

Configuration Manual

MSc Research Project

Cloud Computing

Rakshat Jayakumar

Student ID: 22245766

School of Computing

National College of Ireland

Supervisor: Jitendra Kumar Sharma

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Rakshat Jayakumar
……. ………

Student ID:

22245766
………..……

Programme:

Msc cloud computing
………………………………………………………………

Year:

2024
…………………………..

Module:

Msc Research Project
…….………

Lecturer:

Jitendra Kumar Sharma
…….………

Submission
Due Date:

12/08/2024
…….………

Project Title:

Security Monitoring of Serverless Applications using eBPF tools
……………………………………………………………………………………………………….………

Word Count:

1603 13
……………………………………… Page Count: ………………………………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Rakshat Jayakumar
……

Date:

12/08/2024
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Rakshat Jayakumar

Student ID: 22245766

1 Introduction

This research project has been implemented in two ways. The first way is test the library

locally. The project was developed and tested in a local development envirnoment with help

of Visual Studio Code and later on it deployed to Amazon AWS with the help of docker.

1.1 Prerequisite

Before we begin to build the project we must have the developer tools installed in our

systems.

 Visual Studio Code: Free lightweight code editior.

● Python: A Programming language that has been used to develop the custom security

monitoring package together with the Lambda function.

● Pip: python package manager to install required python libraries.

● Docker: A tool for running applications in a container and then for the emulation of

the AWS Lambda environment on the local machine.

● AWS account: Platform which is used to create lambda functions.

2 Locally deploying the file

2.1 Developing the library

First we need to create a python package which needs to created to create monitoring

functions like shown below:

2

Figure 1: Structure of the package

In this case, I have created a package called “my_lambda_security_lib” which contains

python files which are specifically designed to perform security operations.

import sys

import time

import os

import psutil

import threading

import requests

Global variables to store metrics

execution_times = {}

function_call_count = {}

cpu_usage = []

memory_usage = []

network_requests = []

file_operations = []

resource_monitoring_active = True

start_time = None

end_time = None

call_depth = 0

max_call_depth = 0

def trace_calls(frame, event, arg):

 """Trace function calls and return time spent in each function."""

 global call_depth, max_call_depth

 if event == 'call':

 function_name = frame.f_code.co_name

 execution_times[function_name] = time.perf_counter()

 function_call_count[function_name] =

function_call_count.get(function_name, 0) + 1

3

 call_depth += 1

 max_call_depth = max(max_call_depth, call_depth)

 print(f"Function call: {function_name}, Current depth: {call_depth}")

 elif event == 'return':

 function_name = frame.f_code.co_name

 if function_name in execution_times:

 elapsed_time = time.perf_counter() -

execution_times[function_name]

 execution_times[function_name] = elapsed_time

 print(f"Function return: {function_name}, Time taken:

{elapsed_time:.6f} seconds")

 call_depth -= 1

 return trace_calls

def monitor_resources():

 """Monitor CPU and memory usage during the function execution."""

 global resource_monitoring_active

 process = psutil.Process(os.getpid()) # Get the current process

 # Initial baseline call to set up the monitoring

 process.cpu_percent(interval=None)

 while resource_monitoring_active:

 cpu_percent = process.cpu_percent(interval=None) # Get the CPU usage

since the last call

 memory_info = process.memory_percent()

 cpu_usage.append(cpu_percent)

 memory_usage.append(memory_info)

 print(f"CPU Usage: {cpu_percent:.2f}%, Memory Usage:

{memory_info:.2f}%")

 time.sleep(0) # Yield thread, but immediately resume to capture

continuous data

def start_dynamic_monitoring():

 global start_time

 print("Starting dynamic monitoring...")

 start_time = time.time() # Record the start time

 # Start resource monitoring in a separate thread

 resource_monitor_thread = threading.Thread(target=monitor_resources)

 resource_monitor_thread.daemon = True

 resource_monitor_thread.start()

 # Start tracing function calls

 sys.settrace(trace_calls)

def stop_dynamic_monitoring():

 global resource_monitoring_active, end_time

 sys.settrace(None)

4

 resource_monitoring_active = False # Stop resource monitoring

 end_time = time.time() # Record the end time

 print("Dynamic monitoring stopped.")

