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Abstract 
The presence of fog and edge computing devices everywhere have led to the 

generation of high volumes of data across their nodes resulting in great difficulties while 
handling and processing such massive volumes of data due to limited computing power at 
the edge or fog devices. This demands the case for an optimized model for devices in 
edge/fog computing environments that can achieve optimal data compression and efficient 
data transfer across the edge/fog nodes by following green cloud computing practices. The 
proposed method integrates deep compression sensing autoencoder network (DCSANet) 
for data reduction and accurate reconstruction with deep reinforcement learning (DRL) 
based joint computing framework (JCF) for intelligent collaboration among fog nodes 
sharing resources. DCSANet aims at learning how to generate smaller representations of 
information through dimensionality reduction thereby generating compressed data without 
sacrificing too much on reconstruction accuracy during the recovery process at the 
receiving nodes, while still ensuring data fidelity in reproduction. JCF enables smart 
cooperation between fog nodes to determine best decisions regarding computation 
offloading along with energy-efficient processing and handling of shared resources for 
data processing at the fog nodes. The effectiveness of the proposed DRL-based JCF and 
DCSANet approach will be analyzed by its ability to improve energy efficiency, reduce 
transmission latencies as well as improve reconstruction accuracy using real-world IoT 
datasets, thereby showcasing its potential towards providing optimal solutions for efficient 
data aggregation within resource limited-edge devices while cutting down computational 
complexities and network bandwidth requirements for a sustainable fog/edge computing 
environment.  

Keywords— compressed sensing, deep learning, edge/fog computing, energy 

 efficiency, data aggregation, computation offloading 
 

1 Introduction 

1.1 Motivation and Problem Background 
Internet of things (IoT) has seen a fast growth recently resulting in an exponential rise in data 
being created at the network edge (Albreem et al.; 2021). The conventional cloud architectures 
fail to cope with this huge amount of information due to their latency issues, limited bandwidth 
and security insufficiencies, among others. This has led to the popularity of fog and edge 
computing as they can solve these problems by bringing computation and storage resources 
nearer to the data source, thus reducing both latency and bandwidth usage at the same time 
(Yousefpour et al.; 2019). However, energy efficiency becomes a big challenge due to 
resource-constrained environment found at edges or fogs, which can also impact the 
management of data (Pereira et al.; 2020). 
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Various methods such as dimensionality reduction or compression are used to reduce the load 
on devices located on edges/fogs, but it still does not resolve the issue of information being lost 
on the compressed versions of original datasets. Compressed sensing (CS) is one technique 
used widely today when it comes to reducing amounts of information being transmitted through 
networks, while Deep Learning (DL) can help improve CS performance by training optimal 
sensing matrices and reconstruction algorithms (Wu et al.; 2020). Both these techniques 
combined together have produced satisfactory results especially in areas like wireless 
communication, image processing or IoT data compression. It should be noted, however that 
even though much progress has been made regarding data size reduction, energy efficiency 
remains very low for fog devices since they require high power for their operations affecting 
not only operational costs, but also the environmental conservation efforts necessitating the use 
of greener technologies within this domain (Gougeon et al.; 2020). 
 
Besides compressing data, computation offloading (Khan et al.; 2020) has shown potential in 
enhancing energy saving capabilities together with overall performance levels demonstrated 
by IoT systems. The main idea behind this strategy is to move computationally intensive tasks 
from mobile devices onto more powerful servers located either at edges or in cloud servers, 
enabling such devices save power as well as reducing delays experienced during processing. 
However, knowing when exactly to offload computations can be tricky owing to such factors 
as network state, device capability or application requirement, thus making it difficult to obtain 
optimal solutions without using machine learning (ML) approaches like reinforcement learning 
(RL) which do not need accurate models about systems involved to make good decisions on 
offloading computations. 
 
This research attempts to address the issue of high energy consumption in the operation of 
fog/edge devices using data compression and reconstruction, data aggregation and an 
intelligent mechanism to communicate across the fog/edge nodes, offload computations among 
them for optimal data handling and increase the energy efficiency as a result (Firouzi et al.; 
2022). 

1.2 Problem Statement 
The first challenge focused on this research is high energy and limited computational capacity 
of edge and fog devices when processing a growing amount of data collected by IoT sensors. 
The implementation of resource-limited devices requires the design of a lightweight framework 
that can deliver considerable data compression, edge computation outsourcing, and 
collaborative learning, while following green IT principles (Chen et al.; 2022). The key 
challenges include minimizing size of data that is transferred between the edge and fog layers 
while preserving the quality of the reconstructed information, how data can be aggregated at 
the nodes in order to avoid relaying redundant data, how and where computation should be 
offloaded using MARL optimized for the network’s conditions, the capabilities of devices, and 
the requirements of the application. 

1.3 Research Question 
How can an optimized strategy be designed for IoT devices in edge/fog computing networks 
that achieves substantial data reduction, and efficient computation offloading while improving 
energy efficiency by adhering to green computing practices? 
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1.4 Research Solution 
The proposed solution answers this question in two distinct ways. Firstly, a DL-based 
compression sensing (CS) technique for dimensionality reduction and precise reconstruction 
of the high-dimensional data generated across the fog nodes is suggested. The model learns the 
latent representations of the high-dimensional data to achieve data reduction without 
compromising on the crucial information that may be required in the data reconstruction. This 
can also be used to enable data aggregation by combining fragments of edge data across the 
nodes before transmitting it to the cloud server. Secondly, to achieve higher energy efficiencies 
by making optimal decisions on data processing, computation offloading and resource 
allocation while sharing the aggregated data across the nodes or the cloud a DRL-based 
framework is proposed. This research also strives to fulfil the green cloud computing practices 
to reduce the adverse environmental impacts by designing a system that performs optimally 
with lesser energy consumption and lower the carbon footprint. 

1.5 Research Objective 
The primary aim of this research is to produce an energy-efficient optimization architecture for 
optimal data compression, information aggregation, and intelligent collaborative network in 
terms of computation offloading and efficient data handling platform as a service on resource-
constrained edge and fog computing devices considering IoT networks. 

1.6 Research Contributions 
The key contributions of this research were as follows: 

• The design and implementation of a deep compression sensing autoencoder network 
(DCSANet) based on autoencoders, aiming to guarantee the minimal data reduction 
while ensuring accurate data reconstruction. 

• To a develop a DRL powered JCF for edge nodes enabling offloading of computations, 
data handling and processing efficient to work together in an intelligent manner. 

• Measure and compare the performance results of proposed framework in terms to 
reconstruction accuracy, energy consumption, energy efficiency, throughput as well 
transmission latency across the edge nodes. 

• Map the proposed framework to green cloud computing needs for reducing carbon 
footprint and adopting sustainable mean in the edge/fog environments. 

