

Energy-Efficient Data Optimization for

Resource-constrained Edge/Fog Computing
Devices

MSc Research Project
MSc Cloud Computing

Divya Henry
Student ID: x22241540

School of Computing
National College of Ireland

Supervisor: Shaguna Gupta

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Divya Henry

Student ID:

X22241540

Programme:

MSc Cloud Computing

Year:

 2023 - 2024

Module:

MSc Research Project

Supervisor:

Shaguna Gupta

Submission Due Date: 16 – 09 – 2024

Project Title:

Energy-Efficient Data Optimization for Resource-constrained
Edge/Fog Computing Devices

Word Count:

9310 Page Count: 23

I hereby certify that the information contained in this (my submission) is information pertaining to research I
conducted for this project. All information other than my own contribution will be fully referenced and listed in
the relevant bibliography section at the rear of the project.
ALL internet material must be referenced in the bibliography section. Students are required to use the Referencing
Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism)
and may result in disciplinary action.

Signature:

Date:

16 – 09 – 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient
to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into the
assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Energy-Efficient Data Optimization for Resource-
constrained Edge/Fog Computing Devices

Divya Henry
x22241540

Abstract
The presence of fog and edge computing devices everywhere have led to the

generation of high volumes of data across their nodes resulting in great difficulties while
handling and processing such massive volumes of data due to limited computing power at
the edge or fog devices. This demands the case for an optimized model for devices in
edge/fog computing environments that can achieve optimal data compression and efficient
data transfer across the edge/fog nodes by following green cloud computing practices. The
proposed method integrates deep compression sensing autoencoder network (DCSANet)
for data reduction and accurate reconstruction with deep reinforcement learning (DRL)
based joint computing framework (JCF) for intelligent collaboration among fog nodes
sharing resources. DCSANet aims at learning how to generate smaller representations of
information through dimensionality reduction thereby generating compressed data without
sacrificing too much on reconstruction accuracy during the recovery process at the
receiving nodes, while still ensuring data fidelity in reproduction. JCF enables smart
cooperation between fog nodes to determine best decisions regarding computation
offloading along with energy-efficient processing and handling of shared resources for
data processing at the fog nodes. The effectiveness of the proposed DRL-based JCF and
DCSANet approach will be analyzed by its ability to improve energy efficiency, reduce
transmission latencies as well as improve reconstruction accuracy using real-world IoT
datasets, thereby showcasing its potential towards providing optimal solutions for efficient
data aggregation within resource limited-edge devices while cutting down computational
complexities and network bandwidth requirements for a sustainable fog/edge computing
environment.

Keywords— compressed sensing, deep learning, edge/fog computing, energy

 efficiency, data aggregation, computation offloading

1 Introduction

1.1 Motivation and Problem Background
Internet of things (IoT) has seen a fast growth recently resulting in an exponential rise in data
being created at the network edge (Albreem et al.; 2021). The conventional cloud architectures
fail to cope with this huge amount of information due to their latency issues, limited bandwidth
and security insufficiencies, among others. This has led to the popularity of fog and edge
computing as they can solve these problems by bringing computation and storage resources
nearer to the data source, thus reducing both latency and bandwidth usage at the same time
(Yousefpour et al.; 2019). However, energy efficiency becomes a big challenge due to
resource-constrained environment found at edges or fogs, which can also impact the
management of data (Pereira et al.; 2020).

2

Various methods such as dimensionality reduction or compression are used to reduce the load
on devices located on edges/fogs, but it still does not resolve the issue of information being lost
on the compressed versions of original datasets. Compressed sensing (CS) is one technique
used widely today when it comes to reducing amounts of information being transmitted through
networks, while Deep Learning (DL) can help improve CS performance by training optimal
sensing matrices and reconstruction algorithms (Wu et al.; 2020). Both these techniques
combined together have produced satisfactory results especially in areas like wireless
communication, image processing or IoT data compression. It should be noted, however that
even though much progress has been made regarding data size reduction, energy efficiency
remains very low for fog devices since they require high power for their operations affecting
not only operational costs, but also the environmental conservation efforts necessitating the use
of greener technologies within this domain (Gougeon et al.; 2020).

Besides compressing data, computation offloading (Khan et al.; 2020) has shown potential in
enhancing energy saving capabilities together with overall performance levels demonstrated
by IoT systems. The main idea behind this strategy is to move computationally intensive tasks
from mobile devices onto more powerful servers located either at edges or in cloud servers,
enabling such devices save power as well as reducing delays experienced during processing.
However, knowing when exactly to offload computations can be tricky owing to such factors
as network state, device capability or application requirement, thus making it difficult to obtain
optimal solutions without using machine learning (ML) approaches like reinforcement learning
(RL) which do not need accurate models about systems involved to make good decisions on
offloading computations.

This research attempts to address the issue of high energy consumption in the operation of
fog/edge devices using data compression and reconstruction, data aggregation and an
intelligent mechanism to communicate across the fog/edge nodes, offload computations among
them for optimal data handling and increase the energy efficiency as a result (Firouzi et al.;
2022).

1.2 Problem Statement
The first challenge focused on this research is high energy and limited computational capacity
of edge and fog devices when processing a growing amount of data collected by IoT sensors.
The implementation of resource-limited devices requires the design of a lightweight framework
that can deliver considerable data compression, edge computation outsourcing, and
collaborative learning, while following green IT principles (Chen et al.; 2022). The key
challenges include minimizing size of data that is transferred between the edge and fog layers
while preserving the quality of the reconstructed information, how data can be aggregated at
the nodes in order to avoid relaying redundant data, how and where computation should be
offloaded using MARL optimized for the network’s conditions, the capabilities of devices, and
the requirements of the application.

1.3 Research Question
How can an optimized strategy be designed for IoT devices in edge/fog computing networks
that achieves substantial data reduction, and efficient computation offloading while improving
energy efficiency by adhering to green computing practices?

3

1.4 Research Solution
The proposed solution answers this question in two distinct ways. Firstly, a DL-based
compression sensing (CS) technique for dimensionality reduction and precise reconstruction
of the high-dimensional data generated across the fog nodes is suggested. The model learns the
latent representations of the high-dimensional data to achieve data reduction without
compromising on the crucial information that may be required in the data reconstruction. This
can also be used to enable data aggregation by combining fragments of edge data across the
nodes before transmitting it to the cloud server. Secondly, to achieve higher energy efficiencies
by making optimal decisions on data processing, computation offloading and resource
allocation while sharing the aggregated data across the nodes or the cloud a DRL-based
framework is proposed. This research also strives to fulfil the green cloud computing practices
to reduce the adverse environmental impacts by designing a system that performs optimally
with lesser energy consumption and lower the carbon footprint.

1.5 Research Objective
The primary aim of this research is to produce an energy-efficient optimization architecture for
optimal data compression, information aggregation, and intelligent collaborative network in
terms of computation offloading and efficient data handling platform as a service on resource-
constrained edge and fog computing devices considering IoT networks.

1.6 Research Contributions
The key contributions of this research were as follows:

• The design and implementation of a deep compression sensing autoencoder network
(DCSANet) based on autoencoders, aiming to guarantee the minimal data reduction
while ensuring accurate data reconstruction.

• To a develop a DRL powered JCF for edge nodes enabling offloading of computations,
data handling and processing efficient to work together in an intelligent manner.

