ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Cloud Computing

Rakshat Jayakumar
Student ID: 22245766

School of Computing
National College of Ireland

Supervisor: Jitendra Kumar Sharma

‘-—
National College of Ireland \ National

Collegeof
Ireland

MSc Project Submission Sheet

School of Computing
Rakshat Jayakumar

(oY 1T« 1= o RSOOSR

Name:
22245766

Y A 1T e [=T o o 1 TSROSO SRR
Msc cloud computing 2024

Programme: ... Year:oiiiiiiieeensn
Msc Research Project

MOAUIE: et b e e b e e e e ebe e aae e eare et ereeaaes
Jitendra Kumar Sharma

= Yot o 1] =T -

Submission 12/08/2024

DU DAt e e e e r e e e e e e e e e araaeeaas
Security Monitoring of Serverless Applications using eBPF tools

o o) T=T ot d I o L= SRRSO
1603 13

Word Count: ..o Page Count: ...

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Rakshat Jayakumar
Y e T 1= 1T o=

Date:

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project m
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Rakshat Jayakumar
Student ID: 22245766

1 Introduction

This research project has been implemented in two ways. The first way is test the library
locally. The project was developed and tested in a local development envirnoment with help
of Visual Studio Code and later on it deployed to Amazon AWS with the help of docker.

1.1 Prerequisite

Before we begin to build the project we must have the developer tools installed in our
systems.
e Visual Studio Code: Free lightweight code editior.

e Python: A Programming language that has been used to develop the custom security
monitoring package together with the Lambda function.

Pip: python package manager to install required python libraries.
Docker: A tool for running applications in a container and then for the emulation of
the AWS Lambda environment on the local machine.

e AWS account: Platform which is used to create lambda functions.

2 Locally deploying the file
2.1 Developing the library

First we need to create a python package which needs to created to create monitoring
functions like shown below:

my_lambda_security_lib

__pycache__
dynamic C:\Users\91¢
lambda_ _
static_analysis.cpyt...
dynamic_monitor.py
lambda_wrapper.py

static_analysis.py

_init__.py
Figure 1: Structure of the package

In this case, | have created a package called “my_lambda_security lib” which contains
python files which are specifically designed to perform security operations.

'S
time

0s

psutil
threading
requests

execution times = {}
function call count = {}
cpu_usage = []
memory_usage = []
network requests = []
file operations = []
resource_monitoring active = True
start _time = None
end_time = None

call depth =

max_call depth =

def trace calls(frame, event, arg):

call depth, max_call depth
if event == :
function_name = frame. .
execution_times[function_name] = time.perf counter()
function_call count[function_name] =
function_call count.get(function_name, 0) +

call depth +=
max_call depth = max(max_call depth, call depth)
print(f {function_name}
elif event == :
function_name = frame.
if function_name in execution_times:
elapsed time = time.perf counter() -
execution_times[function_name]
execution_times[function_name] = elapsed_time
print(f {function_name}
{elapsed time }
call depth -=
return trace calls

def monitor_ resources():

resource_monitoring_active
process = psutil.Process(os.getpid())

process.cpu_percent(interval=None)

while resource _monitoring active:
cpu_percent = process.cpu_percent(interval=None)

memory_info = process.memory percent()

cpu_usage.append(cpu_percent)

memory usage.append(memory_info)

print(f {cpu_percent
{memory_info }%")

time.sleep (@)

def start dynamic_monitoring():
start _time
print(
start_time = time.time()

{call depth}")

resource_monitor_thread = threading.Thread(target=monitor_resources)

resource_monitor thread. = True
resource_monitor_thread.start()

sys.settrace(trace_calls)

stop_dynamic_monitoring():
resource_monitoring active, end_time
sys.settrace(None)

resource_monitoring active = False
end_time = time.time()

print(

output_detailed summary()

monitor_ network calls():

original get = requests.

def patched get(*args, **kwargs):
request_info = {
: args[o@],

: None,
: len(kwargs.get(

}

response = original get(*args, **kwargs)

request_info[] = response.

request_info[] = len(response.

network_requests.append(request_info)

print(f {args[0]}
{response.)