1.7 Limitations and Scope 
The scope of this research is to create an efficient system for reducing data and saving energy 
when transmission in edge and fog computing. This framework is designed to work with IoT 
devices that have limited resources and should reduce both power consumption and 
computational workload that come with processing massive amounts of information. This 
research contains certain limitations like: 

• The integration of the proposed framework with existing IoT protocols and standards 
may require additional adaptations and optimizations. 

• This study does not explicitly deal with security/privacy issues regarding data 
storing/transmitting within an edge-based or fog computing setting thus further steps 
should be taken in securing such information. 
 

The deep compression sensing autoencoder network (DCSANet) and DRL based joint 
computing framework (JCF) are proposed in order to achieve significant amounts of data 
reduction, energy-efficient aggregation as well as intelligent collaboration for computation 
offloading among edge nodes. In line with green cloud computing practices, this research 
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contributes towards sustainable development in terms of environmental friendliness within the 
context of fog computing at edges. The performance evaluation which uses real IoT datasets 
strives to demonstrate that this framework is capable of achieving better reconstruction 
accuracy, reduce transmission delays and be more energy efficient. 
 
Following is the analysis of the report, and it is divided into major sections. Section 2 contains 
related work that discusses previous works on data compression and energy-efficient 
processing on edge and fog networks and presents the gaps that this research will solve. The 
section 3 'Research Methodology' explains the method applied together with the selection of 
datasets, data pre-processing procedure, and integration of DCSANet and JCF models. In 
Sections 4 and 5, the design specifications and implementation sections are presented where 
details of development of these models are specified. Section 6 is the evaluation of results 
which includes the analysis of the simulation results about the examined performance metrics 
and the integration of DCSANet with JCF. Section 7 elaborates the Conclusion and Future 
Work where recommendations were given regarding further investigations and development. 
 

2 Related Work 

2.1 Data Compression in Edge Networks 
A study by Amarlingam et al. (2018) introduced a data aggregation technique that is energy 
efficient for wireless sensor networks. The method utilizes an adaptive dictionary in 
compressed sensing. The solution being presented applies an overcomplete dictionary that has 
been acquired through training data to effectively manage fluctuations in data sparsity as time 
progresses. The simulation results demonstrate that the suggested method provides significant 
energy savings and improves the lifespan of the network when compared to existing 
compressed sensing systems that utilize fixed sparse bases such as DCT, DFT, and DWT. In 
(Azar et al., 2019), an additional energy-efficient IoT data compression technique for edge 
machine learning applications was presented. The SZ compressor, which is a high-speed 
compressor with error control capabilities, is specifically designed for IoT devices. Its purpose 
is to minimize the volume of data that needs to be transported from the edge (where the devices 
are located) to the cloud. This study examines the effect of lossy compression on the precision 
of a machine learning model used for detecting driver stress, which is deployed at the edge. 
Results demonstrate a significant data reduction of up to 103 times without compromising the 
accuracy of stress detection. 
 
In their study, (Shao and Zhang. 2020) proposed the utilization of BottleNet++, which is a very 
efficient feature compression. It is specifically aimed for collaborative inference systems of 
device-edge and is incorporated into deep learning framework. The architecture of the 
BottleNet++ comprises an encoder block, a channel that is non-tunable, and a decoder so that 
the use of the system is end-to-end joint source-channel. BottleNet++ is able to compress as 
much as 256 times while utilizing efficiency from the sparsity and tolerance to failure of the 
intermediate DNN features. All this is attained even when gaining data through binary erasure 
channel, with a probability loss of less than 2%. This makes it possible to split DNN at early 
stages and thereby reduce on-device calculations by as much as three times when compared to 
other methods. For edge-fog computing-based IoMT networks, the authors of (Idrees et al., 
2022) presented the KCHE lossless EEG data compression technique. KCHE utilizes spatial 
similarity in EEG data to compress it at the edge prior to transmission to the fog layer. At the 
fog layer, a machine learning technique utilizing Naive Bayes is employed to identify epileptic 
episodes from the reconstructed EEG data. The results indicate that KCHE achieves a 
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compression rate of 85-89% and minimizes energy usage at the edge node when compared to 
not using compression. Additionally, it enables precise seizure identification at the fog layer. 

 
Table – 1: An analysis of relevant research works presented with their objectives, methodology, 

dataset used, tools and metrics. 
No. Author(s) 

and Year 
Research Objective Methodology Dataset & Tools Metrics 

1 Zhang et al. 
(2019) 

Propose DL-based stacked 
sparse denoising 
autoencoder compressed 
sensing (SSDAE_CS) 
model for signal 
reconstruction from 
compressed sensing. 

SSDAE_CS with encoder 
and decoder sub-networks, 
multiple nonlinear 
measurements, end-to-end 
training. 

Simulation datasets 
 
MATLAB, 
Tensor 

Training Loss, 
PSNR, 
MSE 

2 Toor et al. 
(2019) 

Address high-energy 
consumption in IoT-EoT 
Devices. 

Dynamically scaling the 
processor frequency of 
EoT devices  

Simulation datasets 
 
iFogSim 

Energy 
Consumption, 
Network Usage, 
Execution Time 
and Loop Delays 

3 Li et al. 
(2019) 

Propose an energy-efficient 
data collection scheme for 
large-scale IoT using 
computation offloading and 
compressed sensing. 

Clustering Compressive 
Data Collection (CCDC) 
framework 

Real-world sensor 
datasets 
 
MATLAB 
iFogSim 

Normalized MAE 
(NMAE), 
Average Energy 
Consumption, and 
Total Data 
Transferred 

4 Zhang et al. 
(2019) 

Develop a two-stage 
compressed data 
aggregation scheme using 
CS and sparse Autoencoder 
(SAE) for green IoT 
networks 

Two-stage compressed 
data aggregation scheme 
using CS and Sparse 
Autoencoder (SAE) 

Synthetic dataset, 
MNIST dataset 
Simulation Tools 

MSE, CR, 
Reconstruction 
Accuracy, 
Training loss and 
Energy 
Consumption 

5 Zhang et al. 
(2021) 

Propose a learning-based 
sparse data reconstruction 
scheme for compressed 
data aggregation in IoT 
networks. 

Deep Compressed Sensing 
Network (DCSNet)  

Real-sensor dataset. 
 
MATLAB, 
PyTorch 

PSNR, MSE, 
Structural 
Similarity Index 
(SSI)  

6 Bai et al. 
(2021) 

Propose a joint 
optimization algorithm for 
computation offloading, 
data compression, energy 
harvesting, and application 
scenarios (JCDEA) in fog 
computing 

JCDEA Framework  Synthetic data 
 
Simulation Tools 

Energy 
consumption; data 
compression ratio; 
compression and 
decompression 
CPU metrics 

7 Yang et al. 
(2021) 

Develop a transfer 
learning-enabled edge-
CNN framework for 5G 
industrial edge networks 
focusing on energy 
efficiency and latency 
reduction 

Implementation of a TL-
enabled edge-CNN 
framework using 
mathematical modeling 

ImageNet dataset 
and Others 
 
Simulation Tools, 
Keras, TensorFlow 

CR, energy 
consumption, 
uploading 
decision and 
bandwidth 
allocation 
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8 Alotaibi et 
al.  (2022) 

Propose an efficient IoT 
system for collecting, 
compressing, transmitting, 
and reconstructing sky 
images with minimal 
bandwidth usage. 