 # Output the detailed summary

 output_detailed_summary()

def monitor_network_calls():

 """Monkey-patch the requests module to log all network requests."""

 original_get = requests.get

 def patched_get(*args, **kwargs):

 request_info = {

 'url': args[0],

 'method': 'GET',

 'status_code': None,

 'data_sent': len(kwargs.get('data', b'')),

 'data_received': 0

 }

 response = original_get(*args, **kwargs)

 request_info['status_code'] = response.status_code

 request_info['data_received'] = len(response.content)

 network_requests.append(request_info)

 print(f"Network request made to: {args[0]}, Status:

{response.status_code}")

 return response

 requests.get = patched_get

def monitor_file_operations():

 """Monitor file operations by monkey-patching the built-in open

function."""

 original_open = open

 def patched_open(*args, **kwargs):

 file_info = {

 'file_name': args[0],

 'mode': kwargs.get('mode', 'r')

 }

 file_operations.append(file_info)

 print(f"File operation: open, File: {args[0]}, Mode:

{file_info['mode']}")

 return original_open(*args, **kwargs)

 __builtins__['open'] = patched_open

def output_detailed_summary():

 """Output a detailed summary of all the collected metrics."""

 print("\n--- Detailed Summary ---")

5

 # Total execution time

 total_execution_time = end_time - start_time

 print(f"Total Execution Time: {total_execution_time:.6f} seconds")

 # Function execution times

 print("\nFunction Execution Times:")

 for function_name, elapsed_time in execution_times.items():

 print(f"- {function_name}: {elapsed_time:.6f} seconds")

 # Function call counts

 print("\nFunction Call Counts:")

 for function_name, count in function_call_count.items():

 print(f"- {function_name}: {count} calls")

 # Maximum call depth

 print(f"\nMaximum Function Call Depth: {max_call_depth}")

 # CPU usage stats

 if cpu_usage:

 avg_cpu_usage = sum(cpu_usage) / len(cpu_usage)

 peak_cpu_usage = max(cpu_usage)

 else:

 avg_cpu_usage = peak_cpu_usage = 0

 print(f"\nAverage CPU Usage: {avg_cpu_usage:.2f}%")

 print(f"Peak CPU Usage: {peak_cpu_usage:.2f}%")

 # Memory usage stats

 if memory_usage:

 avg_memory_usage = sum(memory_usage) / len(memory_usage)

 peak_memory_usage = max(memory_usage)

 else:

 avg_memory_usage = peak_memory_usage = 0

 print(f"Average Memory Usage: {avg_memory_usage:.2f}%")

 print(f"Peak Memory Usage: {peak_memory_usage:.2f}%")

 # Network requests

 total_data_sent = sum(req['data_sent'] for req in network_requests)

 total_data_received = sum(req['data_received'] for req in

network_requests)

 print("\nNetwork Requests:")

 if network_requests:

 for req in network_requests:

 print(f"- URL: {req['url']}, Method: {req['method']}, Status:

{req['status_code']}, Data Sent: {req['data_sent']} bytes, Data Received:

{req['data_received']} bytes")

 else:

 print("- No network requests made.")

 print(f"Total Data Sent: {total_data_sent} bytes")

6

 print(f"Total Data Received: {total_data_received} bytes")

 # File operations

 print("\nFile Operations:")

 if file_operations:

 for file_op in file_operations:

 print(f"- File: {file_op['file_name']}, Mode: {file_op['mode']}")

 else:

 print("- No file operations performed.")

 print("\n--- End of Summary ---")

Apply additional monitoring

monitor_network_calls()

monitor_file_operations()

This code is used for dynamic monitoring which monitors several runtime metrics like

total,execution time, function execution time, file operations and many more.

from .static_analysis import run_static_analysis

from .dynamic_monitor import start_dynamic_monitoring, stop_dynamic_monitoring

def secure_lambda(lambda_handler):

 def wrapper(event, context):

 # Run static analysis first

 issues = run_static_analysis()

 if issues:

 print("Static Analysis Issues Detected:", issues)

 # Start dynamic monitoring after static analysis

 start_dynamic_monitoring()

 try:

 # Execute the original lambda function

 result = lambda_handler(event, context)

 finally:

 # Stop dynamic monitoring after the function execution

 stop_dynamic_monitoring()

 return result

 return wrapper

This is lambda_wrapper.py which is used to run static code analysis and dynamic code

analysis each time the lambda fuction is invoked.

import os

import subprocess

7

def run_bandit_analysis(target_directory):

 """

 Run Bandit security analysis on the specified directory and return a list

of issues.

 Bandit is a tool designed to find common security issues in Python code.

 """

 try:

 result = subprocess.run(

 ["bandit", "-r", target_directory],

 capture_output=True,

 text=True

)

 return parse_bandit_output(result.stdout)

 except Exception as e:

 print(f"Error running Bandit analysis: {e}")

 return []

def parse_bandit_output(output):

 """

 Parse the output of Bandit to extract the relevant security issues.

 """

 issues = []

 lines = output.splitlines()

 for line in lines:

 if "Issue:" in line:

 issues.append(line.strip())

 return issues

def run_custom_static_checks(lambda_code_path):

 """

 Run additional custom static checks that are not covered by Bandit.

