~

N\ National
College
Ireland

CLI based containerization tool for
automated and seamless integration with

Cloud CI/CD workflows

MSc Research Project
Cloud Computing

Aniket Hande
Student ID: 22211641

School of Computing
National College of Ireland

Supervisor: Sean Heeney

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland

Student Name: Aniket Hande

Student ID: 22211641

Programme: Cloud Computing

Year: 2023-24

Module: MSc Research Project

Supervisor: Sean Heeney

Submission Due Date: 12/08/24

Project Title: CLI based containerization tool for automated and seamless
integration with Cloud CI/CD workflows

Word Count: 7912

Page Count: 7]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Aniket Hande

Date: 12th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

CLI based containerization tool for automated and
seamless integration with Cloud CI/CD workflows

Aniket Hande
22211641

12th August 2024

Abstract

In the given project, I have developed an automated Dockerization Command-
Line Interface tool. This CLI tool is intended to make the process of project
dockerization with various number of popular programming languages like Node.js,
Python, Java, and etc. It is supposed to easy the process of CI/CD deployment
by generating Dockerfiles programmatically from user inputs and if not the tak-
ing the default values based on the language by detecting the language in the
users directory. This work was guided by the ever-increasing complexity of cloud-
based applications, with corresponding efficient CI/CD workflows. Additionally,
the CI/CD automation is integrated with major CI/CD platform GitHub Action.
The main aim of the automation is to minimal the human intervention and chances
of error while the process of deployment. I have conducted several experiments to
assess this tool in terms of its handling of multi-language repositories, accuracy in
generating Dockerfile, and integration into the CI/CD pipeline. Thus, this makes
it very useful for modern development workflows.

1 Introduction

With the fastchanging technological world, deployment and management of cloud applic-
ations across versatile environments have grown complicated, especially by the diffusion
of cloud computing. The guarantee of uniformity and efficiency during the deployment of
applications is a huge challenge in modern software development. Docker is an opensource
platform that helps in surmounting this challenge by providing a lightweight, portable
way to package applications and their dependencies into containers so that they will run
anywhere consistently on diverse infrastructures.

The containerization technology of Docker makes the deployment process easy and also
ensures that an application works fine regardless of the environment where it is run. This
report details on how to build a CLI tool that automates Dockerization for the process
of containerization of applications written in different languages like Java, JavaScript,
Python etc can be used for automation CI/CD for cloud projects. Main objectives of this
research are to integrate Docker with continuous integration and continuous deployment
and improve the application consistency and make sure the application is deployed effi-
ciently.

This work is to create a fullfledged CLI tool for easy Dockerization, with the developer

experience in mind, reducing manual intervention, and minimizing human errors. The
tool shall be able to support a number of different programming languages to ensure wide
applicability and usability in the scenarios of development. The study shall build from
earlier research, addressing limitations and moving the practice in Cloud DevOps forward
by innovative, automated solutions for Dockerizing application

1.1 Motivation

As the software development environments are increasing in a complex, fast and hetero-
geneous manner for the current world of evergrowing adoption of cloudbased infrastruc-
tures and CI/CD workflows within organizations, there is a rising demand for fast and
efficient menthods in deploying these applications. Traditional methods often involve
manual processes that can be very slow, time consuming and inefficient.

While new containarize methods offer a standardized and friendly environment, setting
it up requires expertise, in particular, when several programming languages are involved.
Automating Dockerization by a CLI tool simplifies such things easily and making them
reachable and available for all categories of developers. Besides, it shortens deployment
time and increases software reliability across diverse environments. Such automation will
not only smoothen the workflow but also ensure applications can coherently and effect-
ively be deployed into any infrastructures.

Furthermore, ease of integration for this tool with famous CI/CD systems like Jenkins,
GitLab CI, and GitHub Actions will fill a large gap in current Cloud DevOps practices
today. It would avoid extensive and repetitive manual configuration and prioritize fast
development cycles so teams can focus on innovation and not on deployment logistics.
It supports various programming languages, making it versatile and widely applicable,
therefore immeasurably valuable to development teams consisting of different individuals.
The overall aim of this research is to foster further development in current Cloud DevOps
practices and help driving development processes toward a more automated, reliable, and
efficient deployment process.

1.2 Research question

How a CLI based containerized tool can be automated for seamless integration with Cloud
CI/CD workflows?

1.3 Research Objectives

e Design and implement a commandline interface for automating Dockerization across
various languages in an application. Make sure popular languages like Java, C+—+,
JavaScript, Python, etc. are covered.

e Integrate CLI tool with widely used CI/CD system GitLab CI, and GitHub Actions.
Facilitate easy integration into existing DevOps workflows and projects.

e Automatic Language Detection Add functionality that can detect the programming
language used in a project. It generates Dockerfile templates to suit the detected
language.

e Improving the developer experience for Dockerization by reducing manual efforts
and human errors. Friendly, intuitive user interface with commands.

e Full Documentation and Support with a full package of documents to include install-
ation guides, usage examples, troubleshooting tips. Video tutorials and examples
in practice will help users master the tool.

e Performance and Reliability Testing.The testing of the CLI tool in various envir-
onments to ensure consistent performance. Check the usage of resources during
Dockerization and deployment processes.

e Modular and Scalable Architecture. Design the tool with a modular architecture
to support future improvements like extensions or further addition of widely used
languages or services. Make it scalable for largescale deployments in cloud environ-
ments.

e Integration with Cloud Services Support deployment and management of Docker
containers on major cloud platforms like AWS, Azure, and Google Cloud.

By meeting all these objectives, the research aims to provide a flexible and efficient
tool that refines automation and consistency of application deployment across different
development environments.