Convolutional 
Autoencoder (CAE) 

Sky images dataset 
 
Raspberry Pi, 
Python, 
Keras 

MSE, SSI, CR 

9 Chen et al. 
(2022) 

Propose DRL-based cloud-
edge collaborative mobile 
computation offloading 
(DRL-CCMCO) 
mechanism to minimize 
execution delay and energy 
consumption in industrial 
networks. 

DRL-CCMCO framework      Simulation datasets 
involving mobile 
industrial 
applications. 
 
Python, 
TensorFlow 

Energy 
consumption, task 
completion cost, 
and resource 
allocation 
efficiency  

10 Noura et al.  
(2023) 

Propose a DL-based super-
resolution model for 
recovering high-quality 
decompressed images in 
multimedia IoT (MIoT) 
networks 

Lossy Image Compression, 
DL-based Image 
Enhancement 

The Kodak dataset 
(24 images) 
 
PyTorch 

PSNR, CR, SSI 
and energy 
consumption 

11 Tan et al. 
(2023) 

Minimize total energy 
consumption in multi-
access edge computing 
(MEC) systems while 
satisfying a delay constraint 

DRL-based bilevel 
optimization (Dueling-
DQN, Double-DQN) 

Simulation data 
with scenarios 
involving mobile 
users, MEC servers, 
and a cloud server. 
 
Simulation Tools 

Energy 
consumption, 
discount factor, 
subcarrier and 
power allocation 

12 Wei et al. 
(2023) 

Propose MA-GAC for 
many-to-many task 
offloading in vehicular fog 
computing 

Multi-Agent Gated actor 
Attention Critic (MA-
GAC) within partially 
observable Markov 
decision process (POMDP) 

Simulation data 
involving vehicular 
fog computing 
scenarios. 
 
Simulation Tools 

Energy 
consumption, 
service latency, 
task completion 
ratio and 
offloading 
decision 

 

2.2 Energy Efficient Processing and Latency Reduction in Edge/Fog IoT 
A mobile edge-cloud collaborative computing technique for power consumption minimisation 
throughout in mobile devices was discussed by (Hua et al.; 2023) with the help of mobility 
prediction. It is cast as an MIP problem because it entails the power control, transmission 
scheduling, and offloading strategies all at the same time. Moreover, another heuristic 
algorithm called mobility-aware heuristic (MAH) with a low computational cost is also 
presented. The results demonstrate that the proposed scheme will be more effective in reducing 
MD energy usage as compared to various schemes with mobility consideration. To achieve this 
objective, the study undertaken by (Huang et al.; 2023) targeted at an adaptive computation 
offloading and resource allocation in the dynamic Internet of Vehicles (IoV) environment with 
integration of edge and cloud computing. The objective is to decrease the total cost of 
processing urgent and complex jobs, which must be accomplished in a short amount of time 
and within limitations imposed by the transmission rate. A DRL-based CORA algorithm is 
proposed to obtain the best strategy in response to the dynamic variations in the network 
environment. The simulation experiments show that compared with other non-DRL algorithms 
and other DRL algorithms, the CORA algorithm has better performance in terms of training 
convergence, processing time, and processing cost. 
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The authors in (Ren et al.; 2018) studied the issue of latency minimization in a MECO system 
but in multi-user scenario focusing on communication and computation resource management. 
The authors examine three distinct computational models: local compaction, edge cloud 
compaction and partial compaction offloading. Optimal resource allocation and minimum 
system delay equations are developed for both local cloud and edge cloud compression models. 
The numerical results show that the proposed idea of partial compression offloading has a 
significant effect on eradicating latency from start to finish. Namely, the study by (Trinh et al. 
2018) aimed to assess thorough the application of MEC for the processing of real-time visual 
data during disasters. A cost model for offloading decision considers the merits of different 
computing policies, particularly whether to offload to edge or core cloud, based on a number 
of workloads and clients. The SPIDER algorithm which is policy and intelligence-based along 
the sustainable policies with edge routing uses machine learning for improving the spatial 
routing and the incorporation of adaptive rules. The benefits of maintaining an energy economy 
while simultaneously achieving low latency are exemplified in the experiment on a testbed 
setup and performance simulations of reconstructed disaster scenarios. 
 
For instance, deep compressive offloading was presented as a new offloading framework in a 
recent study by (Yao et al.; 2020). This framework is realizing a combination of compressive 
sensing theory and deep learning to reduce the overall offloading data transmitted. Encoder is 
a much lighter program, which compresses the data on the side of the local device, and decoder 
does the same on the side of the edge server. As a result, one receives perfect reconstruction 
and lossless inference with theoretical performance assurance. Assessments indicate that there 
is 2-4 times decrease in the overall time it takes for a task to be completed, while maintaining 
an accuracy loss of less than 1%, as compared to the most advanced methods for transferring 
work to another location. During periods of restricted bandwidth or heavy traffic, latency is 
decreased by a factor of up to thirty-five. A system was presented that combines unmanned 
aerial vehicles (UAVs) and MEC to offer MEC services to ground users in (Pervez et al.; 2023). 
The system involves numerous UAVs and a base station. The goal is to minimize a weighted 
combination of energy consumption and latency by simultaneously optimizing decisions about 
work offloading, transmission power, UAV trajectories, and CPU frequency allocation. The 
authors suggest using an alternating iterative strategy, specifically the block descent method, 
to tackle this non-convex issue. The simulation results clearly illustrate the superior 
performance of the proposed algorithm in comparison to benchmark systems. 
 
From the analysis of the available literature, models and the realized objectives, the research 
gap was highlighted with the suggestions of an innovative approach, (DCSANet + DRL-based 
JCF) to optimize the transfer of data and many data reductions from edge/fog computing to 
enhance energy performance. The techniques that are proposed in the model include DCSANet 
for data reduction and accurate reconstruction with high efficiency and DRL-based JCF for fog 
node intelligence. This goal will help in minimizing energy consumption and transmission time 
while at the same time enhancing the quality of reconstructed IoT dataset. The integration 
between DCSANet and DRL-based JCF may be costly in terms of computational requirements 
and thus requires AWS like cloud service rather than spent on a local development server. 
However, it is also necessary to note that to learn about cloud providers’ services, which can 
be used for studying, it may take a lot of time and domain knowledge. 
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Table – 2: An analysis of relevant research works presented in literature in terms of their 
key findings, strengths, weaknesses and limitations. 
 