return response

requests. = patched get

def monitor_file operations():

original_open = open

def patched_open(*args, **kwargs):
file info = {
: args[0],
: kwargs.get(
}

file operations.append(file_info)
print(f {args[9]}
{file_info[13}
return original open(*args, **kwargs)
__builtins_ [] = patched_open
def output detailed summary():

print(

total execution_time = end_time - start_time
print(f {total execution_time

print()
for function_name, elapsed_time in execution_times.items():
print(f”- {function_name}: {elapsed_time })

print()
for function _name, count in function_call count.items():
print(f”- {function_name}: {count})

print(f"”\n {max_call depth}")

if cpu_usage:
avg cpu_usage = sum(cpu_usage) / len(cpu_usage)
peak cpu usage = max(cpu_usage)

else:
avg_cpu_usage = peak_cpu_usage =

print(f"\n {avg_cpu_usage 5"
print(f {peak_cpu_usage 5"

if memory usage:
avg _memory usage = sum(memory usage) / len(memory usage)
peak_memory_usage = max(memory_usage)

else:
avg_memory_usage = peak_memory_usage =

print(f {avg_memory_usage

print(f {peak_memory_ usage

total data sent = sum(req[] for req in network requests)
total data received = sum(req[] for req in
network requests)
print(
if network requests:
for req in network requests:
print(f {req[1}
{req[1} {req[
{req[1}

else:
print()
print(f {total _data_sent}

print(f {total _data_received}

print(
if file_operations:

for file op in file_operations:

print(f {file_op[{file_op[1)

else:

print(
print(

monitor_ network calls()

monitor file operations()

This code is used for dynamic monitoring which monitors several runtime metrics like
total,execution time, function execution time, file operations and many more.

.static_analysis run_static_analysis
.dynamic_monitor start_dynamic_monitoring, stop_dynamic_monitoring

def secure_lambda(lambda_handler):
def wrapper(event, context):

issues = run_static_analysis()
if issues:
print(, 1ssues)
start_dynamic_monitoring()
try:

result = lambda handler(event, context)
finally:

stop_dynamic_monitoring()
return result

return wrapper

This is lambda_wrapper.py which is used to run static code analysis and dynamic code
analysis each time the lambda fuction is invoked.

os
subprocess

def run_bandit analysis(target_directory):

try:
result = subprocess.run(
[, , target_directory],
capture_output=True,
text=True
)
return parse_bandit output(result.
except Exception as e:
print(f
return []

parse_bandit_output(output):

issues = []
lines = output.splitlines()
for line in lines:
if in line:
issues.append(line.strip())
return issues

run_custom static checks(lambda code path):

issues = []
with open(lambda_code path,) as code_file:
code content = code file.read()
if in code_content or in code_content:
issues.append(

return issues

run_static _analysis():

current_dir = os. .dirname(os. .abspath(__file))
lambda_code_dir = os. .join(current_dir,)

bandit_issues = run_bandit analysis(lambda_code_dir)

custom_issues = run_custom_static checks(os. .join(lambda_code_dir,

))

all issues = bandit_issues + custom_issues
return all issues

This a static_analysis.py which is used to run static code analysis on any application.

After we create this library we test this library by creating python file called as
test_function.py where we run all types of operations which mainly focuses on operation
which might cause a security threat.

0s
hashlib
requests
my_lambda_security 1lib.lambda_wrapper secure_lambda,
start_dynamic_monitoring, stop_dynamic_monitoring

@secure_lambda
def test function(event, context):
print(

secret_key = os.getenv(
print(f {secret_key}")

with open() as file:
file.write()

with open(,) as file:
content = file.read()
print(f {content}")

password =
hashed password = hashlib.md5(password.encode()).hexdigest()

print(f {hashed_password}")

user_input =
result = eval(user_input)
print(f {result}")

response = requests.get(
print(f {response.
{response.json()}")

try:
result = /
except ZeroDivisionError as e:

print(f {e}")

return {

context = {}

output = test function(event, context)
print(f {output}"”)

In this code we have imported lambda_wrapper from our library and totally tested mainly 7
operation which has to be taken care for the security of the application.

2.2 Testing the library
To test the library, we need to open terminal and execute the below line:

PS C:\Users\919083\0OneDrive\Documents\libraryAndTestCode> python test_function.py

Once we the execute the function, static analysis code starts and shows if there are any issues
in the code like shown below:

Static Analysis Issues Detected: ['Use of weak cryptography detected (VDS/SHAL). Consider using SHAZS6 or higher.']