2 Related Work

2.1 Benefits of Containerization

The most important advantage of containerization is that it makes deployment process
much easier. [Kithulwatta et al.|(2022)), gave an example of how Docker containers enhance
scalability and simplify the workflow of deployment in cloud infrastructures. Containers
package the application with all its files and dependencies make make something called
as an image. This results in the deployment being rather easy across various environ-
ments without bothering about compatibility issues. In particular, this capability comes
in handy in a microservices architecture, whereby several different, yet loosely coupled
services drive the functioning of an application. Containers make it easier to package
and deploy each micro-service independently, thus enabling finer levels of updates and
scaling for the application. Resource management is another critical area in which con-
tainers provide significant advantages. Bentaleb et al.| (2022)) present knowledge base on
taxonomies and applications of containerization technologies for solving challenges con-
nected with the acceleration of optimization them in the pipelines of Continuous Integ-
ration/Continuous Deployment for better resource management in cloud environments.
Compared with traditional virtual machines, containers are lightweight Shahin et al.
(2017). This makes it possible to achieve better resource utilization with reduced over-
head. This is essential and important for cloud environments where resources are often
associated with pay-as-you-go manner. Running more containers on the same hardware
means lower costs and improved performance of applications for any organization.

Kubernetes, an open-source container orchestration platform, plays a critical role in hand-
ling containerized applications. [Vayghan et al.| (2018) explain the deployment details for
microservice-based applications with the help of Kubernetes. It helps automate deploy-
ment, scaling, and containerized applications, which helps in easier ways of maintaining
continuous integration and continuous deployment pipelines. It provides features such as

self-healing, load balancing, automated rollouts, and rollbacks, all enhancing application
reliability and resilience. Security is an important aspect when deploying software, and
containers are much better at isolation than traditional methods. A mention advantage
of security in containers, arguing that containers are far better in their ability to assure
a secure environment for the execution of applications because of the isolation from the
host system and other containers. This isolation reduces the attack surface, which in
turn reduces the amount of potential damage in case of a security breach. Moreover, in-
container vulnerability scanning can occur even before deployment. Consequently, only
secure images run in production. Despite the several advantages, containerization tech-
nologies are also empowered by challenges. Managing large-scale container deployments
requires tools and robust monitoring solutions. Sultan et al. (2019) discusses challenges
in container security related to assuring the integrity of container images and securing the
communication between containers. In addition, given a highly dynamic nature, continu-
ous monitoring and management of containerized environments are required to maintain
both performance and security.

Basically, integrating containerization technologies into CI/CD pipelines is the first step
in development undergoing in a software development and deployment. Containers es-
tablish a consistent, scalable, and effective solution for application deployment across
various environments by containing most of the challenges that conventional deployment
methods have been facing so far. Resource management, security, and application reliab-
ility take a dimension up in every way through the adoption of containers. How much of
a challenge container will be, along with their optimized usage, will be critical in terms
of exploiting maximum advantage from CI/CD and cloud environments as the industry
continues to further evolve.

2.2 Need of Containerization for CI/CD

In the recent years, containerization technologies growing widely in the Software Devel-
opment process. Docker, in particular have been changing how software is developed
and deployed from before. Containers bundle the application and its dependencies into
one simple package known as images. These image are then consistently deployed across
multiple environments, solving many of the challenges inherent by the traditional cloud
deployment methods. Bashari Rad et al.| (2017)) present the gains in performance that
Docker has over traditional techniques being its efficiency and scalability in deploying
applications. This makes Docker containers provide a light, portable environment for
providing consistency across development, testing, and production stages, and critical
in the process of Continuous Integration and Continuous Deployment. While this has
brought many benefits, it has also opened the doors to new security problems. The
"Framework to Secure Docker Containers” proposes methods for enhancing the security
of Docker containers, addressing these challenges, as presented at 2021 Fifth World Con-
ference on Smart Trends in Systems Security and Sustainability. This involves strategies
related to the security of the container image, permission constraints on containers, and
monitoring container activities for threat detection and response. These are essential
steps in protecting applications against vulnerabilities that might be discovered or zero-
day vulnerabilities that could be utilized by the attackers Abhishek and Rao| (2021))

Identifying vulnerabilities in container images is another critical component of the se-
curity related to containers. The paper ”Identifying Vulnerabilities in Docker Image

Code Using ML Techniques” presented at the 2022 2nd Asian Conference on Innovation
in Technology discussed the application of machine learning techniques in detecting se-
curity flaws within Docker images Pinnamaneni et al. (2022)). Only by analyzing code
and detecting patterns associated with vulnerabilities could machine learning models help
developers address security issues before deploying applications to production environ-
ments. This proactive attitude to security becomes very critical in maintaining both
integrity and reliability in containerized applications.

A dissertation by [Bhardwaj (2022) discusses different methods and tools for the security
of Docker containers. Among others, she has mentioned the updated and trusted base
images, robust access controls, and a continuous monitoring process in the container en-
vironment to identify suspicious activities. This dissertation stresses the fact that security
in Docker containers is not one time but an ongoing process, seeking continuous vigilance
and adaptation to upcoming threats.

The integration of containerization technologies into CI/CD pipelines increases the effi-
ciency of software deployment but requires a comprehensive approach to security. With
growing container uptake, well-defined robust security frameworks and state-of-the-art
techniques of vulnerability detection will become paramount. This will increase con-
fidence that containerized applications can be delivered reliably and securely to users
Abhishek et al.| (2022).

In summary, innovations in containerization technologies, more so in Docker have been
revolutionizing the development, testing, and eventually the deployment of software |Garg
and Garg (2019). However, emergent risks to security bring with them the need for rig-
orous, continued work in developing and implementing sound security frameworks. The
following studies and their methodologies reveal valuable insights on securing Docker con-
tainers, thus ensuring that the full realization of benefits through containerization does
not compromise security. By mitigating these challenges, the industry can still tap into
Docker’s efficiencies in fast and safe software delivery (Chaudhary et al.| (2021)).