No. Author(s) 
and Year 

Key Findings Strengths Weaknesses Gaps 

1 Zhang et 
al. (2019) 

Improved CS performance 
by jointly training encoder-
decoder sub-network 
parameters 

Improved 
reconstruction 
accuracy, lower time 
cost, strong denoising 
ability 

High training time 
and data 
requirement 

Needs more 
efficient training 
approaches to 
reduce time and 
data requirements 

2 Toor et al. 
(2019) 

Better energy conservation 
by dynamically scaling the 
processor frequency of EoT 
devices based on traffic 
loads 

Energy efficiency, 
maintains counters to 
avoid frequent speed 
changes, extensive 
simulations for 
validation. 

High computational 
complexity for real-
time 
implementation  

Requires real-world 
validation, need for 
optimization for 
diverse IoT 
applications. 

3 Li et al. 
(2019) 

Reduced data volume while 
maintaining high 
reconstruction accuracy, 
demonstrated high energy 
efficiency 

Efficient data reduction, 
prolonged network life, 
improved accuracy in 
data collection 

High computational 
complexity for real-
time 
implementation 

Needs real-world 
validation, Lacks 
diverse IoT 
applications 
optimization 

4 Zhang et 
al. (2019) 

DCSNet offers effective data 
compression and 
reconstruction in large-scale 
IoT networks 

Reduced data traffic, 
Improved 
reconstruction 
accuracy, Low 
compression ratios 

Limited to 
simulation data, 
complexity in real-
world 
implementation 

Real-world 
validation needed, 
diverse IoT 
network conditions 

5 Zhang et 
al. (2021) 

Achieved high 
reconstruction accuracy with 
lower data transmission 
requirements, effective data 
volume reduction while 
maintaining high 
reconstruction fidelity 

High reconstruction 
accuracy, data 
compression, lower 
transmission delay, and 
energy savings. 

High computational 
complexity for 
training, 
dependence on the 
availability of large 
datasets for 
training. 

More practical 
implementations, 
real-world 
validation, and IoT 
scenario 
optimizations are 
needed.  

6 Bai et al. 
(2021) 

Fog computing cost lower 
than cloud computing, Cost 
increases linearly with 
offloaded data, users, 
devices, and compression 
ratio  

Comprehensive multi-
objective optimization 
approach, extensive 
simulation setup with 
varying parameters 

High computational 
overhead, 
sophisticated 
scalability and 
modularity in large-
scale fog 
computing 
environments 

Lacks 
consideration of 
real-world 
constraints such as 
network variability 
and hardware 
limitations 

7 Yang et al. 
(2021) 

Eighty-five percent 
prediction accuracy with 
compression ratio of 32, 
reduced training and testing 
overhead 

Privacy-preserving, 
efficient energy use, 
reduced latency 

Limited to 
simulation data, 
complexity in real-
world 
implementation 

Need for real-world 
validation, diverse 
industrial scenarios 

8 Alotaibi et 
al.  (2022) 

Compressed images to 2% 
of their original size, 
maintained high 
reconstruction fidelity with 
an average SSIM of 99% 

High compression ratio, 
high reconstruction 
quality, practical 
implementation on low-
cost IoT device 
(Raspberry Pi). 

Computationally 
intensive training 
process, 
dependence on 
large datasets for 
training. 

Need for real-world 
validation, diverse 
industrial scenarios, 
and IoT scenario 
optimizations.   
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9 Chen et al. 
(2022) 

Optimized resource 
allocation, handled task 
relevance and user mobility 
effectively. 

Faster convergence, 
high stability, smaller 
execution delay and 
low energy 
consumption. 

High computational 
complexity, 
reliance on 
simulation 
environment for 
validation. 

Needs real-world 
validation, 
optimization for 
various industrial 
applications. 

10 Noura et 
al.  (2023) 

Improved visual quality, 
Reduced latency and energy 
consumption by 10% 

Enhanced image 
quality, flexible 
application 

Limited to specific 
datasets and 
techniques, 
computationally 
intensive 

Real-world 
validation, 
exploration of other 
DL models 

11 Tan et al. 
(2023) 

Near-optimal energy 
efficiency and task 
completion rate, DBA 
outperforms other DRL-
based approaches 

High performance in 
energy efficiency and 
task completion 

Limited to 
simulation 
scenarios, 
complexity in 
implementation 

Real-world 
validation needed, 
exploration of 
diverse settings 

12 Wei et al. 
(2023) 

Higher long-term rewards, 
coordinated task offloading 
improves computational 
resource utilization 

Effective coordination 
among multiple agents, 
robust performance in 
dynamic environments 

Limited to 
simulation 
scenarios, 
computational 
complexity 

Real-world 
validation needed, 
exploration of 
different topologies 

 

2.3 Critical Analysis 
The literature assessment presented in Table-1 compares different models and strategies for energy-
efficient data optimization in the resource-constrained environment of fog computing, revealing 
their goals, major claims, and limitations between these models. This study examines various 
models and techniques such as deep learning (DL)-based compression, transfer learning (TL) for 
edge CNN, deep reinforcement learning (DRL) for task offloading and resource allocation as well 
as joint optimization of computation offloading, data compression, energy harvesting, and 
application scenarios. 
 
These approaches aimed at reducing transmission latency while maintaining high-quality data 
reconstruction, but they required GPU resources at application server level, analyzed video 
compression effectiveness in a limited scale, and required scalability validation in large IOT 
networks to a larger extent. This research tries to combine the concept of data compression and 
reinforcement learning for efficient data transmission across edge nodes from (Zhang et al.;2019). 
The DCSANet architecture builds on this study, which investigated compressive sensing and 
autoencoder-based methods for compressed data aggregation in green IoT networks. Their major 
contributions include efficient data compression and reconstruction with reduced data traffic, 
improved reconstruction accuracy, and low compression ratios This design is mandatory for 
performing optimized data reduction and accurate reconstruction within the edge/fog computing 
domain. Nonetheless, Zhang et al.’s work had some drawbacks. The current research extends this 
in two ways, by incorporating DCSANet into a DRL-based JCF model and by conducting 
evaluation on real datasets.  
 
Although there are some limitations in the discussed literature, requiring further examination. 
For example, the review suggests it is a challenge to implement DL models on low-powered 
equipment and recommends testing them under dramatically changing network conditions with 
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varying task requirements. Recommendations for testing these models on real-life high-quality 
image datasets and comparing these to similar frameworks that this study aims to address. 
Furthermore, an exhaustive literature review was undertaken to analyze different techniques 
and models associated with the energy efficient operation in the edge and fog computing 
system. This review also highlights the gaps and limitations that exist in the current research, 
which led to the formulation of the proposed model. The integrated model also applies 
DCSANet for data dimensionality reduction while the intelligent cooperation mechanism (JCF) 
for cooperation between fog nodes. 
 

3 Research Methodology 
The research methodology also seeks to meet the research question formulated under Section 
1.3 of this dissertation by designing the best strategy regarding the use of edge and fog 
computing devices. This strategy involves compacting and reconstructing data produced/used 
in the different nodes and enhancing the efficient transfer of data to help in energy 
conservations as shown in Figure. 1. 