• Measure and compare the performance results of proposed framework in terms to
reconstruction accuracy, energy consumption, energy efficiency, throughput as well
transmission latency across the edge nodes.

• Map the proposed framework to green cloud computing needs for reducing carbon
footprint and adopting sustainable mean in the edge/fog environments.

1.7 Limitations and Scope
The scope of this research is to create an efficient system for reducing data and saving energy
when transmission in edge and fog computing. This framework is designed to work with IoT
devices that have limited resources and should reduce both power consumption and
computational workload that come with processing massive amounts of information. This
research contains certain limitations like:

• The integration of the proposed framework with existing IoT protocols and standards
may require additional adaptations and optimizations.

• This study does not explicitly deal with security/privacy issues regarding data
storing/transmitting within an edge-based or fog computing setting thus further steps
should be taken in securing such information.

The deep compression sensing autoencoder network (DCSANet) and DRL based joint
computing framework (JCF) are proposed in order to achieve significant amounts of data
reduction, energy-efficient aggregation as well as intelligent collaboration for computation
offloading among edge nodes. In line with green cloud computing practices, this research

4

contributes towards sustainable development in terms of environmental friendliness within the
context of fog computing at edges. The performance evaluation which uses real IoT datasets
strives to demonstrate that this framework is capable of achieving better reconstruction
accuracy, reduce transmission delays and be more energy efficient.

Following is the analysis of the report, and it is divided into major sections. Section 2 contains
related work that discusses previous works on data compression and energy-efficient
processing on edge and fog networks and presents the gaps that this research will solve. The
section 3 'Research Methodology' explains the method applied together with the selection of
datasets, data pre-processing procedure, and integration of DCSANet and JCF models. In
Sections 4 and 5, the design specifications and implementation sections are presented where
details of development of these models are specified. Section 6 is the evaluation of results
which includes the analysis of the simulation results about the examined performance metrics
and the integration of DCSANet with JCF. Section 7 elaborates the Conclusion and Future
Work where recommendations were given regarding further investigations and development.

2 Related Work

2.1 Data Compression in Edge Networks
A study by Amarlingam et al. (2018) introduced a data aggregation technique that is energy
efficient for wireless sensor networks. The method utilizes an adaptive dictionary in
compressed sensing. The solution being presented applies an overcomplete dictionary that has
been acquired through training data to effectively manage fluctuations in data sparsity as time
progresses. The simulation results demonstrate that the suggested method provides significant
energy savings and improves the lifespan of the network when compared to existing
compressed sensing systems that utilize fixed sparse bases such as DCT, DFT, and DWT. In
(Azar et al., 2019), an additional energy-efficient IoT data compression technique for edge
machine learning applications was presented. The SZ compressor, which is a high-speed
compressor with error control capabilities, is specifically designed for IoT devices. Its purpose
is to minimize the volume of data that needs to be transported from the edge (where the devices
are located) to the cloud. This study examines the effect of lossy compression on the precision
of a machine learning model used for detecting driver stress, which is deployed at the edge.
Results demonstrate a significant data reduction of up to 103 times without compromising the
accuracy of stress detection.

In their study, (Shao and Zhang. 2020) proposed the utilization of BottleNet++, which is a very
efficient feature compression. It is specifically aimed for collaborative inference systems of
device-edge and is incorporated into deep learning framework. The architecture of the
BottleNet++ comprises an encoder block, a channel that is non-tunable, and a decoder so that
the use of the system is end-to-end joint source-channel. BottleNet++ is able to compress as
much as 256 times while utilizing efficiency from the sparsity and tolerance to failure of the
intermediate DNN features. All this is attained even when gaining data through binary erasure
channel, with a probability loss of less than 2%. This makes it possible to split DNN at early
stages and thereby reduce on-device calculations by as much as three times when compared to
other methods. For edge-fog computing-based IoMT networks, the authors of (Idrees et al.,
2022) presented the KCHE lossless EEG data compression technique. KCHE utilizes spatial
similarity in EEG data to compress it at the edge prior to transmission to the fog layer. At the
fog layer, a machine learning technique utilizing Naive Bayes is employed to identify epileptic
episodes from the reconstructed EEG data. The results indicate that KCHE achieves a

5

compression rate of 85-89% and minimizes energy usage at the edge node when compared to
not using compression. Additionally, it enables precise seizure identification at the fog layer.

Table – 1: An analysis of relevant research works presented with their objectives, methodology,

dataset used, tools and metrics.
No. Author(s)

and Year
Research Objective Methodology Dataset & Tools Metrics

1 Zhang et al.
(2019)

Propose DL-based stacked
sparse denoising
autoencoder compressed
sensing (SSDAE_CS)
model for signal
reconstruction from
compressed sensing.

SSDAE_CS with encoder
and decoder sub-networks,
multiple nonlinear
measurements, end-to-end
training.

Simulation datasets

MATLAB,
Tensor

Training Loss,
PSNR,
MSE

2 Toor et al.
(2019)

Address high-energy
consumption in IoT-EoT
Devices.

Dynamically scaling the
processor frequency of
EoT devices

Simulation datasets

iFogSim

Energy
Consumption,
Network Usage,
Execution Time
and Loop Delays

3 Li et al.
(2019)

Propose an energy-efficient
data collection scheme for
large-scale IoT using
computation offloading and
compressed sensing.

Clustering Compressive
Data Collection (CCDC)
framework

Real-world sensor
datasets

MATLAB
iFogSim

Normalized MAE
(NMAE),
Average Energy
Consumption, and
Total Data
Transferred

4 Zhang et al.
(2019)

Develop a two-stage
compressed data
aggregation scheme using
CS and sparse Autoencoder
(SAE) for green IoT
networks

Two-stage compressed
data aggregation scheme
using CS and Sparse
Autoencoder (SAE)

Synthetic dataset,
MNIST dataset
Simulation Tools

MSE, CR,
Reconstruction
Accuracy,
Training loss and
Energy
Consumption

5 Zhang et al.
(2021)

Propose a learning-based
sparse data reconstruction
scheme for compressed
data aggregation in IoT
networks.

Deep Compressed Sensing
Network (DCSNet)

Real-sensor dataset.

MATLAB,
PyTorch

PSNR, MSE,
Structural
Similarity Index
(SSI)

6 Bai et al.
(2021)

Propose a joint
optimization algorithm for
computation offloading,
data compression, energy
harvesting, and application
scenarios (JCDEA) in fog
computing

JCDEA Framework Synthetic data

Simulation Tools

Energy
consumption; data
compression ratio;
compression and
decompression
CPU metrics

7 Yang et al.
(2021)

Develop a transfer
learning-enabled edge-
CNN framework for 5G
industrial edge networks
focusing on energy
efficiency and latency
reduction

Implementation of a TL-
enabled edge-CNN
framework using
mathematical modeling

ImageNet dataset
and Others

Simulation Tools,
Keras, TensorFlow

CR, energy
consumption,
uploading
decision and
bandwidth
allocation

6

8 Alotaibi et
al. (2022)

Propose an efficient IoT
system for collecting,
compressing, transmitting,
and reconstructing sky
images with minimal
bandwidth usage.

Convolutional
Autoencoder (CAE)

Sky images dataset

Raspberry Pi,
Python,
Keras

MSE, SSI, CR

9 Chen et al.
(2022)

Propose DRL-based cloud-
edge collaborative mobile
computation offloading
(DRL-CCMCO)
mechanism to minimize
execution delay and energy
consumption in industrial
networks.