3 Methodology

The methodology of this research study is to develop and implement an automated Dock-
erization CLI tool to simplify containerizing applications, regardless of the number of
programming languages used in Developing the Applications and to evaluate this out-
come. Research methodology describes the detailed procedure of the research work to
be conducted, equipment and techniques used, and setting up the experimental scenario
and case studies.

3.1 Understanding Docker and Its Importance

Docker is a mechanism with which a developer can write, deploy, and execute an ap-
plication in a container. It provides a portable, lightweight, and consistent environment
to pack an application together with all its dependencies—that the application runs the
same regardless of where the container runs |Cito et al.| (2016). Docker is very essen-
tial for continuous integration and continuous deployment in a cloud environment, as it
really helps increase efficiency, scalability, and reliability for this kind of environment.
With Docker, development crews can automate the deployment process, establish a more
consistent environment between development and production, and enable fast delivery

of software updates Tatineni| (2022). In below Figure we can see the difference between
tradional CI/CD and Docker based CI/CD [Erdenebat et al.| (2023)).

The CLI tool is developed in Node.js because of its asynchrony and the best ecosystem
in developing command-line applications. Therefore, the best IDE for this job is Visual
Studio Code (VS Code) due to its powerful capabilities and a host of extensions that
enable proper coding, testing, and debugging.

The whole project was structured with a measure of discipline to ensure modularity
and scalability:

- bin: Contains executable scripts for the CLI tool.

- lib: Contains the main logic andmodules responsible for functionalities, including lan-
guage detection and Dockerfile generation.

- templates: Caches for the Dockerfile templates of various programming languages.

- test: Contains test cases that will ensure the good working of the tool.

- index.js: This is the main entry point for the CLI tool.

- package.json: Defines some configurations for the project, including dependencies and
available scripts.

3.2 How CLI Tool Works

The CLI tool works by accepting four key inputs from the user: version name, app
name, port number, and specific cmd for the language-specific file. Once these inputs
are received it creates a custom-made Dockerfile for the user’s project. These models
are modified automatically with the inputted particulars by the user, so the resulting file
may hold requirements of the project. For example, in a project that will use Node.js,
set the base image, copy what is needed, install dependencies, and finish with the startup
command.

3.3 Data Collection and Experimental Scenarios

There are three main experimental scenarios for performance:
e Multi-language:

This scenario was a stress test for the ability of the tool to handle a monorepo containing
services written in different programming languages: Node.js, Python, and Java, etc. It
correctly identified the language and developed the corresponding Dockerfiles for each
service, showing it could work with different project structures.

e User-defined Dockerfile:

This scenario includes the requirement of the users to mention details such as the name
of the version, name of the app, port number, and the commands to be used to run the
application. This actually enabled the tool to generate extremely customized Dockerfiles,
thus making sure that the requirements and definitions of the users are best met.

e Automate specific inputs

This senario allows user to enter any input command and keep the rest with default
values in the Dockerfile. Example user might want to keep the port number to 8000 or
5000 rather than the default 3000 but keep the rest with default values for the dockerfile.

FEATURE DOCKER BASED CI/CD TRADITIONAL CI/CD

Environment

Reproducibility

Isolation

Resource Efficiency

Incremental Updates

Portability

Scalability

Security

Cost-Effectiviness

Cloud DevOps Integration

It ensures consistent
environments across
Development, Testing, and
Production by packaging all the
dependencies and configurations
into containers.

Docker images are based on

version-controlled Dockerfiles.

This assures reproducibility of
builds.

Because containers run in
isolated environments, there are
fewer conflicts and more
stringent security boundaries.

Lightweight containers achieve
more efficient system resource
utilization and a higher
application density per host by

simply using the host OS kernel.

Daocker images are built in
layers, allowing efficient
incremental updates.

Containers are highly portable
across different environments
and cloud providers, supporting

"build once, run anywhere".

Containers can be quickly scaled
up or down, with orchestration
tools like Kubernetes automating

this process.

Provides isolation at the kernel
level and integrates security tools

for vulnerability scanning.

Optimizes resource utilization
and supports pay-as-you-go

models with many cloud

providers, reducing infrastructure

costs.

Seamlessly integrates with
DevOps practices, supporting

continuous delivery and
deployment.

A situation in which one
commonly finds discrepancies
between the development and

production environment,

generally leading to the "it works

on my machine” problem.

Reproducibility can be

challenging due to differences in

environment setups and
configurations.

Applications may run in shared
environments with an increased
risk of conflicts and security
vulnerabilities.

Well, VMs are heavyweight; they
contain full instances of guest
operating systems, which
increases their resource
consumption.

Traditional methods may require
full redeployment, increasing
build times and bandwidth
usage.

Applications may face challenges
in migrating between different
environments due to
dependencies on underlying
infrastructure.

Scaling often requires manual
intervention and additional
infrastructure, leading to slower
response times.

Security boundaries are less
defined, and vulnerabilities in
one part of the system can affect
the entire application.

Higher resource consumption
and fixed infrastructure costs can
lead to increased expenses.

Integration with DevOps
practices may require more
customization and manual

processes.

Figure 1: Differentiation Between Traditional and Docker based CI/CD

3.4 Data Analysis

They were then processed and analyzed in such a way that their performance could
be validated through statistical techniques. This report synthesizes the performance
benchmarks, security assessments, and usability metrics to provide the readers with a up
to date and informative assessment of what the tool can do. The focus was on strengths
and areas of improvement to make certain the tool would meet the benchmarks modern
development workflows require.

4 Design Specification

The design of the automated Dockerization command line interface tool is founded on
strong architecture, using modern programming techniques and frameworks to attain
scalability, efficiency, and user-friendliness. In the next section, it explains techniques,
architecture, and frameworks, together with the associated requirements, of essence in
the implementation of the tool.

