~

N\ National
College
Ireland

Improving Quality of Service Metrics and
User Perception in VR~based Cloud Gaming

MSc Research Project
Cloud Computing

Muhammad Muhteshim Ghazali
Student 1D: 22190228

School of Computing
National College of Ireland

Supervisor: Aqeel Kazmi

National College of Ireland National
Project Submission Sheet College of

School of Computing Ireland

Student Name:

Muhammad Muhteshim Ghazali

Student ID: 22190228
Programme: Cloud Computing
Year: 2024

Module: MSc Research Project
Supervisor: Aqeel Kazmi

Submission Due Date:

12/08/2024

Project Title:

Improving Quality of Service Metrics and User Perception in
VR-based Cloud Gaming

Word Count:

8,177

Page Count:

P

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Date:

14th September 2024

PLEASE READ THE

FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).

You must ensure that

a copy on computer.

your own reference and in case a project is lost or mislaid. It is not sufficient to keep

you retain a HARD COPY of the project, both for | [J

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Improving Quality of Service Metrics and User
Perception in VR-based Cloud Gaming

Muhammad Muhteshim Ghazali
22190228

Abstract

Exploring how cloud gaming services can be integrated with virtual reality (VR)
technology, with an emphasis on improving Quality of Service (QoS) metrics includ-
ing latency. VR head mounted displays (HMDs) have advanced over the last ten
years, opening up immersive experiences across a range of industries. In order
to provide wider accessibility, the study divides VR HMDs into three categories:
mobile, standalone, and tethered devices. It emphasizes the significance of stan-
dalone devices with integrated computing capability. Latency and bandwidth needs
are two obstacles that stand in the way of VR and cloud gaming convergence, as
demonstrated by services like Google Stadia and Nvidia’s GeForce Now. In order
to mitigate these problems and ensure fluid and responsive gaming, technologies
like edge computing and 5G connectivity are essential. This study indicates that
Gradient Boosting Machines (GBM) can forecast network latency better than Ran-
dom Forest and AdaBoost. This is significant since it demonstrates how theoretical
models may be implemented in practical settings. The study analyzes dynamic
resource provisioning in a cloud gaming environment using CloudSim, a cloud sim-
ulation tool. The simulations enable scalable and effective resource management by
simulating real-world cloud infrastructures. The findings highlight how important
cutting-edge machine learning models and cloud computing infrastructure are to
improving VR gamer experiences. This research advances our knowledge of how
cloud gaming services are optimized and offers predictions for the advancement of
virtual reality and interactive entertainment in the future.

1 Introduction

Virtual Reality (VR) technology has rapidly evolved over the past decade, particularly
since 2012 when significant corporate funding boosted research. The last five years have
seen the release of numerous consumer and professional-grade stereoscopic head-mounted
displays (HMDs), integrating VR into scientific and sensory applications. VR HMDs are
broadly classified into three categories: mobile, standalone, or tethered devices. Stan-
dalone devices have built-in processing power, while tethered devices require external
computing hardware. Mobile headsets utilizing smartphones enable users to access VR

content, expanding applications into consumer studies, therapy, and gaming [Wang et al.
(2021]).

The rise of virtual reality (VR) gaming has been remarkable, revolutionizing interact-
ive entertainment. VR gaming uniquely immerses players in digitally generated environ-
ments. As demand for immersive experiences grows, integrating cloud gaming services

has become crucial. This technology meets the processing demands of complex vir-
tual environments, allowing users to overcome local hardware limitations and potentially
broadening VR’s audience significantly Dani (2019). Integrating VR with cloud gaming
presents challenges, especially with Quality of Service (QoS) metrics like latency and res-
olution. Balancing low latency and high resolution is crucial to maintaining an immersive
VR experience, as even slight delays can diminish user immersion. Technologies like edge
computing are being developed to address these challenges by processing data closer to
users. Edge computing deploys servers at the network edge, reducing the time for data
to travel, which is critical for VR applications sensitive to delays.