Figure 1: KDD Process Research Methodology 

3.1 Dataset Description 
To evaluate the proposed methods this study uses the DIV2K dataset1, a high-quality image 
dataset created for super-resolution tasks. It comprises one thousand 2K resolution images 
which will be pertinent for testing purposes of data reduction and image compression. This 
dataset is stable and dependable which enables us to train and test the models effectively.  
Ethical Considerations: The datasets applied in the present work, including the public 
benchmarking dataset or the DIV2K, are popular among researchers globally. It should be 
noticed that none of these datasets contains any identifiable resources or people’s information, 
thus meeting the ethical requirements and privacy standards and at the same time offering 
efficient solutions to numerous issues. 

3.2 Data Preprocessing 
The selected data are then subjected to the following preparation techniques in order to be 
enhanced for their use in DCSANet. This entails resizing images used in the DIV2K dataset to 
an appropriate dimension suitable for the autoencoder, normalizing various sensors to have 
homogeneity, and discretizing of various features that are categorical in nature. Further, the 
dependent variables including energy, latency, and other evaluative parameters are extracted 

 
 
1 https://data.vision.ee.ethz.ch/cvl/DIV2K/ 
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from the datasets to compare it with the JCF model. The preprocessing stage involves 
converting unprocessed data into a form that the DCSANet may suitably apply. This ensures 
that the latter data compression and computing framework is done accurately as well as 
effectively. 

3.3 Data Transformation 
During the transformation stage, DCSANet is employed to the benefits of data reduction by 
employing the compression sensing techniques. It reduces input data into a lower but 
intermediary representations through a Variational Autoencoder (VAE) which had shown that 
reducing dimensions simplified representations of substantial relevant data to be implemented 
(Zhang et al.; 2019). The VAE is learned to make the reconstruction loss small so that 
compressed data has the required qualities for the next step. This transformation is decisive for 
shrinking the size of the data which in turn decreases the bandwidth and storage space, hence 
a better and scalable system. 

3.4 Data Mining/Pattern Recognition 
The Joint Computing Framework (JCF), built on DRL, is utilized to acquire patterns and 
enhance resource allocation. It uses a Deep Q-Network (DQN) technique to train the DRL 
agent, which observes the present condition of the fog/edge environment, choosing actions 
based on its learned policy (Q-function), and adjusts its actions based on the rewards it receives. 
This method involves: 

 State Observation: The agent actively monitors the present situation of the network, 
including the availability of resources, network conditions, and energy consumption 
levels. 

 Action Selection: The agent decides on actions, such as adjusting data transfer rates, 
allocating resources, and offloading tasks, based on the observed state. 

 Reward Evaluation: The agent receives rewards based on how well it performs its 
actions, encouraging behaviours that reduce energy usage and delays while maximizing 
data processing efficiency.  

The agent regularly updates its policy to improve the decision-making as network conditions 
and data characteristics change. The JCF utilizes this intelligent decision-making process to 
maximize resource utilization in the fog/edge network, ensuring effective data processing and 
transmission. 

3.5 Evaluation 
The effectiveness of the proposed approach is evaluated through extensive simulations and 
real-world experiments that focus on several key areas: 

 Energy Consumption: This establishes the energy consumption of edge/fog nodes and 
compares it with the existing techniques for energy saving. 

 Latency: This may be defined as the time taken in transferring and interpreting data 
from one location to another location. In this case, tests are performed to demonstrate 
the difference between this latency and traditional IoT cloud models, focusing on the 
lower latency obtained. 

 Reconstruction Loss: This shows the amount of data compression that DCSANet is able 
to achieve while at the same time minimizing on the loss that occurs, therefore data 
quality is preserved. 

 Training Loss: This means that the model is learning during the training process with 
the smaller values of the Keras ‘loss’ parameter denoting better fit between predicted 
and actual targets. 
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In comparison of training performance of the model, PSNR, MSE and SSIM indices are utilized 
as model assessment criteria. PSNR is one of the reconstruction quality measures which 
compares reconstructed data to the original one. Therefore, the higher the value then the better 
is the quality of the reconstructed image. The degree of distortion between the original data 
and reconstructed data is evaluated with Mean Squared Error (MSE). SIM evaluates the 
similarity between the original and reconstructed images from the visual point of view and 
gives the rating that is more related to the quality. This implies that the higher the value then 
the better is the perceptual quality.  
 
The code is written in Python and the DCSANet and JCF models are developed using 
TensorFlow and PyTorch while other machine learning libraries used include NumPy, Pandas 
and scikit-learn. 

3.6 Knowledge 
The framework of edge/fog computing proposed in this work is designed to minimize the 
computational overhead and to maximize the reconstruction quality. It is intended to help to 
optimize energy consumption in data handling and transfer, minimize latency in edge and fog 
networks, manage the resources and implement cooperation between the fog nodes. This 
implementation is intended to develop energy efficient edge/fog computing systems for IoT 
applications with a view to solving the challenge of resource limitations. 
 

4 Design Specifications 

4.1 DCSANet Architecture 
The key task of the Deep Compression Sensing Autoencoder Network (DCSANet) as presented 
in Figure.2 is to achieve the best data compression and accurate data recovery in resource-
limited edge/fog computing environments. The system model consists of two parts: an encoder 
for dimensionality reduction and a decoder for data reconstruction. 

 
Figure 2: DCSANET Architecture 

 
DCSANet can take high-dimensional data and compress it into a smaller, dense latent space 
representation. By using convolutional layers, it extracts spatial features and reduces the input 
dimension. The latent representation passes through activation functions, such as ReLU, to add 
non-linearity and enhance sparsity. Pooling layers on the other hand helps to further reduce 
computation, they further down-sample the feature maps. To revert the compressed data back 
to its original form, the decoder uses transposed convolutional layers to up sample the data to 
a size of 32×33(width/height). Skip connections are implemented between corresponding 
encoder and decoder layers to ensure that valuable information is preserved, leading to better 
reconstruction quality. 
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During the training process, DCSANet undergoes end-to-end learning with various 
regularization techniques alongside reconstruction loss functions like Structural Similarity 
Index (SSIM) and Mean Squared Error (MSE). Regularization methods, such as L1 and L2, 
help maintain sparsity and prevent overfitting (Zhang et al., 2019). 
 
Throughout training, DCSANet learns to create compressed representations that allow for 
nearly accurate reconstruction of the received signals without needing all the original 
information. This compressed data is then transmitted over the network, reducing the need for 
bandwidth and minimizing latency. At the receiving end, the decoder reconstructs the original 
data from the compressed representation. 
 
Being lightweight and computationally efficient, the DCSANet architecture is designed to run 
on edge/fog devices that have limited resources. It can achieve this by utilizing the properties 
of convolutional layers which allow for efficient extraction of features as well as 
dimensionality reduction, while the autoencoder structure supports seamless learning of both 
compression and reconstruction processes. 
 