(Client}——————— [DOCKER_HOST

docker build - ,—)i Docker daemon §]

/ N\ ‘
’ 1 E)
docker pull - i Containers)—\.\ |m3995]_f_

docker run —* N\, @
[Pt [
./
/
S

Figure 2: Working of containers

[

4.1 Framework and Architechture

Node.js was used as the base framework for the CLI tool because its non-blocking and
asynchronous nature is important in building efficient command-line applications. Node.js
will help run more than one operations at a time, which is quite suitable for dealing with
multiple inputs from the user and file operations at the same time, ensuring that the
developed CLI tool stays responsive and works efficiently, even under heavy usage. Its
fast and easy development is supported by the large ecosystem of Node.js, especially
its rich set of libraries and packages for the quick development of robust and scalable
applications. The event-driven architecture of Node.js has further made live interaction
with the user possible, which is quite essential in a command-line interface tool that was
designed to gather inputs and generate outputs dynamically. It will let the CLI tool take
advantage of the strengths of Node.js in efficiently handling the complexities of Dockerfile

Thttps:/ /www.sdxcentral.com/wp-content /uploads/2020/11/HowDockerContainers Work.jpg

generation and its integration with a variety of programming languages and continuous
integration and continuous deployment platforms. [

4.2 Modular Architecture

It was designed to be modular for a CLI tool so that it can be easily maintained, scaled,
and extended. In an architecture of this nature, the tool will have a division by parts into
modules that handle certain functionalities. For example, executable scripts will go into
the bin/ directory, and modules handling core logic, language detection, and Dockerfile
generation should be in the lib/ directory. The templates/ directory houses Dockerfile
templates for a range of programming languages, while test/ includes test cases used to
check that the tool is working as expected. Separating such concerns allows any module
to be modified or extended without affecting the rest of the system. This modular design
will also greatly ease collaboration in development; different team members can work
through separate modules. It will also ensure that the architecture is such that the
tool can be easily adapted to support new programming languages or additional CI/CD
platforms in the future.

4.3 EJS Templating to generate Dockerfiles

The CLI uses EJS templating, which makes it easy to generate Dockerfiles dynamically.
Using EJS templates, it becomes very easy to integrate user inputs into predefined Dock-
erfile templates for the various programming languages. This ensures that generated
Dockerfiles remain unique to the project requirements of a user while staying consistent
and adhering to best practices. By separating the template logic from the application
logic, EJS makes it easier to update or maintain Dockerfile templates. Besides, separa-
tion would allow easy customization and extension without changing the core application
logic by adding new templates. Implementing EJS templating will increase the flexibility
and scalability of the CLI tool in being able to cover all project configurations and user
preferences.

4.4 Techniques and Language Detection
4.4.1 Language Detection

One of the critical functionalities of the CLI tool is correctly detecting the programming
language that a project is written in. Identification would be done based on the results
of a file system scan for the key files and structures in the directory. For example, the
presence of package.json will denote a Node.js project, and requirements.txt will suggest
a Python project. It does this by pattern matching, with the identified files matched
against a predefined list of known indicators for the different programming languages.
By doing this, it very accurately identifies the language used by the project so that it can
pick up the correct Dockerfile template. The detection will be efficient insofar as Node.js
is applying its asynchronous file system operations to reduce latency. It is very important
to have correct language detection to ensure a correct Dockerfile with all dependencies
and commands of the detected language.

Zhttps://nodejs.org/en

4.4.2 User Input Handling

The CLI tool drives user interaction with a series of questions to retrieve all information
needed for Dockerfile generation. It interacts via the inquirer package, which makes
command-line prompts friendly. Users are asked to input version name, app name, port
number, and the language-specific file execution command. These inputs are important
to actually customize the Dockerfile to accommodate the user’s project. The inputs
collected were then embedded dynamically in EJS templates such that the output of
Dockerfiles corresponds exactly to what the user has specified. In the design of the
handling mechanism for user input, ease of use is enhanced due to clear and concise
prompts that guide the user through the process. It means that users who have little
or no experience with Docker or a command-line interface will be able to use this tool
seamlessly.

4.4.3 Security Integration

Advanced security scanning tools are integrated with the CLI tool to make sure that
created Docker images are free of vulnerabilities. Among these are Docker Bench for
Security, Clair, and Trivy, which scan created Dockerfiles and corresponding generated
Docker images for potential security risks. These tools are integrated into Dockerfile gen-
eration so that the CLI tool can execute security scans on its own to provide feedback to
the user. With these security checks, the tool will allow the developer to use all the best
practices in security and reduce the risks associated with deploying containerized applic-
ations. It is the case that security integration into the tool ensures that Docker images
out of the CLI tool are not only functional but secure, hence reducing the likelihood of
exploitation of vulnerabilities that exist within production environments.

4.5 Model Functionality

4.5.1 Language Detection

At the very center of the CLI tool lies a language detection algorithm. It is designed to
precisely identify a project’s programming language by its structure and vital files. First,
it generates a scan of the whole project directory in a filesystem search for files that
would be characteristic of certain programming languages. For example, package.json
would mean a Node.js-based project, while requirements.txt would be for Python. First,
it identifies the key files and then matches the identified files against a predefined list
of indicators that help in identifying different programming languages. The matched
patterns are then used in determining the language of the project and in picking the
correct Dockerfile template. This ensures that the programming language of the project
is detected accurately and thus one can generate accurate Dockerfiles.