Google’s Stadia and NVIDIA’s Ge-Force Now exemplify effective use of edge comput-
ing to deliver high-quality gaming experiences with reduced latency. These platforms
support seamless game-play with high-resolution graphics, showcasing the potential of
edge computing to enhance VR gaming. Another development that holds promise for
improving QoS in VR cloud gaming is the advent of 5G connectivity. With its high data
transfer speeds and low latency, 5G has the potential to revolutionize the delivery of VR
content. For instance, Verizon’s 5G network has been tested to support cloud gaming
services with impressive results, offering faster response times and smoother gameplay.
This improvement is particularly crucial for VR gaming, where the speed of data transfer
can make or break the immersive experience Zhao et al.| (2021)).

1.1 Research Question

How do Quality of Service (QoS) metric: latency impacts the immersive nature of Virtual
Reality (VR) gaming experiences within a cloud gaming environment, and what unique
challenges and opportunities do these metrics present for VR-based cloud gaming?

1.2 Research Objectives and Contributions

As virtual reality gaming continues to gain popularity, it is vital to meet consumer ex-
pectations for a seamless and immersive experience. Understanding the importance of
QoS measures ensures that cloud gaming services align with user expectations, result-
ing in higher levels of satisfaction Deng et al.| (2023)). This research problem is novel
as it examines the intricate relationship between the immersive quality of VR gaming
experiences and QoS metrics in a cloud gaming environment. The implications extend
to the gaming industry and the overall user experience. The research aims to address
several crucial factors: the increasing importance of cloud gaming services in meeting VR
gaming’s computational demands, the need to balance low latency and high resolution,
the potential of edge computing technologies, and the integration of 5G connectivity to
address latency issues. By critically analyzing a user-centric approach and considering
the impact of QoS metrics on the overall user experience in VR gaming, the research
seeks to identify challenges and opportunities. Ultimately, the goal is to offer guidance
for future developments, innovations, and enhancements in VR cloud gaming services.

The fusion of VR technology and cloud gaming represents a significant advancement
in interactive entertainment. Addressing the technical challenges related to QoS metrics,
such as latency and resolution, through innovative solutions like edge computing and 5G
connectivity, can significantly enhance the user experience. As this field continues to

evolve, ongoing research and development will be essential to unlocking the full potential
of VR in cloud gaming, providing more immersive, responsive, and satisfying experiences
for users around the world.

2 Related Work

The convergence of advanced machine learning algorithms, immersive virtual reality (VR)
experiences, and cloud gaming has expanded computational capabilities and user experi-
ences. Understanding the performance of Gradient Boosting Machines (GBM) relative to
other algorithms is crucial for optimizing these technologies. This section explores GBM’s
effectiveness compared to other algorithms, highlighting strengths and weaknesses. In-
tegrating cloud gaming and VR requires scalable machine learning solutions to ensure
seamless experiences, emphasizing the balance between technical performance and user
satisfaction. This discussion offers a comprehensive review of GBM and its application
in this evolving technological landscape.

2.1 Integration of Cloud Gaming and Virtual Reality

The integration of cloud gaming and VR has transformative potential in the gaming
industry, offering unprecedented immersion and accessibility without the need for ex-
pensive hardware. However, challenges such as latency, bandwidth requirements, and
network stability persist, impacting seamless gameplay.

Xu et al.| (2018) introduced Transparent Gaming (TG) cloud, a method enabling users to
play high-end desktop games over the Internet efficiently. Using TG-SHARE technology,
it optimizes bandwidth usage by leveraging consumer GPUs and adaptive compression
based on gameplay and network conditions. This approach simplifies access to high-
quality gaming experiences from any Internet-connected location. Ethical considerations
arise with the combination of cloud gaming and VR, including data security, privacy,
and digital rights management. Concerns about user data collection for personalized in-
teractions and advertising, alongside issues of addiction and screen time, underscore the
need for ethical gaming practices and regulatory oversight in this evolving technological
landscape.