The proposed framework with its decentralized approach can distribute decision-making 
among the various fog nodes, thus making the system scalable to handle larger workloads as 
more nodes are incorporated. DCSANet’ s compression at the edge has the effect of decreasing 
bandwidth usage, which also means that the system is capable of handling more edge/fog nodes 
without congesting the system.  

4.2 JCF Architecture 
Every single DRL agent perceives the current condition of network which includes resource 
availability, network status as well as energy consumption level. In light of this perceived state, 
an agent will choose actions like modifying data transfer rates, allocating resources or 
offloading tasks to other fog nodes or cloud server depending on what it observes. These 
actions are selected according to learned policy represented by DQN model, whereby rewards 
received by such DRLs are based on their performance in terms of energy efficiency, and 
latency reduction during the processing stage. Rewards act as a guide during learning process, 
thereby encouraging them to take actions that minimize energy consumed while also 
minimizing latency caused through maximum use of resources available at hand. In response 
to received rewards, agents continue updating policies so as fit better into new conditions 
brought about by varying network conditions (Yang et al., 2021). 
 
The JCF architecture adopts centralized training method where global policies are trained for 
DRL agents. Training set is composed of historical states recorded from various fog nodes, 
while actions taken within those periods and rewards achieved at execution time at specific 
nodes in the edge/fog network are considered. Centralized training enables knowledge sharing 
between different nodes which promotes coordination among them in terms sharing resources 
as well offloading tasks optimally. 
 
During deployment, trained DRLs become distributed over various locations, where real time 
decision making takes place using learned policies as guidelines for deciding what needs to be 
done, when and how things should happen at every point in time. These communicate among 
themselves so as maintain worldwide views of network state around them while making 
rational choices. What JCF does best is, it enhances the use of computing resources efficiently, 
reduces energy consumption and minimizes delays in edge/fog environment. 
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4.3 DCSANet-JCF Integration 
The purpose of integrating JCF and DCSANet is to create an efficient system for energy-
efficient data optimization in edge/fog computing systems with limited resources. In this 
combined methodology presented in Figure 3, DCSANet is utilized at the edges to compress 
the generated data before transmitting them, thus reducing bandwidth usage and transmission 
latency.  
 
The information is sent to fog nodes after compression, where decision making is handled by 
JCF. JCF uses DRL agents to evaluate compressed information and determine the best actions 
for tasks like computation offloading, resource allocation as well as data processing. 

 
The advantages of integrating DCSANet and JCF include: 

 Bandwidth requirements and transmission latency which leads to a faster data 
transmission between edge devices can be reduced through data reduction achieved by 
DCSANet.  

 Intelligent decision-making functions embedded in JCF optimize resource utilization 
while considering energy efficiency aspects within fog computing environments.  

 
Figure 3: DCSANet-JCF Integration for Energy Efficient Data Reduction 

 
When the compressed data is received DCSANet decoder reconstructs it so that it can be 
recognized. Furthermore, the reconstructed data is then processed based on the decisions made 
by various Deep Q-Network (DQN) agents in JCF, and depending on network conditions and 
application needs, it can either be sent back to the edge device or forwarded to a cloud server. 
Overall, combining DCSANet and JCF achieves the goal of reducing data while working with 
intelligent resource management to improve both performance and energy efficiency in an edge 
computing or fog computing system. This joint framework is dynamic enough to suit IoT 
networks, deal with huge amounts of produced data as well as make the best use out of limited 
computational resources. 
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5 Implementation 

5.1 Development Environment 
The DCSANet and JCF models’ code was written in Python utilizing TensorFlow and PyTorch 
libraries, respectively, and the implementation was done on Google Cloud Platform (GCP), 
particularly Colab. Other libraries that were utilized for the data preprocessing, file handling, 
and performance assessment include NumPy, Pandas, and Scikit-learn respectively while 
JupyterLab was used for the debugging and the visualization of results using libraries such as 
Matplotlib and Seaborn. The model was trained on a NVidia T4 GPU in order to accelerate the 
training and the evaluation of the model. 

5.2 DCSANet Model Implementation 
The DCSANet model architecture was implemented with one encoder for dimensional 
reduction and a decoder to regress the data. The encoder uses convolutional layers to reduce 
the spatial measurements and simplify them. It uses multiple layers of convolution, increasing 
filter sizes (32, 64, and 128), and strides with a step-size of ‘2’ to reduce the input size. A 
residual block was used following each convolutional layer to model more complex patterns 
and increase the decision-making ability of the algorithm. These residual blocks have a pair of 
convolutional layers with the same number of filters and a skip connection between them 
bypassing layer input to be added on output, enabling the model to learn residual functions. 
The encoded features are then flattened followed by a dense layer to get the compressed latent 
representation after all convolutional layers. The latent representation is split into the mean and 
log-variance, which are used for sampling during training with parameterization. 
 
The decoder takes the compressed latent representation and re-constructs the original data. It 
starts with a dense layer that extracts the latent representation, followed by reshaping it into 
feature map dimensions. The decoder continues to mirror the encoder by using 3x3 transposed 
convolutional layers with decreased filter sizes (128,64 and 32) along with strides of two for 
up-sampling feature maps. Every transposed convolutional layer is followed by a residual block 
in order to enhance the reconstruction performance. The last layer of the decoder comprises of 
a convolutional layer followed by a sigmoid activation function to produce the reconstructed 
output. 
 
The DCSANet model was trained with the DIV2K dataset which is a public and well-known 
large-scale high-quality image dataset for the validation of machine learning methods in both 
restoration like super-resolution and compression. Eighty percent of the image was used to 
train and the rest 20% to test. The model was trained for 50 epochs with a batch size of sixteen. 
This involved training a model with a custom loss function that was defined as reconstruction 
with Kullback-Leibler (KL) divergence. Here a reconstruction loss quantizes how well the 
input image is reconstructed compared to the original and KL divergence regularizes latent 
space by encouraging learnt distributions to remain similar to a standard normal distribution. 
Table-1 presents the model training parameters. 
 
However, issues can arise when the number of fog nodes increases leading to more 
computational demands for training and applying DRL models. This may cause a higher 
workload on each fog node and result in higher latency or susceptible decision making. The 
use of DCSANet to cut down on bandwidth consumption presents a challenge on the number 
of devices that can be accommodated before networks become congested, especially in areas 
with poor infrastructure. 
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Table-1: DCSANet Model Training Parameters 
 
 
 
 
 
 
 
 

 

5.3 JCF-DCSANet Integration Implementation 
Both DCSANet and JCF are integrated to utilize the best of both models for optimizing in 
energy-efficient data transmission over the edge/fog computing environment. In this 
deployment, DCSANet is integrated with edge devices to compress the data generated before 
transmitting it to minimize bandwidth consumption and latency. Once the data is compressed, 
it is then sent to fog nodes where JCF takes charge of decisions regarding computation 
offloading and resource distribution for processing the dataset. The JCF architecture follows a 
centralized training paradigm and trains global policies for DRL agents. This one has 
historically forged away throughout time states of different fog nodes combined into a training 
set and also contains which action was taken along with rewards achieved while mentioned at 
edge/fog network. Therefore, the DRL agents rely on Deep Q-Network (DQN) to make 
decisions based on their observed states and receive rewards during environmental interaction. 
During simulation, the LearningFogNetwork class creates multiple instances of a fog node — 
each instance is an object formed by using the information about processing power and network 
bandwidth. The interaction between fog nodes and the DCSANet model occurs in the simulate 
processing method. During the testing phase of DCSANet, it is running over each specific test 
sample and process (encode) such data using their own internal encoder and sends it to a fog 
node for further processing.  
 
