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1 Introduction 
 
This config manual gives a step-by-step guideline on installation and system operation of the 
DCSANet-JCF project. This tool is intended to allow users to effectively construct the 
environment, which they want to work in, so that they can accomplish their tasks in 
experiments in the best possible manner.  
 
The manual covers the following key aspects: The manual covers the following key aspects:  

 System Requirements: General instructions of the specifics of the hardware and 
software configuration that was used during development and testing.  

 Environment Setup: The procedure on how to configure the Google Colab environment 
and how to look for data by using Google Drive.  

 Library Installation: A list of dependencies that consist of an array of libraries and 
packages, and their versions along with their relevance in the projects.  

 Dataset Preparation: The structure of the DIV2K dataset, and general information on 
its nature plus guiding principles on how to strip it down for use in the project.  

 Model Architecture: An example of implementing the architecture of DCSANet, its 
elements such as ResidualBlock and the encoder-decoder structure.  

 Training Configuration: Information are provided about hyperparameters, loss 
functions as well as the training loop used in order to fine-tune the proposed model.  

 Evaluation Metrics: Discussion on Predictor Accuracy comprising of Mean Squared 
error (MSE), Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index 
(SSIM).  

 Visualization Tools: Prescriptions for creating and reading graphics as addition to the 
abstract representations of the model’s output.  
 

 This way, by reproducing the context described in this manual, researchers and developers 
will be able to implement and further advance the project for experimentation in the more 
general area of Edge/Fog computation and Data Compression. 
 

2 System Information 
 

System Google Colab Notebook with T4 GPU 
CPU Intel Xeon CPU 
Memory 12 GB RAM 
GPU NVIDIA Tesla T4 
GPU Memory 16 GB GDDR6 
CUDA 2,560 Cores 
Tensor  320 Cores 
Disk 60GB 
Python 3.10.12 
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3 Key Libraries and Packages 
 

The following libraries and packages were utilized in this project. 

3.1 TensorFlow 

 Version: V2.17.0 
 Usage: For building and training DCSANET architecture, this includes use of layers, 

models and GPU acceleration 

3.2 Numpy 

 Version: V1.26.4   
 Usage: Utilized for handling arrays and performing numerical operations 

 

3.3 Google.colab 

 Usage: Used to mount google drive to the colab environment, enabling access to the 
datasets and other requirements 

3.4 Tensorflow.keras 

 Usage: High-level API for building and training deep learning models. Used to 
define DCSANET architecture including custom layers like `ResidualBlock`. 

 

3.5 Matplotlib and Pandas 

 Version: matplotlib: 3.7.1, Pandas: 2.1.4 
 Usage: Data analytics and plotting libraries, utilized for data manipulation and 

representation. 
 

4 Dataset 
 DIV2K is a high-quality image dataset created specifically to enable data reduction 

and compression techniques. It contains 1000 high-definition high resolution images. 
 Link: https://data.vision.ee.ethz.ch/cvl/DIV2K/ 

 

5 Detailed Implementation Steps 
 

1. Environment Setup: 
 Use Google Colab with access to an NVIDIA T4 GPU. 
 Mount Google Drive: 

 
from google.colab import drive 
drive.mount('/content/drive') 

 
2. Install required libraries: 
 
!pip install tensorflow==2.17.0 numpy==1.26.4 matplotlib==3.7.1 pandas==2.1.4 scikit-
learn pillow 
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3. Import necessary modules: 
 

import tensorflow as tf 
from tensorflow.keras import layers, models, applications 
import numpy as np 
from sklearn.model_selection import train_test_split 
import os 
from PIL import Image 
 
4.  Dataset Preparation: 
 

 Implement the load_div2k_dataset function: 
 
def load_div2k_dataset(data_dir, image_size=(256, 256), 
num_images=1000): 
    images = [] 
    for filename in os.listdir(data_dir)[:num_images]: 
        if filename.endswith(".png"): 
            img_path = os.path.join(data_dir, filename) 
            img = Image.open(img_path).convert('RGB') 
            img = img.resize(image_size) 
            img_array = np.array(img) / 255.0 
            images.append(img_array) 
    return np.array(images, dtype=np.float32) 
 
 Load and split the dataset: 
 
data_dir = 
"/content/drive/MyDrive/Datasets/DIV2K/DIV2K_train_HR/DIV2K_train_HR" 
images = load_div2k_dataset(data_dir) 
x_train, x_test = train_test_split(images, test_size=0.2, 
random_state=42) 
x_train = tf.convert_to_tensor(x_train, dtype=tf.float32) 
x_test = tf.convert_to_tensor(x_test, dtype=tf.float32) 
 

