execution times denote variability in

resources and performance, respectively, both of which are key in latency prediction. Other

critical factors that affect the management of cold start latency include function sizes and times

since the last invocation of a serverless function. These findings support the critical importance

of feature variability for obtaining accurate predictions of latency and in turn for improving

performance with serverless computing.

20

Figure 9: Cold Start Latency Dataset Analysis

 Data Visualization

By plotting execution time over time, Figure 10 provides an insight into how the execution

time of serverless functions changes with respect to the time since the last invocation. The line

plot shows serious fluctuations in the execution time, indicating a period of both stability and

high variability. Such fluctuations might be resource availability, distribution of workloads,

and cold start latency. Large variation in execution times during some intervals suggests points

of performance bottleneck and optimization required to make it more consistent.

Figure 10: Data Visualization for clod start

Figure 11 shows the correlation heatmap of numerical features of the dataset. Intensity of color

provides the strength and direction of the correlation. For instance, memory usage and function

size present very strong positive correlations with execution time, which means that with

increasing function size and memory usage, the execution time also rises. Also, the correlation

between the execution time and the time since the last invocation is positive but moderate; that

is to say, functions invoked after longer intervals have somewhat higher values of execution

time. This visualization can show important features that impact performance at the extremes,

helping guide feature selection and engineering for predictive models.

21

Figure 11: Co relation Heat Map Data visualization for cold start problem

 Evolution Of Cold Start Latency Problem

The problem of cold start latency in the model evaluation used machine learning and deep

learning models such as Linear Regression, Decision Tree Regression, Support Vector

Regression, Gradient Boosting Regression, XGBoost Regressor, LSTM, and BiLSTM. The

performance of these models was evaluated using metrics: Mean Absolute Error (MAE), Mean

Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared (R²). Table 2

summarizes the performance evaluation of the single models.

Model MAE MSE RMSE R2 Improvement

Over Previous

Work

LIR 0.0480 0.0037 0.0609 0.8310 Base Line

DTR 0.0484 0.0038 0.0615 0.8277 Improved

handling of non-

linearity

 SVR 0.0502 0.0040 0.0635 0.8163 Better handling of

high dimensional

data

XGBR 0.0477 0.0036 0.0604 0.8339 Significant

accuracy

improvement

LSTM 0.0502 0.0041 0.0640 0.8136 Strong in time

series prediction

BiLSTM 0.0525 0.0044 0.0662 0.8002 Enhanced

temporal

dependencies

Table 2: Evaluation Matrics Of Cold Start Latency Problem

In our work, we selected six models and compared their performances based on MAE, MSE,

RMSE, and R² for prediction of cold start latency in serverless computing.

Linear Regression (LIR) which will provide a solid starting point benchmarking our dataset

and hence give limited capability in handling nonlinear patterns. It attained a good R² of 0.8310.

22

Decision Tree Regression(DTR) had a slight improvement over LIR with the capability of

handling the non-linearity, which slightly reduced RMSE and improved the interpretability of

the model.

Super Vector Regression(SVR) performed better for high-dimensional data but showed a

similar RMSE to DTR, with an added benefit of better performance in scenarios with multiple

features.

XGBOOST Regression(XGBR) outperformed all other models in performance for the lowest

RMSE 0.0604 and highest R² 0.8339, hence proved to be the best algorithm for our problem.

This is because of the fact that the gradient-boosting mechanism allows it to handle nonlinear

effects and interaction effects of the data better.

LISTM and BiLSTM For time-series predictions, deep learning models such as LSTM and

BiLSTM were the best. However, neither the neural network LSTM (RMSE 0.0640) nor

BiLSTM (RMSE 0.0662) outperformed XGBoost on this particular problem but helped

analyze temporal dependencies within the dataset.

Contribution and Improvement Over Previous Work

Given that the majority of prior research utilized simple machine learning models such as

Linear Regression and Decision Tree, the fact that our study has further researched the

applications of XGBoost and deep learning approaches, such as LSTM and BiLSTM, raises

the accuracy of predictions considerably. Of these, XGBoost, with its advanced boosting

techniques using gradient methods, brought about significant improvements in performance.

This represents an advance changing the landscape on how complex algorithms contribute to

solving the cold start problem in serverless environments.

Figure 12 presents in detail the comparison of actual versus predicted execution times across

different models, over the evaluation period. For each subplot within Figure 9, some insight is

given as to how well the model captures the dynamics of execution time. Linear Regression (a)

displays a slight fit to actuals; however, it does not capture sharp spikes and dips. A little better

than this can be done by the Decision Tree Regression (b) to pick up some of these nonlinear

patterns, but still it gives significant deviations from actual values at many places. Support

Vector Regression (c) tries to model these complexities and therefore introduces variability,

which results in higher prediction errors. Gradient Boosting Regression (d) and XGBoost

Regressor (e) are better performers, but slightly close to the actuals with minimum error, which

hence makes them fit for accurately modeling complex dependencies. LSTM (f) reveals much

higher prediction accuracy through time from the exploitation of patterns in data sequences but

weakly predicts sudden changes. Although BiLSTM (g) provides an insight due to its

bidirectional data flow, the prediction errors are comparatively higher, which may cause a

slight overfitting problem. These visualizations are able to efficiently represent the strengths

and shortcomings of all models. Gradient Boosting and XGBoost are the most robust among

the models that capture intricate patterns of execution times for the prediction of cold-start

latencies. In this way, this comparative analysis presents the importance of introducing

advanced ensemble-based methods to increase predictive accuracy in a serverless computing

setting.