2.2 User-Centric Approach & Technological Advancement

Efficient network resource management is increasingly critical for cloud-based Virtual
Reality (VR) games to optimize user experiences. Anticipating traffic patterns, espe-
cially frame sizes, presents challenges that Machine Learning (ML) and Deep Learning
(DL) models aim to address. Vaidya et al.| (2023)) use real-world data from a cloud-based
VR gaming testbed to compare prediction accuracy of DL models like Long Short Term
Memory (LSTM) and Convolutional Neural Networks (CNNs) against traditional ML
methods. DL models achieve a 30% increase in accuracy, with Transfer Learning (TL)
further enhancing predictions by up to 54% in dynamic environments.

This research establishes foundational insights into VR traffic patterns, offering recom-
mendations for future studies to improve prediction algorithms with TL and analyze

diverse VR traffic scenarios. It emphasizes TL’s role in reliable network resource manage-
ment for cloud-based VR gaming, crucial for enhancing prediction accuracy and system
performance.

Sukhmani et al.| (2019)) discuss how edge computing and caching can address latency
and bandwidth challenges in AR/VR applications and the tactile internet. They high-
light the potential of 5G networks, edge caching, and mobile edge computing to support
real-time interaction and haptic feedback, essential for immersive user experiences across
entertainment, healthcare, and robotics. These technologies bring content and computing
closer to users, improving responsiveness in interactive VR environments.

2.3 Balancing Latency

In machine learning, Gradient Boosting Machines (GBM) have gained attention for their
robust performance across predictive tasks. Comparing GBM with other key algorithms,
Random Forest and AdaBoost; reveals insights into their strengths and weaknesses. This
section offers a detailed comparison, emphasizing why GBM is often preferred for its
superior performance in diverse applications.

2.3.1 Random Forest

Random Forest, introduced by Breiman (2001)), is an ensemble learning method that
builds multiple decision trees during training. It aggregates predictions by voting (for
classification) or averaging (for regression), known for its simplicity and robustness in
handling large datasets to mitigate overfitting. However, it can become computationally
demanding with larger datasets and lacks interpretability compared to individual decision
trees.

In contrast, Gradient Boosting Machines (GBM) also use decision trees but sequentially
build them to correct errors of previous trees. This iterative refinement often results in
higher predictive accuracy than Random Forest, as demonstrated in studies like |Natekin
and Knoll (2013). However, GBM requires careful hyperparameter tuning and entails
higher computational complexity due to its sequential nature.

While both Random Forest and GBM leverage ensemble learning with decision trees,
they differ fundamentally in how they construct and refine their models. Random Forest
benefits from simplicity and reduced risk of overfitting, while GBM excels in predictive
accuracy at the cost of increased computational resources and tuning efforts. GBM is
often preferred in applications prioritizing accuracy despite these challenges.

2.3.2 Adaptive Boosting (AdaBoost)

Adaptive Boosting (AdaBoost), developed by |[Freund et al.| (1996), is another learning
technique that enhances weak classifiers by focusing on misclassified instances iteratively.
It effectively transforms weak learners into strong classifiers, especially when using simple
base classifiers like decision stumps. AdaBoost’s strength lies in its simplicity and effect-
iveness in boosting performance. However, it can be sensitive to noisy data and may
overfit when weak classifiers are overly complex.

According to Bahad and Saxenal (2020), when Comparing AdaBoost with Gradient Boost-
ing Machines (GBM), both employ boosting but differ significantly in approach. Ada-
Boost adjusts instance weights for misclassifications, whereas GBM optimizes a differen-
tiable loss function, offering greater flexibility and power in handling complex datasets.
GBM’s ability to minimize diverse loss functions tailored to specific tasks enhances its
performance in machine learning competitions and real-world applications, demonstrat-
ing superior adaptability and precision.

Moreover, as highlighted by Taieb and Hyndman| (2014),GBM’s superior performance
in machine learning competitions, including those on platforms like Kaggle, underscores
its adaptability and precision. Compared to AdaBoost, which is effective and straightfor-
ward, GBM’s ability to optimize various loss functions and handle complex data struc-
tures positions it as a more powerful tool in practical applications. This capability to
manage diverse and challenging datasets solidifies GBM’s reputation as a superior choice
in predictive modeling scenarios.