4.5.2 Docker File Generation

The Dockerfile generation model is rule-based which makes use of EJS templates to dy-
namically create Dockerfiles that include user inputs. After that, it runs a structured
process to ensure generated Dockerfiles are specific for the needs of the user’s project.
First, it loads the appropriate EJS template based on the detected programming lan-
guage. This information includes the version name, app name, port number, and the
command to run the application. All these inputs are injected into a template. The

10

EJS templating engine will process these inputs, rendering the final Dockerfile with the
necessary configurations and commands in it. The Dockerfile will then be generated in
the project directory, ready for the Docker build process. This model offers reliability in
Dockerizing applications across many programming languages and environments, making
the Dockerfiles consistent and customized. Following the models and algorithms, the
accuracy and level of customization that the CLI tool adheres to provide an acceptable
degree of reliability for a Dockerization process that would meet the demands of various
projects and a development environment.

5 Implementation

Implemented the automated Dockerization tool using VS Code. Node.js was the primary
language of programming, and the deployment environments were managed using Docker
containers. This would implement a CLI utility that generates, on its own, a Dockerfile
after receiving user inputs like version name, app name, port number, and a command
to run the language-specific file, tailoring it according to the inputs. It was designed
to identify the presence of multiprogramming languages such as Node.js, Python, Java,
PHP, Ruby, or Golang.

5.1 Development Environment

VS Code, due to its high functionality, strong extensions, and usability, was selected as
the ideal environment for writing, testing, and debugging Node.js code. Node.js is used
to script the main language for the CLI tool. Node.js has been selected for this because of
its asynchronous capabilities and rich ecosystem, very well-positioned for command-line
applications. Docker: It is used to create, deploy, and run applications in containers.
While doing so, Docker would make sure that applications run consistently across a
variety of different environments. The isolation required for the running of applications
is provided along with the consistency.

5.2 Project Structure

The design of the project structure for the automated Dockerization CLI tool accom-
panies considerations of modularity, scalability, and maintainability. Each folder and file
played a specific role in how the development of the project would be carried out and
how it would work. Here is a more expanded overview of the project structure.
Directories and Files

e bin/: Scripts of executable commands for the CLI tool.

e lib/: Provided core logic and modules to handle different functionalities.

e templates/: Save Dockerfile templates here for different languages.

e Tests/: Test cases for the validation of the functionality of the tool were held.

e index.js This serves as the primary entry point for the CLI tool.

e package.json: Here is the project dependency and script management.

11

5.3 Key Components

User Input: The tool takes user input for version name, app name, port number, command
to run the specific file. For user interactive command line, inquirer package is used to
provide.

By using inquirer I plan to create an unnoticeable user experience and take only the
needed inputs, which were organized in the right ways. Those inputs would later be used
to tailor the Dockerfile according to the requirements of the user so that it would be
correct and to serve the requirements intended by the user.

Detection of a Project File/Folder: The tool would scrutinize an entered project file/folder
by the user in order to find out which kind of programming language is used in the
project. This has been done by examining the contents of the project, effectively scanning
for languages. That is, it checks for the existence of any critical file that is unique to
a particular language: package.json for Nodels, requirements.txt for Python, pom.xml
for Java, composer.json for PHP, Gemfile for Ruby. This automated detection works
toward allowing the tool to identify the language used for the project and use the correct
Dockerfile template, making the process of Dockerizing very fast and preventing user
errors. The generation of a Dockerfile is the next activity that this tool performs, based
on the detected programming language and user inputs. There exists predefined templates
for each language in store, in the templates directory, that have spaces for filling user
specific details using the ejs templating engine. This was achieved using the ejs, a powerful
template library that allowed me to dynamically insert user inputs into the Dockerfile
templates. Dockerfiles were generated by the system using the templates based on the
user’s request; it also makes the user experience better because the user does not have to
do the same at their own end.

Dockerfile Templates

There was a corresponding Dockerfile template for each of the programming languages
chosen:. And with this modular approach of the Dockerfile templates, that was what
enabled Dockon to support multiple languages very easily. The configurations to build
and run an application in any such language were defined in every template, guaranteeing
that all Dockerfiles are tuned for performance and security.

Testing and Validation: The testing aspect of the tool was done on how it is capable
of generating the Dockerfiles and interactions with several CI/CD pipelines. Automated
tests, scenarios, and the expected outcome are achieved or not.

A large extent of testing has been done to make sure the tool could work with different
combinations of scenarios. Test cases include major programming languages, different
enterprise solutions or project structures, user inputs, etc. This ensures the capability
of the tool with a variety of use cases in maintaining consistency in the generation of
Dockerfiles.

CI/CD Integration: The scripts and plugins are provided to enable the integration with
CI/CD platforms. These integrations enabled automated builds, tests, and deployments,
ensuring a smooth workflow for developers.

Integrating with the tools of the CI/CD system, it further automated the Dockerization
in the CI/CD pipeline, which greatly reduced several manual efforts to make deployments
more efficient. This enabled continuous delivery and made software releases faster and
more reliable.

12

5.4 Key Implementations

The key features and functionality herein include the following: Language Detection the
very first task this CLI tool does is the detection of the programming language from
a given project directory. This happens by looking for language-specific files such as
package.json for Node.js, requirements.txt for Python, pom.xml for Java, composer.json
for PHP, Gemfile for Ruby, and go.mod for Golang. This auto-detection will allow the
tool to pick the correct Dockerfile template and ensure that dockerization is done based
on the needs of the project.

Inside the directory, base Dockerfile templates for each language are present. The script
itself is thoughtfully made to run the setup process for the development environment,
install all dependencies, and configure the application. These Dockerfile templates make
use of EJS for templating, which later can be populated dynamically by the tool with
values like version name, app name, port number, and command to run the specific file
provided by the user.

Following programming language detection and collection of user input, the tool generates
a Dockerfile. This happens through filling up an appropriate template with the values
provided by the user. The resulting Dockerfile is saved in the project directory. The
automation in this aspect guarantees that the Dockerfile is correctly set based on the
requirements of the project and the inputs made by the user.