At each step, the fog node sees where it is in terms of its processing and network capabilities 
(e.g., how many bits per second it can process), how big the compressed data size has gotten, 
if there's any congestion on the transmission link, energy consumed thus far. This state is passed 
to the DRL Agent, which selects an action using an ε-greedy policy. These can either be locally 
processed, passed to another node, or retained idle. The chosen action is performed, and the 
required energy consumption, latency, and response time are measured. After acting, the fog 
node of other actors updates its metrics and gets rewarded in terms of energy consumed plus 
latency. The node puts it here in race memory to learn for next time. Whenever the memory 
size crosses certain limits, a replay step is invoked in which the node samples a batch of 
experiences from its memory and updates the DQN model using that sampled data. 
 
This simulation is conducted in a given number of episodes and the number of steps in each 
episode. The PerformanceTracker class is used to log in and record the performance metrics 
(e. g. Energy, Latency, Throughput.) at the end of each episode. The state of fog network is 
saved at certain intervals to help continue with the simulation in the event that it is interrupted.  
Due to this, fog nodes are able to cooperate on decisions, computations and resources through 
DCSANet and JCF. This approach is intended to optimize energy consumption of edge and fog 
computing systems that are characterized by scarce resources. 
The DCSANet-JCF framework can be implemented on edge devices or fog nodes which can 
be local servers or specific edge computing gadgets. This would also include configuration of 
the DRL agents and making sure that they are capable of interacting with the other devices on 

Parameter Value 
Epochs 50 
Batch Size 16 
Optimizer Adam 
Learning Rate 1e-4 
Latent Dimension 256 
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the edge as well as the other DRL agents. A cloud backend would be required for centralised 
training of the DRL models.  
 
Some of the challenges during deployment may arise from the need to implement high-end 
encryption and access control algorithms, backup mechanisms in case of failure, reduce energy 
consumption in battery-operated edge nodes, and manage latencies in real-world network 
scenarios. 

5.4 Model Evaluation Metrics 
For the DCSANet model evaluation the following metrics were used to verify its data 
compression capabilities : 

 Peak signal-to-noise ratio (PSNR): PSNR is used as a measure of the quality of 
reconstructed images against an original image. The target value of the SNR may 
indicate how much larger the message must be compared to a corrupted noise. 

 Structural Similarity Index (SSIM): SSIM is another well-known metric used for 
measuring the perceived quality of reconstructed images. Higher SSIM values denote 
better perceptual quality, and its range is 0 to 1. 

 Compression Ratio (CR): It shows how much the DCSANet encoder has reduced data 
from input to target. High compression ratios are important to having more efficient 
data reduction, which is important for reducing bandwidth usage and transmission 
latency in edge/fog environment with scarce resources. 

 
                    Table-2: Model Training Parameters for JCF-DCSANet 
 
 
 
 

 
 
 
 
 
 
 
 
The performance of the JCF model is evaluated based on its ability to process data efficiently 
and enable intelligent collaboration among fog nodes. The following metrics were used: 

 Energy Consumption: This metric calculates the summed energy consumption of all 
edge/fog nodes at each step in a simulation.  

 Latency: It is the time delay in sending and processing data from one point to another 
over an edge/fog network. Smaller the values, better is system processing data and 
performance. 

 Edge/fog Throughput: This measures the amount of data in the form of samples 
processed per unit time on edge. It is the ratio of sum of all processed data samples to 
total simulation time.  

 Resource Utilisation : This is an indication of how well the computational resources 
available on the edge/fog nodes are being utilised during simulation. It is measured as 
the proportion of entire data items that have been processed by a node against total 
processing capacity of nodes. Better load balancing and more effective use of available 
resources means higher utilization for resources. 

Parameter Value 
Number of Fog Nodes 3 
Total Episodes 10 
Steps per Episode 50 
Memory Size 2000 
Batch Size (Replay) 32 
Discount Factor (Gamma) 0.95 
Initial Exploration Rate (Epsilon) 1.0 
Minimum Exploration Rate 0.01 
Exploration Decay Rate 0.995 
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6 Results Evaluation 

6.1 Analysis of Performance Metrics 
The DCSANet model showed an average loss of 0.0682 after training the models over 
approximately 50 epochs, showing it was able to learn a straightforward data compression and 
de-compression as well. These are the final results from integration of DCSANet and JCF in 
an advanced learning fog network simulation with 3 nodes. 

 Total Energy Consumed: 207.42 
 Total Latency: 3622.86 
 Average Throughput: 0.53 
 Average Resource Utilization: 1.83 × 

 
Another aspect of the simulation was per-node metrics that showed energy, latency and 
execution time on a node basis and were further refined to provide data processed count (b/s), 
which along with other information, helped calculate efficiency metric for each network. 
 

Table-3: Evaluation Metrics of JCF-DCSANet Framework – Node-wise (Per-Node Metrics) 
  

Node 
ID 

Energy 
Consumed 

Total 
Latency 

Execution 
Time 

Processed Data 
Count 

Efficiency 

0 61.60 1134.53 0.34 170 2.76 
1 68.24 1195.55 0.16 170 2.49 
2 77.57 1292.78 0.15 160 2.06 

 
There are node-per-node metrics from the fog network simulation in Table-3 which provide 
information about how well each of them performs in aspects such as energy consumption, 
latency, and execution time, among others. The node 0 has proved to be the greenest in energy 
consumption, and slightly slower with a latency of 1134.53 units. Node 1, on the other side 
consumed more energy and suffered longer latency, with efficiency falling to 2.49. Node 2 
consumed the maximum energy and had the highest latency to process 160 data items with a 
minimum efficiency of just around 2.06. These may vary due to processing power, network 
bandwidth, and task allocation. Any improvements might contribute to increasing efficiency 
and decreasing energy consumption levels in the fog network. 

6.2 Evaluation 1: DCSANet-JCF Performance Metrics Plots 
Figures 4, and 5 present four important parameters that were monitored in the simulation 
episodes; energy consumption, latency, throughput, and resource utilization respectively. As 
shown in the above graphs, these networks are good in the learning and optimization process 
of the advanced learning fog network.  
 