3 Methodology

In this research, I aimed to optimize cloud gaming environments by simulating dynamic
resource provisioning and latency management using CloudSim, mentioned by [Shahid
et al.| (2023)). The process involved several key steps, including data acquisition and pre-
processing, algorithm selection and evaluation, and the simulation of cloud environments

with CloudSim.

Initially, I obtained a dataset comprising network packet captures that provided detailed
information on gaming traffic. Using editcap, I segmented the dataset into files contain-
ing approximately 15,000 to 20,000 packets each, which allowed for more manageable
data processing and analysis. Next, I converted the packet capture files (pcapng) to CSV
format. The CSV files included essential packet information such as source IP, destina-
tion IP, time, protocol, packet length, and additional metadata as extensively explained in
section [2| The modification made employing data processing tools for data manipulation
and analysis easier. In order to provide high-quality inputs for machine learning models,
data preprocessing entailed cleaning and organizing the data. This involved choosing
important features for model training, such as packet length, protocol type, and time,
and managing missing values as well as normalizing packet lengths and other pertinent
metrics.

I identified three machine learning algorithms AdaBoost, Gradient Boosting Machines
(GBM), and Random Forest to forecast network latency using the cleaned dataset. The
most effective model for forecasting latency in cloud gaming scenarios was identified by
evaluating each algorithm using a range of performance parameters, such as accuracy,
precision, recall, and Fl-score. GBM performed better across all evaluation measures,
therefore after careful comparison, I went with it. The perfect option was GBM because
of its resilience to overfitting and capacity to manage intricate, non-linear interactions.
Using CloudSim to simulate resource provisioning, the expected latency values from GBM
were utilized.

Stage 1 Stage 2 Stage 3

Ms Oa
s

Collected "Latency” Data Cleaning Data, Removing 0O00o0
from "Cloud Gaming irrelevant information for Model Evaluating 3 Algorithms &
Study” Training Choosing the Best based on

Performance Using Predicted Latency
Values in Simulation Logic

Stage 5 3 ° to Provision Resources
.

Gradient
boosting

. Choosing "GBM" Stage 7
w [
Experiment 1 =
. . . Performance | | [|+ 1 |anlll
Setting up Eclipse IDEwith | o 2 T maanonunaer T R Q
iFogSim2 to Run Simulation Varying User Loads)
Experiment 2 L S =
Latency bl b [P b |-anll
JAVA — Prediction MTE W T =
Accuracy i W =
@ python
Gathering & Logic Implementation Experiment3 KR FETT | ol
Maintaining Results 3 sakbiliye | LY =
Cost Efficiency I X == (2.

Figure 1: Different Stages of Complete Workflow

Using CloudSim, I was able to replicate the behavior of real world cloud services such as
AWS Wavelength. We were able to simulate a dynamic cloud system using CloudSim,
which modifies resource allocation according to anticipated latency and user load. Data-
centers that represented cloud servers were configured in the simulation, with settings for
memory, bandwidth, and computing power that reflected actual cloud environments.

Virtual machines (VMs) and cloudlets (tasks) were created to represent gaming sessions,
simulating user interactions and workload in the cloud environment. [Zhu et al. (2022)
worked and I am doing the same, the network topology was configured using Network-
Topology in CloudSim, incorporating latency values derived from the GBM model to
simulate network conditions accurately. The simulation also incorporated a mechanism
to dynamically provision resources based on the number of active users and the predicted
latency. As user load increased, additional VMs were provisioned, and resources were
scaled down as the load decreased, ensuring optimal performance and latency.

The CloudSim simulation provided insight on how dynamic resource adjustments based
on current network circumstances might optimize the cloud gaming environment. The
goal of this strategy was to improve user experience while preserving low latency and
effective resource usage.

As depicted in Figure [T, the methodology combined data preprocessing, machine learn-
ing, and simulation techniques to address the challenges of optimizing cloud gaming
environments. By accurately predicting latency and simulating resource management
in CloudSim, I demonstrated a viable solution for enhancing cloud gaming performance,
contributing to the development of more responsive and scalable cloud gaming infrastruc-
tures.