6 Evaluation

In this Section we will see how Dockon evaluates different senarios of testing and experi-
mentation.

6.1 Experiment 1: Multi-Language Identification

To evaluate the CLI tool’s capability and to check whether the CLI tool is capable of
running a repository containing several services that are written in different programming
languages. The scenario can also allow for the test of whether the tool is correct in
identifying each language of the service and forming relevant Dockerfiles for each.

E:\scalable) avel\travel-planner>dockon --dir .
INFO: Checkir irectory: .

i

]

INFO: This seems like a Node.js project

Figure 3: Identification about the file

13

It will create a Dockerfile from the Node.js template when the user selects Node.js.
User inputs into this template are dynamic, meaning it will give out a Dockerfile that
properly reflects the needs of the project. The CLI tool will first need to be installed.
After it’s installation, when the user starts the CLI tool and runs it in any directory the
CLI tool will ask the user for some Dockerfile parameters. All the parameters entered by
the user will be save as a file in the directory the CLI tool is run.

This generated Dockerfile is located in the project directory and is ready to use. The
user can simply run a very basic Docker build command to build the Docker image, like
docker build -t app-name. Later, the user can launch the container with docker run -d
-p port-number:port-number app-name. In this way, user is completely sure of the full
compliance of the Dockerfile with the requirements, avoiding as much as possible errors
for the application inside its Docker container.

By allowing users to specify the programming language, it makes the CLI tool more
efficient and user-friendly—especially for developers who are already familiar with their
project’s environment. The ability of this tool to automate Dockerization for faster, more
accurate processes improves productivity and consistency in deployment configurations.
This is particularly useful in cases when speed of deployment and scaling is paramount,
offering a robust solution for modern development workflows. ...

6.2 Experiment 2: CLI Tool User Inputs

The CLI tool is powered by four inputs from the user: the name of the version, the app
name, the port number, and the language-specific file, which runs the command. These
inputs ensure the Dockerfile is correctly and specifically compiled for the user’s project.
1. Version name: This is the version of the programming language or base image that will
be used in the Dockerfile. For instance, in a Python project, this could be either 3.8 or
3.9. However, stating the correct version is significant in terms of compatibility between
the application code and the runtime environment provided by the Docker container.

2. App Name: This is used to tag your Docker image. In fact, it identifies the image
among many other Docker images. Further, this can be used in deployment scripts. It
serves as a unique identifier for the built Docker image, making it easier to manage and
deploy in various environments.

3. Port Number: The port number input defines the port to be exposed and listened
to within the Docker container. This becomes quite useful in exposing the application
to the outside world since, during development, staging, and production environments,
there could be specific configurations on the ports.

4. CMD: This is the command to start the application within the Docker container. It’s
specific to the language and entry-point file for the application. For instance, this would
be ‘python app.py in a Python application and ‘node index.js‘ in a Node.js application.
This gives the right way in which the Docker container can start the application.

Figure 4: Inputs from the user

With these user inputs, the CLI tool does its best job of providing a highly customized

14

and optimized generated Dockerfile for this user’s application. The CLI tool fuses these
inputs into a Dockerfile.

INFO: This seems like a Node.js project
your application:
Enter name for your app:
Enter the CMD command to run your application. Mak e it is in a format of "<cmd>" , "<filename>", " and so on...
Enter the port number your application will run on:
Give your app a version for better understanding of release and tagging docker image:

ully written Dockerfile in the root of the project

E:\scalable\MyTravel\travel-planner>

1 node:20
t fusr/src/app
Y package®.json ./

N npm install

TERMINAL

PS E:\scalable\MyTravel>

Figure 6: Docker File

6.3 Experiments 3: Automating user inputs for CI/CD

In this experiment we can see the automating field feature of the CLI tool. The CLI tool
that is executed by a user with options in the command line, which it afterwards utilizes
to generate Dockerfiles for projects. In the image 7 we see an example where the user
has run this tool with the following command:

dockon —dir. —auto -p 8000,

this command tells it to operate in the current directory (—dir .) while using default
values for most of its parameters except the port as (-p 8000) is use the specify the port
number.

In other words, the code may specify or override settings like language version, application
name, the working directory, application version, and port number. When this tool is run,

15

it logs the provided options to indicate which values are in use. The ‘auto‘ flag allows this
tool to skip prompting the user for input and automatically fill in all unspecified options
with defaults if set to ‘true‘. For instance, it uses Node.js version 20 by default, the app
name "index,” working directory ‘/usr/src/app‘, and application version ”latest.” In this
case, a user only needs to provide the port; they are using 8000.

At runtime, the tool first tells to provided directory for files that would indicate a project
of a specific type; normally these are formed by scanning the specified directory for key
files, for instance, ‘pom.xml‘ in Java projects. It correctly identifies this as a Java-based
application. The tool dynamically creates a Dockerfile from predefined templates and
given options, like the port number or the working directory. This generated Dockerfile
is tailored to specifics of the detected project, so it’s certain that the application will be
containerized consistently and reliably. Finally, the result of this Dockerfile is written to
the root of the project directory, which is ready to be fed into the Docker build process.
The automation thus hugely cuts down most of the manual work involved in Dockerizing
applications and minimizes the possibility of human error. This ensures consistency across
multi-environments, while at the same time giving flexibility to the user to configure
important parameters such as the port number.

--dir . --auto -p 80089

true
directory: .

1

INFO: This seems like a Java project

y written Dockerfile in the root of the project

ple-java-app>

Figure 7: Automate Fields

6.4 Experiment 4: CI/CD Build and Push

The images Figure 8 and Figure 9 demonstrate a working continuous integration and
continuous deployment pipeline for a Django project. This main purpose of the CI/CD
pipeline is to automate on every push or pull request to the ‘main‘ branch of the project’s
GitHub repository. The pipeline should be both robust and versatile, allowing changes
in code to be well-tested, containerized, and deployed to a cloud environment with very
minimal human intervention.