Likewise, the energy consumption was apparent to reduce as more episodes go by, which 
means that fog networks have learned how to come up with better decisions with less energy 
consumption. The system dynamically reconfigures in response to network conditions, 
simultaneously on a per-flow basis and between Fog servers for optimal task placement, 
minimizing the overall energy footprint. The model also shows a consistent decrease in energy 
consumption over the entire training, which illustrates the efficient improvements from 
DCSANet-JCF. 
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.  
Figure 4: Energy Consumption and Latency Per Episode 

 

 
Figure 5: Throughput and Resource Utilization Per Episode 

 
The latency graph is downward sloping for the episodes, indicating how the learning system 
improves itself in making decisions on task offloading, resource allocation, and data 
processing. This effectively reduces the latency and allows for IoT applications to receive faster 
response times hence improved user experiences. The figure 5 shows the throughput graph and 
it display regular fluctuation in each episode, however as a consequence of behaviour reward 
signal; overall there is an increasing tendency which is pointing toward that fog network 
become better at data processing (i.e., more efficient). The changes reflect the unstable nature 
of network conditions and differential data complexity. 
 
Despite the fluctuations, trends are a general increase in throughput and resource usage on one 
hand vs decrease in energy consumption and latency for intelligible learning fog network. 
Therefore, the adoption of DCSANet-JCF framework allows system to be able to learn and 
adapt after each time evolution based on which decision-making process is further optimized 
in a way that leads towards the better performance metrics. 

6.3 Evaluation 2: Decision Distribution Per Episode and Node Efficiency 
Figure 5 presents a decision distribution chart in the advanced learning fog network where 
nodes decide on local processing, transfer to another node and remain idle. The nodes learn to 
adjust their behavior and infrastructure as the simulation progresses in order to balance energy 
used, latency experienced, and throughput achievable. Node Efficiency Bar Chart gives a very 
detailed view of the efficiency difference between different nodes. Lastly, insights can be used 
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to fine-tune learning algorithms and fog network architecture design for automatic task 
allocation load balancing strategies on the fly. 

6.4 AWS Evaluation 
AWS cloud services such as Amazon SageMaker was also considered and provisions for the 
possibility of transitioning to a different cloud environment was also provided for in order to 
allow scalability. However, challenges of cross compatibility between the TensorFlow versions 
used in Google Colab (TensorFlow 1.7.0) and Amazon SageMaker (TensorFlow 1.3.1) were 
encountered during the actual implementation. 
 
The primary problem was a version conflict, which complicated the process of applying the 
trained models on SageMaker. When training the model in Google Colab with a latest 
TensorFlow version, it was found that the newer version was not available in SageMaker along 
with other necessary packages. Neither was it possible to downgrade TensorFlow in Colab or 
change the permissions required for training a new model in SageMaker. The process was also 
slow as it took over eight hours to train on Google Colab with a NVidia T4 GPU. However, 
the proposed framework can be linked with AWS cloud services where it would be beneficial 
as the use of AWS SageMaker for constructing, training, and deploying machine learning 
models improves both scalability and accessibility of the DCSANet-JCF framework. 

 
Figure 6: Decision Distribution and Node-Efficiency for fog nodes = 3 

6.5 Discussion 
The DCSANet model for data compression and reconstruction has been incorporated with the 
JCF framework for intelligent collaboration between the fog nodes, thus providing an energy-
efficient data optimization for the edge/fog computing devices. The model was able to reduce 
an average loss of 0. 0682 after 50 epochs of training, which is a sign of the network’s capability 
to identify good data compression and reconstruction. The simulation of advanced learning fog 
network with 3 nodes resulted to an energy consumption of 207.42KJ in total, total latency of 
3622.86, average throughput of 0.53, and average resource utilization of 1.83. The findings 
indicate that there were reductions in the energy usage by 44.28% and the latency by 67. 43% 
while the resource utilization improved by 900. 00%. 
 

7 Conclusion and Future Work 

7.1 Realized Objectives and Contributions 
In the present study, DCSANet along with a Deep Reinforcement Learning-based Joint 
Computing Framework (JCF) is proposed to solve both the data reduction problem and the 
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resource utilization issue concurrently. This combination has not been covered enough in the 
literature to devise optimal solutions for edge/fog networks. The JCF's decision-making 
mechanism optimizes three crucial evaluation metrics concurrently: latency, energy efficiency 
and throughput. This approach to enhancing multiple objectives simultaneously guarantees that 
the firm develops a harmonized improvement, unlike current solutions, which address single 
or dual metrics. This is done in the framework in a very efficient way to show the commitment 
towards green computing practices by minimizing energy consumption at the edge/fog. The 
data that needs to be transmitted through the DCSANet component is reduced to the barest 
minimum and the resource usage by the JCF is optimised, which results in the system’s small 
carbon footprint. The DRL-based JCF is presented, and it has adaptive learning, which enables 
it to make precise decisions in edge/fog networks consisting of heterogeneity and non-
stationary characteristics. These imply that network conditions and data characteristics change 
with time and that there is the need to perform optimally while adapting to these changes. It 
should be noted that the proposed framework has scalability to address the growing amounts 
of edge devices, as well as fog nodes. The performance of the DIV2K dataset in training and 
testing further shows the applicability of the said framework in real-life implementation cases 
especially with high image quality processing at the edge. All of these contributions together 
effectively solve important emerging issues in edge/fog computing, and striking the right 
balance between data minimization, power consumption, and computational capability. 
 
The originality of the research work can be summarized in the following points: 

 The unique integration of DCSANet and JCF has not been sufficiently explored in 
existing literature in the context of edge/fog networks. 

 The decision-making mechanism of JCF optimizes three crucial evaluation metrics, i.e., 
latency, energy efficiency, throughput, thus making an informed decision on the 
transfer of the compressed data to the appropriate nodes.  

 This research has a significant commitment to green computing practices whose 
primary goal is to reduce the carbon footprint to reduce their ecological impact. It 
achieves that by presenting a framework that can be deployed across edge nodes over 
the fog network that is capable of improving energy efficiency significantly as 
demonstrated by the research findings. 

7.2 Conclusion 
The combined use of DCSANet and JCF also includes data processing for edge/fog computing 
devices with limited resources as both techniques are established to work towards minimizing 
cost in their own ways. In the framework, it was demonstrated that by using the proposed 
approach, energy consumption can be reduced, latency minimized, and resource utilization 
enhanced. Based on the results, the constructed model managed to receive an average loss of 
0. 0682 with 50 epoch training in the DIV2K dataset for data compression as well as 
reconstruction. In this work, the JCF was employed to make intelligent decisions towards 
computation offloading, resource allocation, and data processing across the fog nodes. 
Extensive Simulations suggest that in regard to energy consumption, latency, and resource 
usage for the JCF-based integration of DCSANet, gains are found to be specifically in relation 
to 44. 28% improvement, 67. 43 % as well as an enhanced up to 900 %, respectively. However, 
there was an incompatibility issue with TensorFlow versions between Google Colab and 
Amazon SageMaker which prevented trained models from being deployed. Further 
development could be performed on this research by testing on other cloud environments, 
implementing the models used in docker containers as well as consulting with AWS support to 
find a resolution to the compatibility problems. 
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