DRL-CCMCO framework Simulation datasets
involving mobile
industrial
applications.

Python,
TensorFlow

Energy
consumption, task
completion cost,
and resource
allocation
efficiency

10 Noura et al.
(2023)

Propose a DL-based super-
resolution model for
recovering high-quality
decompressed images in
multimedia IoT (MIoT)
networks

Lossy Image Compression,
DL-based Image
Enhancement

The Kodak dataset
(24 images)

PyTorch

PSNR, CR, SSI
and energy
consumption

11 Tan et al.
(2023)

Minimize total energy
consumption in multi-
access edge computing
(MEC) systems while
satisfying a delay constraint

DRL-based bilevel
optimization (Dueling-
DQN, Double-DQN)

Simulation data
with scenarios
involving mobile
users, MEC servers,
and a cloud server.

Simulation Tools

Energy
consumption,
discount factor,
subcarrier and
power allocation

12 Wei et al.
(2023)

Propose MA-GAC for
many-to-many task
offloading in vehicular fog
computing

Multi-Agent Gated actor
Attention Critic (MA-
GAC) within partially
observable Markov
decision process (POMDP)

Simulation data
involving vehicular
fog computing
scenarios.

Simulation Tools

Energy
consumption,
service latency,
task completion
ratio and
offloading
decision

2.2 Energy Efficient Processing and Latency Reduction in Edge/Fog IoT
A mobile edge-cloud collaborative computing technique for power consumption minimisation
throughout in mobile devices was discussed by (Hua et al.; 2023) with the help of mobility
prediction. It is cast as an MIP problem because it entails the power control, transmission
scheduling, and offloading strategies all at the same time. Moreover, another heuristic
algorithm called mobility-aware heuristic (MAH) with a low computational cost is also
presented. The results demonstrate that the proposed scheme will be more effective in reducing
MD energy usage as compared to various schemes with mobility consideration. To achieve this
objective, the study undertaken by (Huang et al.; 2023) targeted at an adaptive computation
offloading and resource allocation in the dynamic Internet of Vehicles (IoV) environment with
integration of edge and cloud computing. The objective is to decrease the total cost of
processing urgent and complex jobs, which must be accomplished in a short amount of time
and within limitations imposed by the transmission rate. A DRL-based CORA algorithm is
proposed to obtain the best strategy in response to the dynamic variations in the network
environment. The simulation experiments show that compared with other non-DRL algorithms
and other DRL algorithms, the CORA algorithm has better performance in terms of training
convergence, processing time, and processing cost.

7

The authors in (Ren et al.; 2018) studied the issue of latency minimization in a MECO system
but in multi-user scenario focusing on communication and computation resource management.
The authors examine three distinct computational models: local compaction, edge cloud
compaction and partial compaction offloading. Optimal resource allocation and minimum
system delay equations are developed for both local cloud and edge cloud compression models.
The numerical results show that the proposed idea of partial compression offloading has a
significant effect on eradicating latency from start to finish. Namely, the study by (Trinh et al.
2018) aimed to assess thorough the application of MEC for the processing of real-time visual
data during disasters. A cost model for offloading decision considers the merits of different
computing policies, particularly whether to offload to edge or core cloud, based on a number
of workloads and clients. The SPIDER algorithm which is policy and intelligence-based along
the sustainable policies with edge routing uses machine learning for improving the spatial
routing and the incorporation of adaptive rules. The benefits of maintaining an energy economy
while simultaneously achieving low latency are exemplified in the experiment on a testbed
setup and performance simulations of reconstructed disaster scenarios.

For instance, deep compressive offloading was presented as a new offloading framework in a
recent study by (Yao et al.; 2020). This framework is realizing a combination of compressive
sensing theory and deep learning to reduce the overall offloading data transmitted. Encoder is
a much lighter program, which compresses the data on the side of the local device, and decoder
does the same on the side of the edge server. As a result, one receives perfect reconstruction
and lossless inference with theoretical performance assurance. Assessments indicate that there
is 2-4 times decrease in the overall time it takes for a task to be completed, while maintaining
an accuracy loss of less than 1%, as compared to the most advanced methods for transferring
work to another location. During periods of restricted bandwidth or heavy traffic, latency is
decreased by a factor of up to thirty-five. A system was presented that combines unmanned
aerial vehicles (UAVs) and MEC to offer MEC services to ground users in (Pervez et al.; 2023).
The system involves numerous UAVs and a base station. The goal is to minimize a weighted
combination of energy consumption and latency by simultaneously optimizing decisions about
work offloading, transmission power, UAV trajectories, and CPU frequency allocation. The
authors suggest using an alternating iterative strategy, specifically the block descent method,
to tackle this non-convex issue. The simulation results clearly illustrate the superior
performance of the proposed algorithm in comparison to benchmark systems.

From the analysis of the available literature, models and the realized objectives, the research
gap was highlighted with the suggestions of an innovative approach, (DCSANet + DRL-based
JCF) to optimize the transfer of data and many data reductions from edge/fog computing to
enhance energy performance. The techniques that are proposed in the model include DCSANet
for data reduction and accurate reconstruction with high efficiency and DRL-based JCF for fog
node intelligence. This goal will help in minimizing energy consumption and transmission time
while at the same time enhancing the quality of reconstructed IoT dataset. The integration
between DCSANet and DRL-based JCF may be costly in terms of computational requirements
and thus requires AWS like cloud service rather than spent on a local development server.
However, it is also necessary to note that to learn about cloud providers’ services, which can
be used for studying, it may take a lot of time and domain knowledge.

8

Table – 2: An analysis of relevant research works presented in literature in terms of their
key findings, strengths, weaknesses and limitations.

No. Author(s)
and Year

Key Findings Strengths Weaknesses Gaps

1 Zhang et
al. (2019)

Improved CS performance
by jointly training encoder-
decoder sub-network
parameters

Improved
reconstruction
accuracy, lower time
cost, strong denoising
ability

High training time
and data
requirement

Needs more
efficient training
approaches to
reduce time and
data requirements

2 Toor et al.
(2019)

Better energy conservation
by dynamically scaling the
processor frequency of EoT
devices based on traffic
loads

Energy efficiency,
maintains counters to
avoid frequent speed
changes, extensive
simulations for
validation.

High computational
complexity for real-
time
implementation

Requires real-world
validation, need for
optimization for
diverse IoT
applications.

3 Li et al.
(2019)

Reduced data volume while
maintaining high
reconstruction accuracy,
demonstrated high energy
efficiency

Efficient data reduction,
prolonged network life,
improved accuracy in
data collection

High computational
complexity for real-
time
implementation

Needs real-world
validation, Lacks
diverse IoT
applications
optimization

4 Zhang et
al. (2019)

DCSNet offers effective data
compression and
reconstruction in large-scale
IoT networks

Reduced data traffic,
Improved
reconstruction
accuracy, Low
compression ratios

Limited to
simulation data,
complexity in real-
world
implementation

Real-world
validation needed,
diverse IoT
network conditions

5 Zhang et
al. (2021)

Achieved high
reconstruction accuracy with
lower data transmission
requirements, effective data
volume reduction while
maintaining high
reconstruction fidelity

High reconstruction
accuracy, data
compression, lower
transmission delay, and
energy savings.

High computational
complexity for
training,
dependence on the
availability of large
datasets for
training.

More practical
implementations,
real-world
validation, and IoT
scenario
optimizations are
needed.