Once the static code analysis is finished, dynamic analysis starts

Function call: get, Current depth: 3

CPU Usage: 0.00%, Memory Usage: ©.44%

Function call: __enter__, Current depth: 4

CPU Usage: 0.00%, Memory Usage: ©.44%

Function return: __enter__, Time taken: ©.000734 seconds
CPU Usage: 0.00%, Memory Usage: ©.44%

Function call: _qgsize, Current depth: 4

CPU Usage: 0.00%, Memory Usage: ©.44%

Function return: _gsize, Time taken: ©.000831 seconds
Function call: _get, Current depth: 4

--- Detailed Summary ---
Total Execution Time: 4.4603980 seconds

Function Execution Times:
test_function: 4.371315 seconds
getenv: ©.006247 seconds
get: ©.0882727 seconds
__getitem__: ©.800289 seconds
encodekey: 0.001969 seconds
check_str: ©.8008868 seconds
patched_open: ©.084026 seconds
__init__: ©.eeeele seconds
encode: ©.000763 seconds
decode: ©.002554 seconds
<module>: 1259081.652632 seconds
patched_get: 4.337516 seconds
request: 1259084.95660€ seconds
default_headers: ©.014501 seconds
default_user_agent: ©.0808279 seconds
update: ©.887077 seconds
__instancecheck__: ©.883171 seconds
__subclasscheck__: ©.801631 seconds
__subclasshook__: ©.0888285 seconds
__setitem__: ©.08386 seconds
default_hooks: ©.001879 seconds
<dictcomp>: ©.000354 seconds
cookiejar_from_dict: ©.687985 seconds
RLock: ©.008859 seconds
__iter__: ©.000320 seconds
<listcomp>: ©.809547 seconds
deepvalues: ©.000243 seconds
init_poolmanager: ©.005441 seconds

10

Maximum Function Call Depth: 27

Average CPU Usage: ©.37%
Peak CPU Usage: 104.20%
Average Memory Usage: ©.41%
Peak Memory Usage: ©.44%

Network Requests:

- URL: https://jsonplaceholder.typicode.com/todos/1, Method: GET, Status: 28@, Data Sent: @ bytes, Data Received: 83 bytes
Total Data Sent: @ bytes

Total Data Received: 83 bytes

File Operations:
- File: test_file.txt, Mode: r
- File: test_file.txt, Mode: r

-- End of Summary ---
Function Output: {'statusCode': 2088, 'body': 'Test function executed successfully.'}

3 Deploying to AWS

Once it is locally developed and tested, it is now that deploy and integrate our library into
AWS Lambda

To do that , we ned to deploy our custom pckage and all its dependencies in the same
envirnoment hence we containerized our project using docker.

container name=lambda docker

docker image=aws lambda builder image

docker run -td --name=$container_name Edocker_image
docker cp ./requirements.txt $container_name:/

docker exec -1 $container name /bin/bash < ./docker install.sh
docker cp $container_name:/python.zip python.zip

docker stop $container name

docker rm $container_name

An envirnoment was described using a Dockerfile.

virtualenv --python=/user/bin/python3/ python
source python/bin/activate
pip install -r requirements.txt -t python/lib/python3/site-packages

zip -r9 python.zip pythom

Which creates an Docker imagem
REPOSITORY IMAGE ID CREATED

aws_lambda_builder_image latest 63b2685909f8 2 days ago

Then from the dockerimage we exract the file and create a lambda layer in AWS Lambda.

11

Cour Micr Ins 1 Inb L Chatt Chat¢

eu-w

' Moodie [l NCI 1 Gmail » aps ¥ 250 \ = LeetCode Jther favorit

L @ H relandv MSCCLOUD/x22245766@studentncirlie ¥

Package size SHA256 hash Last modified
12.9kB XDZOB8+EpDcLSUVEVAI1+PhXR1vGy9qdH3485Gnt7Q August 10, 2024 at 09:18 AM GMT+1
6l=

Runtime settings info Edit Edit runtime management configuration
Runtime Handler Info Architecture Info
Python 3.12 lambda_function.lambda_handler x86_64
» Runtime management configuration
Layers info Edit Add a layer
Merge order Name Layer version Compatible runtimes Compatible architectures Version ARN

eBPF_Layer python3.12 x86_64, armb4 arn:aws:lambda:eu-west-1:250738637992:layer:eBPF_Layer:6