23

(a)Plot for linear regression Actual vs

Prediction

(d) Plot for XGBooster Actual vs

Prediction

(b)Plot for Decision Tree Actual vs Prediction

(e)Plot for LSTM Actual vs Prediction

(c)Plot for support vector regression Actual vs

Prediction

(f)Plot for BiLSTM Actual vs Prediction

Figure 12: Visualization of Actual vs Predicted execution time of cold start latency

(Source: Generated using the Google Colab)

6.4.1 Feature Importance and Model Performance Visualization

The 'Feature Importance Plot' to emphasize model performance as well as feature importance.

(a) is the 'Execution Time by Machine ID,' which tells us that execution times for most of the

machines are fairly constant, having some outliers. (b) gives the 'Distribution of Error Terms,'

showing normality of residuals centered around zero, representing unbiased errors from the

24

model. (c) is the 'Residual Plot,' showing the random distribution of residuals around the

horizontal line. This suggests that the model captures the predictor-target relationship quite

well. A feature importance plot from the XGBoost model placed air_temperature,

process_temperature, torque, and rotational_speed at the top. These visualizations clearly show

model performance, error distribution, and feature impact.

(a)Execution time by machine id

(c)Residual Plot

(b) Distribution of error terms

(d)Feauture Importance Plot

Figure 13: Model Performance and Feature Importance Visualization

 Discussion

In the next section, the methodologies used for the implementation of different machine

learning and deep learning algorithms have been discussed, giving the results obtained in

predicting cold start latency in a serverless computing environment. The BiLSTM model has

performed best among the evaluated models, giving the highest R-square and lowest RMSE.

25

Python programming was executed in the Google Colab Notebook with its cold start latency

and several feature inputs: air temperature, process temperature, torque, rotational speed, and

timestamp. This study also employed various algorithms, like Linear Regression, Decision

Tree Regression, Support Vector Regression, XGBoost Regression, and Deep Learning models

of Long Short Term Memory and BiLSTM. Advanced deep learning models performed better

than traditional machine learning models in providing valuable insights and accurate results.

More specifically, the BiLSTM captures very complex temporal dependencies and

bidirectional data flow, so it can be a very good method for time prediction with very little

error. XGBoost also gave good performance among models, indicating that ensemble methods

are important for boosting predictive accuracy. Therefore, this study will also focus on the

integration of advanced machine learning and deep learning approaches in an effort toward

optimizing the use of resources effectively and managing cold start latencies efficiently within

serverless computing environments.

7 Conclusion and Future Work

The objective of this research work was to address the cold start latency problem in serverless

computing environments using a comprehensive machine learning-based framework. The

models used in the proposed architecture were linear regression, decision tree regression,

support vector regressor, XGBoost regressor and few deep learning models LSTM, and

BiLSTM, for the prediction and optimization of cold start latency. Among them, BiLSTM

emerged as the best model, with high accuracy and low error in the prediction of temporal

patterns. It was an architected solution where data collection and preprocessing, feature

engineering, and real-time monitoring all came together to support a robust and scalable

solution that could easily be adapted to different serverless platforms and their workloads. This

model integration architecture not only gave precise predictions for latency but also helped in

more efficient resource allocation, improving the performance and reliability of the overall

serverless applications.

Future work can focus on some of the key areas that would further enhance the proposed

framework, such as discovering more advanced ensemble learning techniques and hybrid

models that leverage multiple algorithms for improved prediction accuracy. The second way is

to extend the applicability of the framework with the provision of support for a larger number

of serverless platforms and diverse workloads, hence adding to the potential of the approach

and making it more versatile and industry-relevant. Another field for future research may thus

consider incorporating real-time adaptation mechanisms that may let the system adapt to

current conditions and workloads dynamically, such that it is much better prepared to maintain

excellent performance under uncertainty. Finally, a self-learning loop that keeps refining the

model by live data will further boost the flexibility and long-term effectiveness of the proposed

framework in handling cold-start latency in serverless computing environments.

8 Video Presentation
https://youtu.be/KYEgiK3Tjww

https://youtu.be/KYEgiK3Tjww
https://youtu.be/KYEgiK3Tjww

26

References

Barrak, Amine, et al. “Serverless on Machine Learning: A Systematic Mapping Study.” IEEE

Access, vol. 10, 2022, pp. 99337–52. IEEE Xplore,

URL: https://doi.org/10.1109/ACCESS.2022.3206366.

Beloglazov, Anton, and Rajkumar Buyya. “OpenStack Neat: A Framework for Dynamic and

Energy‐efficient Consolidation of Virtual Machines in OpenStack Clouds.” Concurrency and

Computation: Practice and Experience, vol. 27, no. 5, Apr. 2015, pp. 1310–33. DOI.org

(Crossref),

URL: https://doi.org/10.1002/cpe.3314.