6 Bai et al.
(2021)

Fog computing cost lower
than cloud computing, Cost
increases linearly with
offloaded data, users,
devices, and compression
ratio

Comprehensive multi-
objective optimization
approach, extensive
simulation setup with
varying parameters

High computational
overhead,
sophisticated
scalability and
modularity in large-
scale fog
computing
environments

Lacks
consideration of
real-world
constraints such as
network variability
and hardware
limitations

7 Yang et al.
(2021)

Eighty-five percent
prediction accuracy with
compression ratio of 32,
reduced training and testing
overhead

Privacy-preserving,
efficient energy use,
reduced latency

Limited to
simulation data,
complexity in real-
world
implementation

Need for real-world
validation, diverse
industrial scenarios

8 Alotaibi et
al. (2022)

Compressed images to 2%
of their original size,
maintained high
reconstruction fidelity with
an average SSIM of 99%

High compression ratio,
high reconstruction
quality, practical
implementation on low-
cost IoT device
(Raspberry Pi).

Computationally
intensive training
process,
dependence on
large datasets for
training.

Need for real-world
validation, diverse
industrial scenarios,
and IoT scenario
optimizations.

9

9 Chen et al.
(2022)

Optimized resource
allocation, handled task
relevance and user mobility
effectively.

Faster convergence,
high stability, smaller
execution delay and
low energy
consumption.

High computational
complexity,
reliance on
simulation
environment for
validation.

Needs real-world
validation,
optimization for
various industrial
applications.

10 Noura et
al. (2023)

Improved visual quality,
Reduced latency and energy
consumption by 10%

Enhanced image
quality, flexible
application

Limited to specific
datasets and
techniques,
computationally
intensive

Real-world
validation,
exploration of other
DL models

11 Tan et al.
(2023)

Near-optimal energy
efficiency and task
completion rate, DBA
outperforms other DRL-
based approaches

High performance in
energy efficiency and
task completion

Limited to
simulation
scenarios,
complexity in
implementation

Real-world
validation needed,
exploration of
diverse settings

12 Wei et al.
(2023)

Higher long-term rewards,
coordinated task offloading
improves computational
resource utilization

Effective coordination
among multiple agents,
robust performance in
dynamic environments

Limited to
simulation
scenarios,
computational
complexity

Real-world
validation needed,
exploration of
different topologies

2.3 Critical Analysis
The literature assessment presented in Table-1 compares different models and strategies for energy-
efficient data optimization in the resource-constrained environment of fog computing, revealing
their goals, major claims, and limitations between these models. This study examines various
models and techniques such as deep learning (DL)-based compression, transfer learning (TL) for
edge CNN, deep reinforcement learning (DRL) for task offloading and resource allocation as well
as joint optimization of computation offloading, data compression, energy harvesting, and
application scenarios.

These approaches aimed at reducing transmission latency while maintaining high-quality data
reconstruction, but they required GPU resources at application server level, analyzed video
compression effectiveness in a limited scale, and required scalability validation in large IOT
networks to a larger extent. This research tries to combine the concept of data compression and
reinforcement learning for efficient data transmission across edge nodes from (Zhang et al.;2019).
The DCSANet architecture builds on this study, which investigated compressive sensing and
autoencoder-based methods for compressed data aggregation in green IoT networks. Their major
contributions include efficient data compression and reconstruction with reduced data traffic,
improved reconstruction accuracy, and low compression ratios This design is mandatory for
performing optimized data reduction and accurate reconstruction within the edge/fog computing
domain. Nonetheless, Zhang et al.’s work had some drawbacks. The current research extends this
in two ways, by incorporating DCSANet into a DRL-based JCF model and by conducting
evaluation on real datasets.

Although there are some limitations in the discussed literature, requiring further examination.
For example, the review suggests it is a challenge to implement DL models on low-powered
equipment and recommends testing them under dramatically changing network conditions with

10

varying task requirements. Recommendations for testing these models on real-life high-quality
image datasets and comparing these to similar frameworks that this study aims to address.
Furthermore, an exhaustive literature review was undertaken to analyze different techniques
and models associated with the energy efficient operation in the edge and fog computing
system. This review also highlights the gaps and limitations that exist in the current research,
which led to the formulation of the proposed model. The integrated model also applies
DCSANet for data dimensionality reduction while the intelligent cooperation mechanism (JCF)
for cooperation between fog nodes.

3 Research Methodology
The research methodology also seeks to meet the research question formulated under Section
1.3 of this dissertation by designing the best strategy regarding the use of edge and fog
computing devices. This strategy involves compacting and reconstructing data produced/used
in the different nodes and enhancing the efficient transfer of data to help in energy
conservations as shown in Figure. 1.

Figure 1: KDD Process Research Methodology

3.1 Dataset Description
To evaluate the proposed methods this study uses the DIV2K dataset1, a high-quality image
dataset created for super-resolution tasks. It comprises one thousand 2K resolution images
which will be pertinent for testing purposes of data reduction and image compression. This
dataset is stable and dependable which enables us to train and test the models effectively.
Ethical Considerations: The datasets applied in the present work, including the public
benchmarking dataset or the DIV2K, are popular among researchers globally. It should be
noticed that none of these datasets contains any identifiable resources or people’s information,
thus meeting the ethical requirements and privacy standards and at the same time offering
efficient solutions to numerous issues.

3.2 Data Preprocessing
The selected data are then subjected to the following preparation techniques in order to be
enhanced for their use in DCSANet. This entails resizing images used in the DIV2K dataset to
an appropriate dimension suitable for the autoencoder, normalizing various sensors to have
homogeneity, and discretizing of various features that are categorical in nature. Further, the
dependent variables including energy, latency, and other evaluative parameters are extracted

1 https://data.vision.ee.ethz.ch/cvl/DIV2K/

11

from the datasets to compare it with the JCF model. The preprocessing stage involves
converting unprocessed data into a form that the DCSANet may suitably apply. This ensures
that the latter data compression and computing framework is done accurately as well as
effectively.

3.3 Data Transformation
During the transformation stage, DCSANet is employed to the benefits of data reduction by
employing the compression sensing techniques. It reduces input data into a lower but
intermediary representations through a Variational Autoencoder (VAE) which had shown that
reducing dimensions simplified representations of substantial relevant data to be implemented
(Zhang et al.; 2019). The VAE is learned to make the reconstruction loss small so that
compressed data has the required qualities for the next step. This transformation is decisive for
shrinking the size of the data which in turn decreases the bandwidth and storage space, hence
a better and scalable system.

3.4 Data Mining/Pattern Recognition
The Joint Computing Framework (JCF), built on DRL, is utilized to acquire patterns and
enhance resource allocation. It uses a Deep Q-Network (DQN) technique to train the DRL
agent, which observes the present condition of the fog/edge environment, choosing actions
based on its learned policy (Q-function), and adjusts its actions based on the rewards it receives.
This method involves:

 State Observation: The agent actively monitors the present situation of the network,
including the availability of resources, network conditions, and energy consumption
levels.

 Action Selection: The agent decides on actions, such as adjusting data transfer rates,
allocating resources, and offloading tasks, based on the observed state.

 Reward Evaluation: The agent receives rewards based on how well it performs its
actions, encouraging behaviours that reduce energy usage and delays while maximizing
data processing efficiency.