I decided to use an Amazon EC2 instance for the machine learning model training and
CloudSim simulations rather than a local computer to make sure my solution is scalable
and ready for the cloud. Selecting from a range of instance types that are tailored for
distinct workloads, enhanced computational capacity, and the freedom to scale resources
dynamically based on demand are just a few benefits of running the simulations on an
EC2 instance. I can more accurately simulate real-world cloud environments and make
sure the system can manage the scaling needs inherent in cloud gaming scenarios by im-
plementing my solution on an EC2 instance.

Choosing an instance type with enough memory and processing power to manage the
demanding tasks of data preparation, model training, and simulation was part of setting
up the EC2 instance. I decided to go with a general-purpose instance type, such the
mb.large, which offers a good balance of network, CPU, and memory performance. Con-
figuring the instance with the required software and libraries, including Java for running
CloudSim, was part of the setup procedure. In order to meet the needs of the simulation
and data transfer, I also made sure the instance had enough storage and network setups.

4 Design Specification

By combining VR technology with cloud gaming and employing innovative solutions
such as edge computing and machine learning, this system aims to provide a seamless
and immersive gaming experience while addressing the technical challenges related to
QoS metrics.

4.1 System Architecture
The architecture of the proposed system integrates cloud gaming and VR technology,

focusing on optimizing Quality of Service (QoS) metrics such as latency and resolution.
The architecture includes the following components:

4.1.1 VR Head-Mounted Displays (HMDs):

Various types of HMDs (mobile, standalone, and tethered) are supported to ensure broad
accessibility and usability.

4.1.2 Edge Computing Nodes:

Deployed near users to reduce latency by processing data closer to the user’s location.
These nodes handle initial data processing and forward the results to the central cloud
servers.

4.1.3 Network Topology:

Configured to simulate real-world conditions using CloudSim, incorporating latency val-
ues derived from machine learning models to mimic network conditions accurately.

Cloudlets

vV |44 &
44 4

Cloudlet Scheduler

Internet

VMs

Datacenter 1 Datacenter 2 |

Figure 2: Basic Architecture of of System

4.1.4 Machine Learning Module:

Implements Gradient Boosting Machines (GBM) to predict network latency based on
real-time data.

4.2 Data Processing and Machine Learning
4.2.1 Data Acquisition and Preprocessing:

Collect network traffic data from VR gaming sessions. Data includes source IP, destin-
ation IP, time, protocol, packet length, and metadata. Use editcap to segment packet
capture files into manageable sizes (15,000 to 20,000 packets each) and convert them to
CSV format for analysis. Handle missing values, normalize packet lengths, and select
key features (packet length, protocol type, time). Extract relevant features for model
training to improve prediction accuracy.

4.2.2 Machine Learning:

Evaluate AdaBoost, Gradient Boosting Machines (GBM), and Random Forest models
based on performance metrics (accuracy, precision, recall, Fl-score). Train models using
preprocessed data and evaluate their performance. GBM is selected for its superior
handling of non-linear relationships and robustness against over-fitting.

4.3 Simulation Environment

4.3.1 CloudSim Configuration:

Configure datacenters with parameters reflecting realistic cloud environments (processing
power, memory, bandwidth). Create VMs and cloudlets to simulate gaming sessions, rep-
resenting user interactions and workload. Implement using NetworkTopology in Cloud-
Sim, incorporating GBM-predicted latency values to simulate real-world conditions.

4.3.2 Dynamic Resource Provisioning:

Dynamically adjust resource allocation based on user load and predicted latency. Pro-
vision additional VMs as user load increases and scale down resources when the load
decreases. Continuously monitor system performance and adjust resources to maintain
optimal QoS metrics.

5 Implementation

In this section, I go over how the methodology’s dynamic resource provisioning and
latency management architecture is put into practice for cloud gaming environment op-
timization. Key components of the suggested solution are covered in each of the various
crucial phases that make up the implementation process.