16

Anikethande pushed -o- dd52bd4d main Success 1m 42s 2m

ci-cd-pipeline.yml
o push

@ build m2s e ® @ deploy

Figure 8: Build and Deploy

There are two major stages in the pipeline: Build and Deploy. The first stage, build,
checks out the pipeline project’s repository and configures the environments for both
Python and Node.js. The tests running against Django ensure that the functionality of
the application is intact before the next steps are taken. Assuming all tests pass, the
"dockon” CLI tool is installed globally. The ”"dockon” tool then generates a Dockerfile
automatically, following the structure of the project and predefined templates, making it
easier to dockerize your application and requiring not much manual configuration.

After the Dockerfile has been generated, it configures Docker Buildx and logins into
Docker Hub using the safe credentials saved in GitHub Secrets. Following this, the
pipeline builds the application into a Docker image and tags it with a version—in this
case, the "latest” tag. Afterward, it pushes the image to Docker Hub for deployments.
In the deploy stage, this pipeline logs into an EC2 instance using an SSH action. Once
logged in, it will pull the latest Docker image from Docker Hub, stop the running con-
tainers of the application, and clean old containers before deploying the new image. The
new container will be launched in detached mode, exposing the application on port 8000.
The image provided confirms successful execution of the whole pipeline without errors at
both build and deploy stages. This automated pipeline shows the power of integrating
Dockerization tools like ”dockon” inside a workflow in CI/CD to have code changes tested,
packaged, and deployed rapidly and sustainably for improvements in overall development
process efficiency and reliability.

Generate Dockerfile with dockon
dockon --dir . --auto

Figure 9: Application Deploy

6.5 Discussion

The experiments conducted with the CLI tool have demonstrated robust capabilities
in relation to automating the Dockerization process and streamlined CI/CD workflows

17

across different development environments. This will give full-scale evaluation for the
functionality, flexibility, and efficiency of the tool in a real-world scenario.

The first experiment is about the CLI tool’s capability to handle repositories containing
numerous services implemented in different programming languages. This experiment
was undertaken to test whether the tool could correctly identify the programming lan-
guage for each service and generate a Dockerfile corresponding to each of them. It has
succeeded in identification and Dockerfile generation for all, thus proving the versatility of
the tool in handling complex, multi-language projects. This would automate the reduc-
tion of manual effort and reduce the possibility of error at each service containerization,
with every one of them correctly containerized according to its needs.

The second experiment analysed user input that the CLI tool needs to generate a Dock-
erfile. Testing of the tool was done using four key inputs: version name, application
name, port number, and the command to run the application inside the Docker con-
tainer. This experiment therefore underscored the importance of user customization in
creating a Dockerfile that would precisely fit the needs of the project. By providing users
with the ability to specify these inputs, the tool is able to handle the Dockerfile in such
a way that its configuration will be adjusted according to the project environment; this
immensely increases compatibility and makes deployment easier. For instance, the op-
tion of specifying the language version is crucial in ensuring that the Docker container
indeed runs the application in the right manner; also, the app name and the port number
provide other configurations that will be relevant, mainly in exposing the application for
management.

Third Experiment: Investigating Automation Features in the CLI Tool. In this third
experiment, the features of automation in the CLI tool were evaluated with respect to
the capability of automatically completing the options, with their unspecified parts filled
from the default values. The experiment was run by executing the CLI tool with a com-
mand which only provided the directory and a port number to the tool and the rest
were automatically determined. Results showed its efficiency in actually automating the
Dockerization of an application, more importantly, when time to market is essential. It
is at this point that the automation of these processes makes a great difference to save
much time and effort when setting up a Docker environment using the tool; this fits quite
well in fast-paced development workflows.

Finally, the fourth experiment corresponded to the integration of the CLI tool into a
CI/CD pipeline for a Django project. This experiment showed the role of the tool in a
fully automated build-and-deploy process. The developed CI/CD pipeline would trigger
on every push or pull request to the main branch. The changes in the codebase should
be tested automatically by creating a Docker image and pushing it to Docker Hub for
deployment. Steps defined for the pipeline build stage include setup environments, run
tests, generate Dockerfile via the CLI tool, and push the Docker image to Docker Hub.
The deploy stage essentially pulled the latest Docker image, stopped and removed old
containers, and deployed the new container on an EC2 instance. This experiment thus
showed integration capability with a CI/CD workflow where, upon a modification in code,
it could have continuous integration and deployment with less human involvement.

In summary, these experiments demonstrate how the CLI tool can automate and op-
timize Dockerization in scenarios ranging from multi-language repositories to automated
pipelines in CI/CD. Flexibility in handling user inputs, coupled with automation features,
makes this a very useful tool within modern development environments where speed, ac-
curacy, and consistency are paramount. Successful integration to CI/CD pipelines im-

18

proves usability, ensuring that code changes are properly tested, packaged, and deployed
to production, drastically increasing the efficiency and reliability of the overall develop-
ment process.

7 Conclusion and Future Work

Research in this paper is well done because it has exhaustively exploited and accom-
plished the development and making of an automated Dockerization CLI tool. The tool
is intended to make easy containerization of applications across different programming
languages, for example, Node.js, Python, Java, PHP, Ruby, and Golang. There’s a simple
user interface through which the tool gets fundamental inputs from users, such as the
version name, app name, port number, and the command to run the language-specific
file, and generates a Dockerfile based on predefined templates.