The agent regularly updates its policy to improve the decision-making as network conditions
and data characteristics change. The JCF utilizes this intelligent decision-making process to
maximize resource utilization in the fog/edge network, ensuring effective data processing and
transmission.

3.5 Evaluation
The effectiveness of the proposed approach is evaluated through extensive simulations and
real-world experiments that focus on several key areas:

 Energy Consumption: This establishes the energy consumption of edge/fog nodes and
compares it with the existing techniques for energy saving.

 Latency: This may be defined as the time taken in transferring and interpreting data
from one location to another location. In this case, tests are performed to demonstrate
the difference between this latency and traditional IoT cloud models, focusing on the
lower latency obtained.

 Reconstruction Loss: This shows the amount of data compression that DCSANet is able
to achieve while at the same time minimizing on the loss that occurs, therefore data
quality is preserved.

 Training Loss: This means that the model is learning during the training process with
the smaller values of the Keras ‘loss’ parameter denoting better fit between predicted
and actual targets.

12

In comparison of training performance of the model, PSNR, MSE and SSIM indices are utilized
as model assessment criteria. PSNR is one of the reconstruction quality measures which
compares reconstructed data to the original one. Therefore, the higher the value then the better
is the quality of the reconstructed image. The degree of distortion between the original data
and reconstructed data is evaluated with Mean Squared Error (MSE). SIM evaluates the
similarity between the original and reconstructed images from the visual point of view and
gives the rating that is more related to the quality. This implies that the higher the value then
the better is the perceptual quality.

The code is written in Python and the DCSANet and JCF models are developed using
TensorFlow and PyTorch while other machine learning libraries used include NumPy, Pandas
and scikit-learn.

3.6 Knowledge
The framework of edge/fog computing proposed in this work is designed to minimize the
computational overhead and to maximize the reconstruction quality. It is intended to help to
optimize energy consumption in data handling and transfer, minimize latency in edge and fog
networks, manage the resources and implement cooperation between the fog nodes. This
implementation is intended to develop energy efficient edge/fog computing systems for IoT
applications with a view to solving the challenge of resource limitations.

4 Design Specifications

4.1 DCSANet Architecture
The key task of the Deep Compression Sensing Autoencoder Network (DCSANet) as presented
in Figure.2 is to achieve the best data compression and accurate data recovery in resource-
limited edge/fog computing environments. The system model consists of two parts: an encoder
for dimensionality reduction and a decoder for data reconstruction.

Figure 2: DCSANET Architecture

DCSANet can take high-dimensional data and compress it into a smaller, dense latent space
representation. By using convolutional layers, it extracts spatial features and reduces the input
dimension. The latent representation passes through activation functions, such as ReLU, to add
non-linearity and enhance sparsity. Pooling layers on the other hand helps to further reduce
computation, they further down-sample the feature maps. To revert the compressed data back
to its original form, the decoder uses transposed convolutional layers to up sample the data to
a size of 32×33(width/height). Skip connections are implemented between corresponding
encoder and decoder layers to ensure that valuable information is preserved, leading to better
reconstruction quality.

13

During the training process, DCSANet undergoes end-to-end learning with various
regularization techniques alongside reconstruction loss functions like Structural Similarity
Index (SSIM) and Mean Squared Error (MSE). Regularization methods, such as L1 and L2,
help maintain sparsity and prevent overfitting (Zhang et al., 2019).

Throughout training, DCSANet learns to create compressed representations that allow for
nearly accurate reconstruction of the received signals without needing all the original
information. This compressed data is then transmitted over the network, reducing the need for
bandwidth and minimizing latency. At the receiving end, the decoder reconstructs the original
data from the compressed representation.

Being lightweight and computationally efficient, the DCSANet architecture is designed to run
on edge/fog devices that have limited resources. It can achieve this by utilizing the properties
of convolutional layers which allow for efficient extraction of features as well as
dimensionality reduction, while the autoencoder structure supports seamless learning of both
compression and reconstruction processes.

The proposed framework with its decentralized approach can distribute decision-making
among the various fog nodes, thus making the system scalable to handle larger workloads as
more nodes are incorporated. DCSANet’ s compression at the edge has the effect of decreasing
bandwidth usage, which also means that the system is capable of handling more edge/fog nodes
without congesting the system.

4.2 JCF Architecture
Every single DRL agent perceives the current condition of network which includes resource
availability, network status as well as energy consumption level. In light of this perceived state,
an agent will choose actions like modifying data transfer rates, allocating resources or
offloading tasks to other fog nodes or cloud server depending on what it observes. These
actions are selected according to learned policy represented by DQN model, whereby rewards
received by such DRLs are based on their performance in terms of energy efficiency, and
latency reduction during the processing stage. Rewards act as a guide during learning process,
thereby encouraging them to take actions that minimize energy consumed while also
minimizing latency caused through maximum use of resources available at hand. In response
to received rewards, agents continue updating policies so as fit better into new conditions
brought about by varying network conditions (Yang et al., 2021).

The JCF architecture adopts centralized training method where global policies are trained for
DRL agents. Training set is composed of historical states recorded from various fog nodes,
while actions taken within those periods and rewards achieved at execution time at specific
nodes in the edge/fog network are considered. Centralized training enables knowledge sharing
between different nodes which promotes coordination among them in terms sharing resources
as well offloading tasks optimally.

During deployment, trained DRLs become distributed over various locations, where real time
decision making takes place using learned policies as guidelines for deciding what needs to be
done, when and how things should happen at every point in time. These communicate among
themselves so as maintain worldwide views of network state around them while making
rational choices. What JCF does best is, it enhances the use of computing resources efficiently,
reduces energy consumption and minimizes delays in edge/fog environment.

14

4.3 DCSANet-JCF Integration
The purpose of integrating JCF and DCSANet is to create an efficient system for energy-
efficient data optimization in edge/fog computing systems with limited resources. In this
combined methodology presented in Figure 3, DCSANet is utilized at the edges to compress
the generated data before transmitting them, thus reducing bandwidth usage and transmission
latency.

The information is sent to fog nodes after compression, where decision making is handled by
JCF. JCF uses DRL agents to evaluate compressed information and determine the best actions
for tasks like computation offloading, resource allocation as well as data processing.

The advantages of integrating DCSANet and JCF include:

 Bandwidth requirements and transmission latency which leads to a faster data
transmission between edge devices can be reduced through data reduction achieved by
DCSANet.

 Intelligent decision-making functions embedded in JCF optimize resource utilization
while considering energy efficiency aspects within fog computing environments.

Figure 3: DCSANet-JCF Integration for Energy Efficient Data Reduction

When the compressed data is received DCSANet decoder reconstructs it so that it can be
recognized. Furthermore, the reconstructed data is then processed based on the decisions made
by various Deep Q-Network (DQN) agents in JCF, and depending on network conditions and
application needs, it can either be sent back to the edge device or forwarded to a cloud server.
Overall, combining DCSANet and JCF achieves the goal of reducing data while working with
intelligent resource management to improve both performance and energy efficiency in an edge
computing or fog computing system. This joint framework is dynamic enough to suit IoT
networks, deal with huge amounts of produced data as well as make the best use out of limited
computational resources.

15

5 Implementation

5.1 Development Environment
The DCSANet and JCF models’ code was written in Python utilizing TensorFlow and PyTorch
libraries, respectively, and the implementation was done on Google Cloud Platform (GCP),
particularly Colab. Other libraries that were utilized for the data preprocessing, file handling,
and performance assessment include NumPy, Pandas, and Scikit-learn respectively while
JupyterLab was used for the debugging and the visualization of results using libraries such as
Matplotlib and Seaborn. The model was trained on a NVidia T4 GPU in order to accelerate the
training and the evaluation of the model.