 """

 # Example check for weak cryptography (just a simple keyword search for

demonstration)

 issues = []

 with open(lambda_code_path, "r") as code_file:

 code_content = code_file.read()

 if "md5" in code_content or "sha1" in code_content:

 issues.append("Use of weak cryptography detected (MD5/SHA1).

Consider using SHA256 or higher.")

 return issues

def run_static_analysis():

 """

 Run the complete static analysis by combining Bandit and custom checks.

 """

 current_dir = os.path.dirname(os.path.abspath(__file__))

 lambda_code_dir = os.path.join(current_dir, "..") # Assuming the Lambda

code is in the parent directory

8

 # Run Bandit analysis

 bandit_issues = run_bandit_analysis(lambda_code_dir)

 # Run custom static checks

 custom_issues = run_custom_static_checks(os.path.join(lambda_code_dir,

"test_function.py"))

 # Combine all issues

 all_issues = bandit_issues + custom_issues

 return all_issues

This a static_analysis.py which is used to run static code analysis on any application.

After we create this library we test this library by creating python file called as

test_function.py where we run all types of operations which mainly focuses on operation

which might cause a security threat.

 import os

import hashlib

import requests

from my_lambda_security_lib.lambda_wrapper import secure_lambda,

start_dynamic_monitoring, stop_dynamic_monitoring

@secure_lambda

def test_function(event, context):

 print("Test function has started.")

 # 1. Environment variable access

 secret_key = os.getenv("SECRET_KEY", "default_secret")

 print(f"Secret Key: {secret_key}")

 # 2. File operation: Write to a file

 with open("test_file.txt", "w") as file:

 file.write("This is a test file.")

 # 3. File operation: Read from a file

 with open("test_file.txt", "r") as file:

 content = file.read()

 print(f"File Content: {content}")

 # 4. Hashing operation (security-sensitive)

 # Introducing a weak cryptographic algorithm (MD5)

 password = "SuperSecretPassword123"

 hashed_password = hashlib.md5(password.encode()).hexdigest() # This

should be flagged

 print(f"Hashed Password (MD5): {hashed_password}")

 # 5. Introducing the use of eval() which is a security risk

9

 user_input = "1 + 2"

 result = eval(user_input) # This should be flagged

 print(f"Eval result: {result}")

 # 6. Network operation: HTTP GET request

 response = requests.get("https://jsonplaceholder.typicode.com/todos/1")

 print(f"HTTP GET Response: {response.status_code}, Content:

{response.json()}")

 # 7. Exception Handling

 try:

 result = 10 / 0 # This will raise an exception

 except ZeroDivisionError as e:

 print(f"Caught an exception: {e}")

 # Return a result

 return {

 "statusCode": 200,

 "body": "Test function executed successfully."

 }

if __name__ == "__main__":

 # Simulate a Lambda event and context

 event = {}

 context = {}

 # Call the test function

 output = test_function(event, context)

 print(f"Function Output: {output}")

In this code we have imported lambda_wrapper from our library and totally tested mainly 7

operation which has to be taken care for the security of the application.

2.2 Testing the library

To test the library, we need to open terminal and execute the below line:

Once we the execute the function, static analysis code starts and shows if there are any issues

in the code like shown below:

10

Once the static code analysis is finished, dynamic analysis starts

11

3 Deploying to AWS

Once it is locally developed and tested, it is now that deploy and integrate our library into

AWS Lambda

To do that , we ned to deploy our custom pckage and all its dependencies in the same

envirnoment hence we containerized our project using docker.

An envirnoment was described using a Dockerfile.

Which creates an Docker imagem

Then from the dockerimage we exract the file and create a lambda layer in AWS Lambda.

12

13

References

Microsoft (2021) Download visual studio code - MAC, linux, windows, RSS. Available at:

https://code.visualstudio.com/Download (Accessed: 12 August 2024).

Download python (no date) Python.org. Available at: https://www.python.org/downloads/

(Accessed: 12 August 2024).

Introduction, tutorials & community resources (no date) eBPF. Available at: https://ebpf.io/

(Accessed: 12 August 2024).

Bastien (2023) How to create your own library in Python, The Python You Need. Available

at: https://thepythonyouneed.com/how-to-create-your-own-library-in-python (Accessed: 12

August 2024).

Accelerated Container Application Development (2024) Docker. Available at:

https://www.docker.com/ (Accessed: 12 August 2024).

Aws Lambda: The ultimate guide (no date) AWS Lambda: The Ultimate Guide. Available at:

https://www.serverless.com/aws-lambda (Accessed: 12 August 2024).

	1 Introduction
	1.1 Prerequisite
	2 Locally deploying the file
	3 Deploying to AWS
	References