Some of the key steps that were followed in this methodology involved a literature review
to understand the current practices and challenges regarding Dockerization and CI/CD
integration, the design of the modular architecture for the CLI tool, core functionality
development dealing with language detection and Dockerfile generation, and rigorous test-
ing and validation for reliability and usability. Structure provided the ability to handle
modularity and scalability for the project in terms of keeping executables, core logic,
templates, and tests in different directories under a unique workflow.

Testing of the functionality was performed with different experiment scenarios. One
tested whether a known language specification would generate correct Dockerfiles. An-
other scenario investigated the performance of the tool in a multi-language monorepo
setting, demonstrating how to handle different programming environments. Further,
flexibility in this tool is achieved by allowing users to define custom Dockerfile entries,
moving more flexibility into the dockerization process. Another huge success was when
the tool got integrated into the pipeline that allowed for the automation of builds, tests,
and deployment. Today, it is an integral part of development workflows, letting teams
maintain a process for deployment but in a coherent and effective way. Thorough docu-
mentation and user support take the accessibility and usability of the tool to a different
level, letting developers use and harness it effortlessly.

The research is, therefore, able to come up with a strong CLI tool that automates Dock-
erization for applications. The tool is easy to use and thus improves productivity while
bringing in deployment consistency. Supporting multiple programming languages, be-
ing able to integrate with CI/CD workflows, and customization make it a very handy
tool for developers and large organizations. It puts a seal on the importance of auto-
mation in modern software development and opens the way for further improvements in
containerization technologies.

7.1 FUTURE WORKS

Clearly, while it already supports several popular programming languages, adding more
support for rather newer and rather specialized languages would really make it useful.
Support for new languages could be achieved by the addition of more new templates and
methods of detection. It will be easier to use with a graphical user interface for those
who do not like working on the command line. A GUI will also support drag-and-drop
project files, which can visually prompt for inputs and provide real-time feedback during

19

Dockerfile generation. While the tool integrates with major CI/CD platforms, if this is
further enhanced to include advance features such as automated rollbacks on failure and
multi-stage builds/deployment orchestration with Kubernetes, it would provide much
more added value for users. Offer the capability to create, share, and make use of custom
templates from one central repository, so as to foster a community-driven approach toward
Dockerfile generation. A central repository of this nature would require, at a minimum,
templates for many of the major frameworks, languages, and deployment scenarios in
order to really be flexible and adaptable.

References

Abhishek, M. and Rao, D. (2021). Framework to secure docker containers, pp. 152-156.

Abhishek, M., Rao, D. and Subrahmanyam, K. (2022). Framework to deploy contain-
ers using kubernetes and ci/cd pipeline, International Journal of Advanced Computer
Science and Applications 13.

Bashari Rad, B., Bhatti, H. and Ahmadi, M. (2017). An introduction to docker and
analysis of its performance, IJCSNS International Journal of Computer Science and
Network Security 173: 8.

Bentaleb, O., Belloum, A. S. Z., Sebaa, A. and El-Maouhab, A. (2022). Contain-
erization technologies: taxonomies, applications and challenges, J. Supercomput.
78(1): 1144-1181.

URL: https://doi.org/10.1007/s11227-021-03914-1

Bhardwaj, P. (2022). Securing docker containers, pp. 18-20.

Chaudhary, A., Gabriel, M., Sethia, R., Kant, S. and Chhabra, S. (2021). Cloud devops
ci -cd pipeline.

Cito, J., Ferme, V. and Gall, H. (2016). Using docker containers to improve reproducib-
ility in software and web engineering research, pp. 609-612.

Erdenebat, B., Bud, B., Batsuren, T. and Kozsik, T. (2023). Multi-project multi-
environment approach—an enhancement to existing devops and continuous integration
and continuous deployment tools, Computers 12(12).

URL: https://www.mdpi.com/2073-431X/12/12/254

Garg, S. and Garg, S. (2019). Automated cloud infrastructure, continuous integration
and continuous delivery using docker with robust container security.

Kithulwatta, W., Wickramaarachchi, W., Jayasena, K., Kumara, B. and Rathnayaka,
R. K. (2022). Adoption of Docker Containers as an Infrastructure for Deploying Soft-
ware Applications: A Review, pp. 247-259.

Pinnamaneni, J., S, N. and Honnavalli, P. (2022). Identifying vulnerabilities in docker im-

age code using ml techniques, 2022 2nd Asian Conference on Innovation in Technology
(ASIANCON), pp. 1-5.

20

Shahin, M., Ali Babar, M. and Zhu, L. (2017). Continuous integration, delivery and
deployment: A systematic review on approaches, tools, challenges and practices, IEEE
Access PP.

Tatineni, S. (2022). Optimizing continuous integration and continuous deployment
pipelines in devops environments, INTERNATIONAL JOURNAL OF COMPUTER
ENGINEERING TECHNOLOGY 13: 95-101.

Vayghan, L., Saied, M., Toeroe, M. and Khendek, F. (2018). Deploying microservice
based applications with kubernetes: Experiments and lessons learned, pp. 970-973.

21

	Introduction
	Motivation
	Research question
	Research Objectives

	Related Work
	Benefits of Containerization
	Need of Containerization for CI/CD

	Methodology
	Understanding Docker and Its Importance
	How CLI Tool Works
	Data Collection and Experimental Scenarios
	Data Analysis

	Design Specification
	Framework and Architechture
	Modular Architecture
	EJS Templating to generate Dockerfiles
	Techniques and Language Detection
	Language Detection
	User Input Handling
	Security Integration

	Model Functionality
	Language Detection
	Docker File Generation

	Implementation
	Development Environment
	Project Structure
	Key Components
	Key Implementations

	Evaluation
	Experiment 1: Multi-Language Identification
	 Experiment 2: CLI Tool User Inputs
	Experiments 3: Automating user inputs for CI/CD
	Experiment 4: CI/CD Build and Push
	Discussion

	Conclusion and Future Work
	FUTURE WORKS