5.2 DCSANet Model Implementation
The DCSANet model architecture was implemented with one encoder for dimensional
reduction and a decoder to regress the data. The encoder uses convolutional layers to reduce
the spatial measurements and simplify them. It uses multiple layers of convolution, increasing
filter sizes (32, 64, and 128), and strides with a step-size of ‘2’ to reduce the input size. A
residual block was used following each convolutional layer to model more complex patterns
and increase the decision-making ability of the algorithm. These residual blocks have a pair of
convolutional layers with the same number of filters and a skip connection between them
bypassing layer input to be added on output, enabling the model to learn residual functions.
The encoded features are then flattened followed by a dense layer to get the compressed latent
representation after all convolutional layers. The latent representation is split into the mean and
log-variance, which are used for sampling during training with parameterization.

The decoder takes the compressed latent representation and re-constructs the original data. It
starts with a dense layer that extracts the latent representation, followed by reshaping it into
feature map dimensions. The decoder continues to mirror the encoder by using 3x3 transposed
convolutional layers with decreased filter sizes (128,64 and 32) along with strides of two for
up-sampling feature maps. Every transposed convolutional layer is followed by a residual block
in order to enhance the reconstruction performance. The last layer of the decoder comprises of
a convolutional layer followed by a sigmoid activation function to produce the reconstructed
output.

The DCSANet model was trained with the DIV2K dataset which is a public and well-known
large-scale high-quality image dataset for the validation of machine learning methods in both
restoration like super-resolution and compression. Eighty percent of the image was used to
train and the rest 20% to test. The model was trained for 50 epochs with a batch size of sixteen.
This involved training a model with a custom loss function that was defined as reconstruction
with Kullback-Leibler (KL) divergence. Here a reconstruction loss quantizes how well the
input image is reconstructed compared to the original and KL divergence regularizes latent
space by encouraging learnt distributions to remain similar to a standard normal distribution.
Table-1 presents the model training parameters.

However, issues can arise when the number of fog nodes increases leading to more
computational demands for training and applying DRL models. This may cause a higher
workload on each fog node and result in higher latency or susceptible decision making. The
use of DCSANet to cut down on bandwidth consumption presents a challenge on the number
of devices that can be accommodated before networks become congested, especially in areas
with poor infrastructure.

16

Table-1: DCSANet Model Training Parameters

5.3 JCF-DCSANet Integration Implementation
Both DCSANet and JCF are integrated to utilize the best of both models for optimizing in
energy-efficient data transmission over the edge/fog computing environment. In this
deployment, DCSANet is integrated with edge devices to compress the data generated before
transmitting it to minimize bandwidth consumption and latency. Once the data is compressed,
it is then sent to fog nodes where JCF takes charge of decisions regarding computation
offloading and resource distribution for processing the dataset. The JCF architecture follows a
centralized training paradigm and trains global policies for DRL agents. This one has
historically forged away throughout time states of different fog nodes combined into a training
set and also contains which action was taken along with rewards achieved while mentioned at
edge/fog network. Therefore, the DRL agents rely on Deep Q-Network (DQN) to make
decisions based on their observed states and receive rewards during environmental interaction.
During simulation, the LearningFogNetwork class creates multiple instances of a fog node —
each instance is an object formed by using the information about processing power and network
bandwidth. The interaction between fog nodes and the DCSANet model occurs in the simulate
processing method. During the testing phase of DCSANet, it is running over each specific test
sample and process (encode) such data using their own internal encoder and sends it to a fog
node for further processing.

At each step, the fog node sees where it is in terms of its processing and network capabilities
(e.g., how many bits per second it can process), how big the compressed data size has gotten,
if there's any congestion on the transmission link, energy consumed thus far. This state is passed
to the DRL Agent, which selects an action using an ε-greedy policy. These can either be locally
processed, passed to another node, or retained idle. The chosen action is performed, and the
required energy consumption, latency, and response time are measured. After acting, the fog
node of other actors updates its metrics and gets rewarded in terms of energy consumed plus
latency. The node puts it here in race memory to learn for next time. Whenever the memory
size crosses certain limits, a replay step is invoked in which the node samples a batch of
experiences from its memory and updates the DQN model using that sampled data.

This simulation is conducted in a given number of episodes and the number of steps in each
episode. The PerformanceTracker class is used to log in and record the performance metrics
(e. g. Energy, Latency, Throughput.) at the end of each episode. The state of fog network is
saved at certain intervals to help continue with the simulation in the event that it is interrupted.
Due to this, fog nodes are able to cooperate on decisions, computations and resources through
DCSANet and JCF. This approach is intended to optimize energy consumption of edge and fog
computing systems that are characterized by scarce resources.
The DCSANet-JCF framework can be implemented on edge devices or fog nodes which can
be local servers or specific edge computing gadgets. This would also include configuration of
the DRL agents and making sure that they are capable of interacting with the other devices on

Parameter Value
Epochs 50
Batch Size 16
Optimizer Adam
Learning Rate 1e-4
Latent Dimension 256

17

the edge as well as the other DRL agents. A cloud backend would be required for centralised
training of the DRL models.

Some of the challenges during deployment may arise from the need to implement high-end
encryption and access control algorithms, backup mechanisms in case of failure, reduce energy
consumption in battery-operated edge nodes, and manage latencies in real-world network
scenarios.

5.4 Model Evaluation Metrics
For the DCSANet model evaluation the following metrics were used to verify its data
compression capabilities :

 Peak signal-to-noise ratio (PSNR): PSNR is used as a measure of the quality of
reconstructed images against an original image. The target value of the SNR may
indicate how much larger the message must be compared to a corrupted noise.

 Structural Similarity Index (SSIM): SSIM is another well-known metric used for
measuring the perceived quality of reconstructed images. Higher SSIM values denote
better perceptual quality, and its range is 0 to 1.

 Compression Ratio (CR): It shows how much the DCSANet encoder has reduced data
from input to target. High compression ratios are important to having more efficient
data reduction, which is important for reducing bandwidth usage and transmission
latency in edge/fog environment with scarce resources.

 Table-2: Model Training Parameters for JCF-DCSANet

The performance of the JCF model is evaluated based on its ability to process data efficiently
and enable intelligent collaboration among fog nodes. The following metrics were used:

 Energy Consumption: This metric calculates the summed energy consumption of all
edge/fog nodes at each step in a simulation.

 Latency: It is the time delay in sending and processing data from one point to another
over an edge/fog network. Smaller the values, better is system processing data and
performance.

 Edge/fog Throughput: This measures the amount of data in the form of samples
processed per unit time on edge. It is the ratio of sum of all processed data samples to
total simulation time.

 Resource Utilisation : This is an indication of how well the computational resources
available on the edge/fog nodes are being utilised during simulation. It is measured as
the proportion of entire data items that have been processed by a node against total
processing capacity of nodes. Better load balancing and more effective use of available
resources means higher utilization for resources.