5. Model Architecture: 
 

 Implement the ResidualBlock class: 
 
class ResidualBlock(layers.Layer): 
    def __init__(self, filters, **kwargs): 
        super(ResidualBlock, self).__init__(**kwargs) 
        self.conv1 = layers.Conv2D(filters, 3, padding='same') 
        self.bn1 = layers.BatchNormalization() 
        self.relu = layers.ReLU() 
        self.conv2 = layers.Conv2D(filters, 3, padding='same') 
        self.bn2 = layers.BatchNormalization() 
        self.add = layers.Add() 
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    def call(self, inputs): 
        x = self.conv1(inputs) 
        x = self.bn1(x) 
        x = self.relu(x) 
        x = self.conv2(x) 
        x = self.bn2(x) 
        x = self.add([x, inputs]) 
        return self.relu(x) 

 
 Implement the DCSANet class: 

 
class DCSANet(models.Model): 
    def __init__(self, latent_dim): 
        super(DCSANet, self).__init__() 
        self.latent_dim = latent_dim 
        self.encoder = tf.keras.Sequential([ 
            # Encoder layers 
        ]) 
        self.decoder = tf.keras.Sequential([ 
            # Decoder layers 
        ]) 
 
    def encode(self, x): 
        mean, logvar = tf.split(self.encoder(x), num_or_size_splits=2, 
axis=1) 
        return mean, logvar 
 
    def reparameterize(self, mean, logvar): 
        eps = tf.random.normal(shape=mean.shape) 
        return eps * tf.exp(logvar * .5) + mean 
 
    def decode(self, z): 
        return self.decoder(z) 
 
    def call(self, inputs): 
        mean, logvar = self.encode(inputs) 
        z = self.reparameterize(mean, logvar) 
        reconstructed = self.decode(z) 
        return reconstructed 
 
 Loss Function: 

 
vgg = applications.VGG19(include_top=False, weights='imagenet') 
feature_extractor = models.Model(inputs=vgg.input, 
outputs=vgg.get_layer('block3_conv3').output) 
 
def perceptual_loss(y_true, y_pred): 
    return tf.reduce_mean(tf.square(feature_extractor(y_true) - 
feature_extractor(y_pred))) 
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def vae_loss(model, x): 
    mean, logvar = model.encode(x) 
    z = model.reparameterize(mean, logvar) 
    x_recon = model.decode(z) 
    reconstruction_loss = tf.reduce_mean(tf.square(x - x_recon)) 
    perceptual = perceptual_loss(x, x_recon) 
    kl_loss = -0.5 * tf.reduce_mean(1 + logvar - tf.square(mean) - 
tf.exp(logvar)) 
    total_loss = reconstruction_loss + 0.1 * perceptual + 0.1 * kl_loss 
    return total_loss 

 
6. Model Training: 

 
latent_dim = 512 
model = DCSANet(latent_dim) 
optimizer = tf.keras.optimizers.Adam(1e-4) 
 
@tf.function 
def train_step(model, x, optimizer): 
    with tf.GradientTape() as tape: 
        loss = vae_loss(model, x) 
    gradients = tape.gradient(loss, model.trainable_variables) 
    optimizer.apply_gradients(zip(gradients, model.trainable_variables)) 
    return loss 
 
epochs = 100 
batch_size = 16 
 
for epoch in range(epochs): 
    total_loss = 0 
    num_batches = 0 
    for i in range(0, len(x_train), batch_size): 
        batch = x_train[i:i+batch_size] 
        loss = train_step(model, batch, optimizer) 
        total_loss += loss 
        num_batches += 1 
    avg_loss = total_loss / num_batches 
    print(f'Epoch {epoch+1}, Average Loss: {avg_loss.numpy():.4f}') 

 
7. Model Evaluation: 
 
def evaluate_model(model, x_test): 
    mean, _ = model.encode(x_test) 
    z = mean 
    reconstructed = model.decode(z) 
    mse = tf.reduce_mean(tf.square(x_test - reconstructed)) 
    psnr = tf.image.psnr(x_test, reconstructed, max_val=1.0) 
    ssim = tf.image.ssim(x_test, reconstructed, max_val=1.0) 
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    return mse.numpy(), tf.reduce_mean(psnr).numpy(), 
tf.reduce_mean(ssim).numpy() 
 

mse, psnr, ssim = evaluate_model(model, x_test) 
print(f"Mean Squared Error: {mse:.4f}") 
print(f"Peak Signal-to-Noise Ratio: {psnr:.4f}") 
print(f"Structural Similarity Index: {ssim:.4f}") 

 
8. Visualization function 

 
def plot_reconstructed(model, x_test): 
    n = 5 
    mean, _ = model.encode(x_test[:n]) 
    reconstructed = model.decode(mean) 
    fig, axes = plt.subplots(2, n, figsize=(20, 8)) 
    for i in range(n): 
        axes[0, i].imshow(x_test[i]) 
        axes[0, i].axis('off') 
        axes[1, i].imshow(reconstructed[i]) 
        axes[1, i].axis('off') 
    plt.show() 
 
plot_reconstructed(model, x_test) 
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