To start, a thorough preprocessing of the network packet capture data was done to provide
a clean, organized dataset. The effectiveness of many machine learning techniques, such
as AdaBoost, Gradient Boosting Machines (GBM), and Random Forest, in predicting
network latency was then assessed. The most successful model was GBM, which used its
prowess in managing intricate, non-linear interactions to precisely predict latency values.
The resource provisioning algorithms in the CloudSim simulation environment were then
based on these assumptions.

I reproduced the behavior of real world cloud services by establishing datacenters, vir-
tual machines, and network topologies, and modeling dynamic modifications depending
on real-time user loads and anticipated latencies. To ensure scalability and computa-
tional efficiency, which reflected real-world cloud conditions, the simulations were run on
Amazon EC2. This section describes each stage in depth, including how CloudSim is con-
figured, how machine learning models are run, and how dynamic resource management
techniques are used to improve the performance of cloud gaming.

5.1 Data Loading and Processing

The objective of this study was to predict network latency using machine learning tech-
niques, specifically through the implementation of a Gradient Boosting Regressor. The
process began with the acquisition and preparation of network packet data, which was
stored in a CSV file named merged_output_file_complete_lat20_data.csv. This dataset in-
cluded key attributes of network packets such as source IP, destination IP, timestamp,
and packet size, crucial for analyzing network performance.

The data was initially loaded into a Pandas DataFrame. This Python library offers

powerful data manipulation capabilities, which were utilized to clean and transform the
dataset. One of the primary preprocessing steps involved converting the ”frame.time”
column from a string format with timezone information ("GMT Summer Time”) to a
standardized datetime format. This was achieved by removing the timezone string and
then parsing the datetime using the format %b %d, %Y %H: %M:%S. %f. This trans-
formation was essential for accurate time series analysis and latency calculation.

Following the datetime conversion, the dataset was sorted by source IP, destination IP,
and timestamp. Sorting was crucial for correctly computing the time intervals between
packets, as network latency depends on the sequential order of packet transmission. The
latency between consecutive packets was then calculated by grouping the data based on
source and destination IP pairs and computing the time difference using ”diff()”. The
resulting time differences, measured in seconds, were stored in a new column labeled
"latency”.

o ensure the quality of the dataset, rows containing NaN values in the ”latency” column
were removed. These NaN values occurred for the first packet in each source-destination
pair, where no preceding packet existed to calculate a time difference. The removal of
these rows was necessary to avoid skewing the latency predictions.

5.2 Feature Selection and Data Encoding

With latency as the target variable (y), the remaining columns were designated as fea-
tures (x). The feature set was refined by dropping non-informative columns such as
frame.time, ip.src, and ip.dst, which were not used in the model training process. Since
machine learning models require numerical input, categorical variables were converted
into numeric format using one-hot encoding as used by |[Lean Yu and Lai (2022)). This
process transformed categorical feature values into a binary matrix, making them suitable
for model training.

An 80/20 split was used to divide the dataset into training and testing sets. This separa-
tion made sure the model could be trained on a significant amount of the data and then
tested on an unknown subset to see how well it performed. For latency prediction, the
Gradient Boosting Machines was utilized due of its ability to handle intricate interactions
with minimal overfitting. Through a sequential construction process, this algorithm cre-
ates an ensemble of decision trees, each of which tries to improve upon the mistakes of
the one before it, increasing the overall accuracy of the model.

5.3 Dynamic Provisioning Simulation

As implemented in detailed by [Le et al| (2022)), but for a generic scenario, the main
method initializes the CloudSim simulation environment by setting up the number of
users, time, and tracing options. It creates two datacenters and a broker to manage vir-
tual machines (VMs) and cloudlets. Initially, a VM and several cloudlets are added and
submitted. The simulation starts and continues running until the specified simulation
time is reached or until it is terminated. During each simulation step, it performs dy-
namic provisioning based on QoS metrics, adjusts resources based on user feedback, and
periodically adds new cloudlets. Finally, it stops the simulation and prints the results of

10

Dynamic Provisioning Logic

@ « User Latency Data ‘

En

Results @)
AR
A,

(-}

—®¢

Adjusting
Resources
Based on Load

=

T

Improved User Experience

»

%

Assigning VMs Based
on Load

Figure 3: Dynamic Provisioning Logic Scenario

cloudlets and VM details.