Parameter Value
Number of Fog Nodes 3
Total Episodes 10
Steps per Episode 50
Memory Size 2000
Batch Size (Replay) 32
Discount Factor (Gamma) 0.95
Initial Exploration Rate (Epsilon) 1.0
Minimum Exploration Rate 0.01
Exploration Decay Rate 0.995

18

6 Results Evaluation

6.1 Analysis of Performance Metrics
The DCSANet model showed an average loss of 0.0682 after training the models over
approximately 50 epochs, showing it was able to learn a straightforward data compression and
de-compression as well. These are the final results from integration of DCSANet and JCF in
an advanced learning fog network simulation with 3 nodes.

 Total Energy Consumed: 207.42
 Total Latency: 3622.86
 Average Throughput: 0.53
 Average Resource Utilization: 1.83 ×

Another aspect of the simulation was per-node metrics that showed energy, latency and
execution time on a node basis and were further refined to provide data processed count (b/s),
which along with other information, helped calculate efficiency metric for each network.

Table-3: Evaluation Metrics of JCF-DCSANet Framework – Node-wise (Per-Node Metrics)

Node
ID

Energy
Consumed

Total
Latency

Execution
Time

Processed Data
Count

Efficiency

0 61.60 1134.53 0.34 170 2.76
1 68.24 1195.55 0.16 170 2.49
2 77.57 1292.78 0.15 160 2.06

There are node-per-node metrics from the fog network simulation in Table-3 which provide
information about how well each of them performs in aspects such as energy consumption,
latency, and execution time, among others. The node 0 has proved to be the greenest in energy
consumption, and slightly slower with a latency of 1134.53 units. Node 1, on the other side
consumed more energy and suffered longer latency, with efficiency falling to 2.49. Node 2
consumed the maximum energy and had the highest latency to process 160 data items with a
minimum efficiency of just around 2.06. These may vary due to processing power, network
bandwidth, and task allocation. Any improvements might contribute to increasing efficiency
and decreasing energy consumption levels in the fog network.

6.2 Evaluation 1: DCSANet-JCF Performance Metrics Plots
Figures 4, and 5 present four important parameters that were monitored in the simulation
episodes; energy consumption, latency, throughput, and resource utilization respectively. As
shown in the above graphs, these networks are good in the learning and optimization process
of the advanced learning fog network.

Likewise, the energy consumption was apparent to reduce as more episodes go by, which
means that fog networks have learned how to come up with better decisions with less energy
consumption. The system dynamically reconfigures in response to network conditions,
simultaneously on a per-flow basis and between Fog servers for optimal task placement,
minimizing the overall energy footprint. The model also shows a consistent decrease in energy
consumption over the entire training, which illustrates the efficient improvements from
DCSANet-JCF.

19

.
Figure 4: Energy Consumption and Latency Per Episode

Figure 5: Throughput and Resource Utilization Per Episode

The latency graph is downward sloping for the episodes, indicating how the learning system
improves itself in making decisions on task offloading, resource allocation, and data
processing. This effectively reduces the latency and allows for IoT applications to receive faster
response times hence improved user experiences. The figure 5 shows the throughput graph and
it display regular fluctuation in each episode, however as a consequence of behaviour reward
signal; overall there is an increasing tendency which is pointing toward that fog network
become better at data processing (i.e., more efficient). The changes reflect the unstable nature
of network conditions and differential data complexity.

Despite the fluctuations, trends are a general increase in throughput and resource usage on one
hand vs decrease in energy consumption and latency for intelligible learning fog network.
Therefore, the adoption of DCSANet-JCF framework allows system to be able to learn and
adapt after each time evolution based on which decision-making process is further optimized
in a way that leads towards the better performance metrics.

6.3 Evaluation 2: Decision Distribution Per Episode and Node Efficiency
Figure 5 presents a decision distribution chart in the advanced learning fog network where
nodes decide on local processing, transfer to another node and remain idle. The nodes learn to
adjust their behavior and infrastructure as the simulation progresses in order to balance energy
used, latency experienced, and throughput achievable. Node Efficiency Bar Chart gives a very
detailed view of the efficiency difference between different nodes. Lastly, insights can be used

20

to fine-tune learning algorithms and fog network architecture design for automatic task
allocation load balancing strategies on the fly.

6.4 AWS Evaluation
AWS cloud services such as Amazon SageMaker was also considered and provisions for the
possibility of transitioning to a different cloud environment was also provided for in order to
allow scalability. However, challenges of cross compatibility between the TensorFlow versions
used in Google Colab (TensorFlow 1.7.0) and Amazon SageMaker (TensorFlow 1.3.1) were
encountered during the actual implementation.

The primary problem was a version conflict, which complicated the process of applying the
trained models on SageMaker. When training the model in Google Colab with a latest
TensorFlow version, it was found that the newer version was not available in SageMaker along
with other necessary packages. Neither was it possible to downgrade TensorFlow in Colab or
change the permissions required for training a new model in SageMaker. The process was also
slow as it took over eight hours to train on Google Colab with a NVidia T4 GPU. However,
the proposed framework can be linked with AWS cloud services where it would be beneficial
as the use of AWS SageMaker for constructing, training, and deploying machine learning
models improves both scalability and accessibility of the DCSANet-JCF framework.

Figure 6: Decision Distribution and Node-Efficiency for fog nodes = 3

6.5 Discussion
The DCSANet model for data compression and reconstruction has been incorporated with the
JCF framework for intelligent collaboration between the fog nodes, thus providing an energy-
efficient data optimization for the edge/fog computing devices. The model was able to reduce
an average loss of 0. 0682 after 50 epochs of training, which is a sign of the network’s capability
to identify good data compression and reconstruction. The simulation of advanced learning fog
network with 3 nodes resulted to an energy consumption of 207.42KJ in total, total latency of
3622.86, average throughput of 0.53, and average resource utilization of 1.83. The findings
indicate that there were reductions in the energy usage by 44.28% and the latency by 67. 43%
while the resource utilization improved by 900. 00%.

7 Conclusion and Future Work

7.1 Realized Objectives and Contributions
In the present study, DCSANet along with a Deep Reinforcement Learning-based Joint
Computing Framework (JCF) is proposed to solve both the data reduction problem and the

21

resource utilization issue concurrently. This combination has not been covered enough in the
literature to devise optimal solutions for edge/fog networks. The JCF's decision-making
mechanism optimizes three crucial evaluation metrics concurrently: latency, energy efficiency
and throughput. This approach to enhancing multiple objectives simultaneously guarantees that
the firm develops a harmonized improvement, unlike current solutions, which address single
or dual metrics. This is done in the framework in a very efficient way to show the commitment
towards green computing practices by minimizing energy consumption at the edge/fog. The
data that needs to be transmitted through the DCSANet component is reduced to the barest
minimum and the resource usage by the JCF is optimised, which results in the system’s small
carbon footprint. The DRL-based JCF is presented, and it has adaptive learning, which enables
it to make precise decisions in edge/fog networks consisting of heterogeneity and non-
stationary characteristics. These imply that network conditions and data characteristics change
with time and that there is the need to perform optimally while adapting to these changes. It
should be noted that the proposed framework has scalability to address the growing amounts
of edge devices, as well as fog nodes. The performance of the DIV2K dataset in training and
testing further shows the applicability of the said framework in real-life implementation cases
especially with high image quality processing at the edge. All of these contributions together
effectively solve important emerging issues in edge/fog computing, and striking the right
balance between data minimization, power consumption, and computational capability.

The originality of the research work can be summarized in the following points:

 The unique integration of DCSANet and JCF has not been sufficiently explored in
existing literature in the context of edge/fog networks.