Feedback © 2024, Amazon Web Services, Inc. or its affiliates. Privacy Terms okie preferences

Emo@me v I

Cour ! L Chat¢
Yy - M
i Other favorites

Ireland v MSCCLOUD/x22245766@student ncirlie v

— = . : 1 [import os a
= £ SORFFuction -/ % 2 import hashlib
£ 3 import requests
g 2 from my_lambda_security lib.lanbda wrapper import secure lambda, start dynamic_monitoring, stop_dynamic monitoring
s ambda_function.py 5 [c]
e test_file.txt & @secure_lambda
- 7 def lambda_handler{event, context)
lambda_function.py F print (“Test function has starte
my_lambda_security_ib\ g . -
my_Jambda_security_lib\ 11 secret_key = 0s.getenv("SECRET KEY", "default_secret")
my_lambda._security_lib\ }i print(f'Secret Key: {secret_key}")
12 # 3. File operation: b fi
15 th open("test_file.txt", "w") as file
16 file.write("This is a test file.")
17
18 # 4. File oper i from
19 1 open(”/tmp/test_file.txt", as file:
20 content
21 print(f'File Conte
2
2 3 I sitive
2 #] algorithm
25 password
2 hashed_password = hashlib.nd5(password. encode()) .hexdigest() # This should be Fla
27 print(f"Hashed Password (MDS): (hashed_password)")
28
38 user_input = "1 + 2"
31 result — eval(user_input) i i1d be
32 print(f'Eval result: {result}"
33
34 # letwork n: H P GE quest
35 response - requests.get("https://isanplaceholder. typicode. com/todos/1%)
36 print(FHTTP GET Response: {response.status_code}, Content: {response.json()}") +4 Python Spscestd 2¥ _

© 2024, Amazon Web Services, Inc. or its affiliates. Privacy Terms Cookie preferences

;f,IHqu“'_\?.,_ 07_ L ENG

CloudShell Feedback

ing Track]
Final result [

]

12

creati

H @ © relandv MSCCLOUD/x22245766@student ncirlie ¥

Code source info Upload from ¥

c]
File Edit Find View Go Tools Window Deploy | (G T =2 ﬁ
| lambda_function Environment Var Execution result:

atus: Faled % 59 MB = 75.34 ms

eBPF_Function f- 23
tmp

s Detected: [‘Use of weak cryptography detected (MDS/SHAL). Consider using SHA256 or higher.']

lambda_function.py

Environment O

ing...
le: fproc/2/stat, Mode: rfunction call: lambda handler, Current depth: 1
pth: 2

test_fil

turn: write, Time taken: ©.0809238 seconds

lanibda_function.py

my_lambda_security_lib}

my_lambea_security_lib\

e, Current de

encode, Time taken: 0.088023 seconds

me taken: ©.000079 seconds
s

my_lambda_security_lib\

on return: write, Time taken: ©.000034 seconds
rrent depth: 2

urn: write, Time taken: ©.000025 seconds

Time taken: @.000141 second:
lambda_handler,
1on : stop_dynami i

© 2024, Amazon Web Services, Inc. or its affiliates. Privacy Terms Cookie preferences

CloudShell Feedback

Q AUD/EUR

References

IN =R 11082024 F

9 5 A BN =D ool W /]

Microsoft (2021) Download visual studio code - MAC, linux, windows, RSS. Available at:
https://code.visualstudio.com/Download (Accessed: 12 August 2024).

Download python (no date) Python.org. Available at: https://www.python.org/downloads/
(Accessed: 12 August 2024).

Introduction, tutorials & community resources (no date) eBPF. Available at: https://ebpf.io/
(Accessed: 12 August 2024).

Bastien (2023) How to create your own library in Python, The Python You Need. Available
at: https://thepythonyouneed.com/how-to-create-your-own-library-in-python (Accessed: 12
August 2024).

Accelerated Container Application Development (2024) Docker. Available at:
https://www.docker.com/ (Accessed: 12 August 2024).

Aws Lambda: The ultimate guide (no date) AWS Lambda: The Ultimate Guide. Available at:
https://www.serverless.com/aws-lambda (Accessed: 12 August 2024).

13

	1 Introduction
	1.1 Prerequisite
	2 Locally deploying the file
	3 Deploying to AWS
	References