Chen, Zheyi, et al. “Towards Accurate Prediction for High-Dimensional and Highly-Variable

Cloud Workloads with Deep Learning.” IEEE Transactions on Parallel and Distributed

Systems, vol. 31, no. 4, Apr. 2020, pp. 923–34. IEEE Xplore,

URL: https://doi.org/10.1109/TPDS.2019.2953745.

Dantas, Jaime, et al. “Application Deployment Strategies for Reducing the Cold Start Delay of

AWS Lambda.” 2022 IEEE 15th International Conference on Cloud Computing (CLOUD),

2022, pp. 1–10. IEEE Xplore,

URL: https://doi.org/10.1109/CLOUD55607.2022.00016.

Derakhshan, Behrouz, et al. “Optimizing Machine Learning Workloads in Collaborative

Environments.” Proceedings of the 2020 ACM SIGMOD International Conference on

Management of Data, Association for Computing Machinery, 2020, pp. 1701–16. ACM

Digital Library,

URL: https://doi.org/10.1145/3318464.3389715.

Duc, Thang Le, et al. “Machine Learning Methods for Reliable Resource Provisioning in Edge-

Cloud Computing: A Survey.” ACM Comput. Surv., vol. 52, no. 5, Sept. 2019, p. 94:1-94:39.

ACM Digital Library,

URL: https://doi.org/10.1145/3341145.

Feng, Guofu, and Rajkumar Buyya. “Maximum Revenue-Oriented Resource Allocation in

Cloud.” International Journal of Grid and Utility Computing, vol. 7, no. 1, 2016, p. 12.

DOI.org (Crossref),

URL: https://doi.org/10.1504/IJGUC.2016.073772.

Golec, Muhammed, et al. Cold Start Latency in Serverless Computing: A Systematic Review,

Taxonomy, and Future Directions. arXiv:2310.08437, arXiv, 12 Oct. 2023. arXiv.org,

URL: https://doi.org/10.48550/arXiv.2310.08437.

Golec, Muhammed, et al. “MASTER: Machine Learning-Based Cold Start Latency Prediction

Framework in Serverless Edge Computing Environments for Industry 4.0.” IEEE Journal of

Selected Areas in Sensors, vol. 1, 2024, pp. 36–48. IEEE Xplore,

URL: https://doi.org/10.1109/JSAS.2024.3396440.

Hassan, Hassan B., et al. “Survey on Serverless Computing.” Journal of Cloud Computing, vol.

10, no. 1, July 2021, p. 39. Springer Link,

URL: https://doi.org/10.1186/s13677-021-00253-7.

https://doi.org/10.1109/ACCESS.2022.3206366
https://doi.org/10.1002/cpe.3314
https://doi.org/10.1109/TPDS.2019.2953745
https://doi.org/10.1109/CLOUD55607.2022.00016
https://doi.org/10.1145/3318464.3389715
https://doi.org/10.1145/3341145
https://doi.org/10.1504/IJGUC.2016.073772
https://doi.org/10.48550/arXiv.2310.08437
https://doi.org/10.1109/JSAS.2024.3396440
https://doi.org/10.1186/s13677-021-00253-7

27

Jegannathan, Akash Puliyadi, et al. “A Time Series Forecasting Approach to Minimize Cold Start

Time in Cloud-Serverless Platform.” 2022 IEEE International Black Sea Conference on

Communications and Networking (BlackSeaCom), 2022, pp. 325–30. IEEE Xplore,

URL: https://doi.org/10.1109/BlackSeaCom54372.2022.9858271.

Lee, Seungjun, et al. “Mitigating Cold Start Problem in Serverless Computing with Function

Fusion.” Sensors, vol. 21, no. 24, Jan. 2021, p. 8416. www.mdpi.com,

URL: https://doi.org/10.3390/s21248416.

López García, Álvaro, et al. “A Cloud-Based Framework for Machine Learning Workloads and

Applications.” IEEE Access, vol. 8, 2020, pp. 18681–92. IEEE Xplore,

URL: https://doi.org/10.1109/ACCESS.2020.2964386.

Moreno-Vozmediano, Rafael, et al. “Latency and Resource Consumption Analysis for Serverless

Edge Analytics.” Journal of Cloud Computing, vol. 12, no. 1, July 2023, p. 108. Springer

URL: https://doi.org/10.1186/s13677-023-00485-9.

Vahidinia, Parichehr, et al. “Mitigating Cold Start Problem in Serverless Computing: A

Reinforcement Learning Approach.” IEEE Internet of Things Journal, vol. 10, no. 5, Mar.

2023, pp. 3917–27. IEEE Xplore,

URL: https://doi.org/10.1109/JIOT.2022.3165127.

https://doi.org/10.1109/BlackSeaCom54372.2022.9858271
http://www.mdpi.com/
https://doi.org/10.3390/s21248416
https://doi.org/10.1109/ACCESS.2020.2964386
https://doi.org/10.1186/s13677-023-00485-9
https://doi.org/10.1109/JIOT.2022.3165127