 The decision-making mechanism of JCF optimizes three crucial evaluation metrics, i.e.,
latency, energy efficiency, throughput, thus making an informed decision on the
transfer of the compressed data to the appropriate nodes.

 This research has a significant commitment to green computing practices whose
primary goal is to reduce the carbon footprint to reduce their ecological impact. It
achieves that by presenting a framework that can be deployed across edge nodes over
the fog network that is capable of improving energy efficiency significantly as
demonstrated by the research findings.

7.2 Conclusion
The combined use of DCSANet and JCF also includes data processing for edge/fog computing
devices with limited resources as both techniques are established to work towards minimizing
cost in their own ways. In the framework, it was demonstrated that by using the proposed
approach, energy consumption can be reduced, latency minimized, and resource utilization
enhanced. Based on the results, the constructed model managed to receive an average loss of
0. 0682 with 50 epoch training in the DIV2K dataset for data compression as well as
reconstruction. In this work, the JCF was employed to make intelligent decisions towards
computation offloading, resource allocation, and data processing across the fog nodes.
Extensive Simulations suggest that in regard to energy consumption, latency, and resource
usage for the JCF-based integration of DCSANet, gains are found to be specifically in relation
to 44. 28% improvement, 67. 43 % as well as an enhanced up to 900 %, respectively. However,
there was an incompatibility issue with TensorFlow versions between Google Colab and
Amazon SageMaker which prevented trained models from being deployed. Further
development could be performed on this research by testing on other cloud environments,
implementing the models used in docker containers as well as consulting with AWS support to
find a resolution to the compatibility problems.

22

References

Albreem, M.A., Sheikh, A.M., Alsharif, M.H., Jusoh, M. and Yasin, M.N.M., 2021. Green
Internet of Things (GIoT): Applications, practices, awareness, and challenges. IEEE Access, 9,
pp.38833-38858.

Amarlingam, M., Mishra, P.K., Rajalakshmi, P., Giluka, M.K. and Tamma, B.R., 2018,
February. Energy efficient wireless sensor networks utilizing adaptive dictionary in
compressed sensing. In 2018 IEEE 4th World Forum on Internet of Things (WF-IoT) (pp. 383-
388). IEEE.

Azar, J., Makhoul, A., Barhamgi, M. and Couturier, R., 2019. An energy efficient IoT data
compression approach for edge machine learning. Future Generation Computer Systems, 96,
pp.168-175.

Bai, W., Ma, Z., Han, Y., Wu, M., Zhao, Z., Li, M. and Wang, C., 2021. Joint optimization of
computation offloading, data compression, energy harvesting, and application scenarios in fog
computing. IEEE Access, 9, pp.45462-45473.

Chen, S., Chen, J., Miao, Y., Wang, Q. and Zhao, C., 2022. Deep reinforcement learning-based
cloud-edge collaborative mobile computation offloading in industrial networks. IEEE
Transactions on Signal and Information Processing over Networks, 8, pp.364-375.

Firouzi, F., Farahani, B. and Marinšek, A., 2022. The convergence and interplay of edge, fog,
and cloud in the AI-driven Internet of Things (IoT). Information Systems, 107, p.101840.

Gougeon, A., Camus, B. and Orgerie, A.C., 2020, September. Optimizing green energy
consumption of fog computing architectures. In 2020 IEEE 32nd International Symposium on
Computer Architecture and High-Performance Computing (SBAC-PAD) (pp. 75-82). IEEE.

Hua, W., Liu, P. and Huang, L., 2023. Energy-efficient resource allocation for heterogeneous
edge-cloud computing. IEEE Internet of Things Journal.

Huang, J., Wan, J., Lv, B., Ye, Q. and Chen, Y., 2023. Joint computation offloading and
resource allocation for edge-cloud collaboration in internet of vehicles via deep reinforcement
learning. IEEE Systems Journal.

Idrees, A.K., Idrees, S.K., Couturier, R. and Ali-Yahiya, T., 2022. An edge-fog computing-
enabled lossless EEG data compression with epileptic seizure detection in IoMT
networks. IEEE Internet of Things Journal, 9(15), pp.13327-13337.

Khan, I., Tao, X., Rahman, G.S., Rehman, W.U. and Salam, T., 2020. Advanced energy-
efficient computation offloading using deep reinforcement learning in MTC edge
computing. Ieee access, 8, pp.82867-82875.
Noura, H.N., Azar, J., Salman, O., Couturier, R. and Mazouzi, K., 2023. A deep learning
scheme for efficient multimedia IoT data compression. Ad Hoc Networks, 138, p.102998.

Pereira, F., Correia, R., Pinho, P., Lopes, S.I. and Carvalho, N.B., 2020. Challenges in resource-
constrained IoT devices: Energy and communication as critical success factors for future IoT
deployment. Sensors, 20(22), p.6420.

23

Pervez, F., Sultana, A., Yang, C. and Zhao, L., 2023. Energy and latency efficient joint
communication and computation optimization in a multi-uav assisted mec network. IEEE
Transactions on Wireless Communications.

Ren, J., Yu, G., Cai, Y. and He, Y., 2018. Latency optimization for resource allocation in
mobile-edge computation offloading. IEEE Transactions on Wireless Communications, 17(8),
pp.5506-5519.

Shao, J. and Zhang, J., 2020, June. Bottlenet++: An end-to-end approach for feature
compression in device-edge co-inference systems. In 2020 IEEE International Conference on
Communications Workshops (ICC Workshops) (pp. 1-6). IEEE.

Tan, L., Kuang, Z., Gao, J. and Zhao, L., 2022. Energy-efficient collaborative multi-access
edge computing via deep reinforcement learning. IEEE Transactions on Industrial Informatics.

Trinh, H., Calyam, P., Chemodanov, D., Yao, S., Lei, Q., Gao, F. and Palaniappan, K., 2018.
Energy-aware mobile edge computing and routing for low-latency visual data
processing. IEEE Transactions on Multimedia, 20(10), pp.2562-2577.

Wei, Z., Li, B., Zhang, R., Cheng, X. and Yang, L., 2023. Many-to-many task offloading in
vehicular fog computing: A multi-agent deep reinforcement learning approach. IEEE
Transactions on Mobile Computing.

Wu, H., Li, X. and Deng, Y., 2020. Deep learning-driven wireless communication for edge-
cloud computing: opportunities and challenges. Journal of Cloud Computing, 9(1), p.21.

Yang, B., Fagbohungbe, O., Cao, X., Yuen, C., Qian, L., Niyato, D. and Zhang, Y., 2021. A
joint energy and latency framework for transfer learning over 5G industrial edge
networks. IEEE Transactions on Industrial Informatics, 18(1), pp.531-541.

Yao, S., Li, J., Liu, D., Wang, T., Liu, S., Shao, H. and Abdelzaher, T., 2020, November. Deep
compressive offloading: Speeding up neural network inference by trading edge computation
for network latency. In Proceedings of the 18th conference on embedded networked sensor
systems (pp. 476-488).

Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong, J. and
Jue, J.P., 2019. All one needs to know about fog computing and related edge computing
paradigms: A complete survey. Journal of Systems Architecture, 98, pp.289-330.

Zhang, M., Zhang, H., Yuan, D. and Zhang, M., 2019, December. Compressive sensing and
autoencoder based compressed data aggregation for green IoT networks. In 2019 IEEE Global
Communications Conference (GLOBECOM) (pp. 1-6). IEEE.