5.3.1 Setting Up Simulation Resources

A datacenter is created and configured for the simulation using the ”createDatacenter”
method. A list of hosts is created, each having a designated capacity for RAM, band-
width, storage, and computing power (MIPS). A host employs a time-shared virtual
machine scheduler and has processor elements (PEs). The design, operating system, and
budgetary constraints of a datacenter are specified. Subsequently, the procedure sets up
the datacenter with these attributes, a basic virtual machine allocation policy, and no
extra storage. In the event of an exception, the error is printed. The generated datacenter
is then put back to use in the simulation.

A DatacenterBroker object is set up and returned by the ”createBroker” method. Man-
aging the submission of virtual machines and cloudlets to datacenters is the responsibility
of a broker. ”Broker” serves as its initial unique identifier. It prints the stack trace and
returns null in the event that an error arises during startup. In order to guarantee that
the broker is properly created for controlling the interaction between virtual machines
and cloudlets in the datacenter environment, this technique encapsulates the process of
constructing and handling the broker in the simulation.

A new virtual machine (VM) is created and added to the simulation using the ”addNewVM”
method. Based on the size of the VM list at the time, it assigns a unique ID and provides

11

VM specs like MIPS, RAM, storage, and bandwidth. The virtual machine (VM) utilizes
a time-shared scheduler for cloudlets and is linked to a broker ID. Once the virtual ma-
chine (VM) has been created, it is appended to the "vmList” and a notification is sent
out along with the simulation clock time.

The "addNewCloudlets” method creates and adds a new cloudlet to the simulation. It
sets the cloudlet’s ID, execution length, file sizes, and number of processing elements
(PEs). It also assigns a full utilization model for CPU, memory, and bandwidth. Each
cloudlet is associated with a broker ID and is assigned a ”QoSMetric” representing its
latency, which is randomly generated between 10 and 40 milliseconds. The cloudlet is
then added to the "cloudletList”, and a message about the addition is printed with the
current simulation clock time.

5.3.2 Building Logic for Resource Adjustment

In the cloud environment, virtual machine (VM) allocation is dynamically managed in
large part via the ”adjustResourcesBasedOnLoad” method. Its main goal is to respond
to latency estimates from a machine learning model by optimizing resource distribution.
This technique modifies the number of virtual machines (VMs) in accordance with real-
time latency projections, ensuring that the cloud system stays responsive and efficient.

Using the ”getPredictedLatencies” function, the technique first collects predicted latency
data from an external Python script. This script predicts future latencies by using a
Gradient Boosting Regressor model that was trained on previous network data. An array
containing the expected delays for different cloudlet jobs or user interactions is returned
as part of the latency estimates. The technique is able to make well informed decisions
regarding resource adjustments by incorporating these forecasts.

Following the retrieval of predicted latencies, the method updates the Quality of Ser-
vice (QoS) metrics associated with each cloudlet, a similar kind of experimentation is
done by |Selvaraj Kesavan and Vengatesan| (2021). The qosMetricsMap parameter repres-
ents a mapping between cloudlet identifiers and their corresponding QoS metrics. Each
QoS metric is updated with the predicted latency values, aligning the current QoS data
with the latest forecasted information. This alignment is essential for accurate resource
provisioning decisions.

The revised QoS measurements are then sorted by latency values in accordance with
the technique. In order to prioritize tasks or users who are suffering higher latencies,
sorting is done in ascending order. The process can identify which cloudlets or user in-
teractions need more resources to reduce possible performance concerns thanks to this
prioritization. The approach is able to precisely change the virtual machine allocation
by examining the sorted metrics.

The sorted QoS measurements are then used to calculate the target number of virtual ma-
chines. With a recommendation of one virtual machine (VM) per five users, the method
uses a heuristic approach where the goal number of VMs is proportionate to the number
of QoS measurements. By ensuring that resource allocation adjusts in accordance with
user load, this method avoids both under- and over-provisioning.

12

The technique initially checks the current number of VMs with the computed target
in order to modify the VM allocation. Calling the addNewVM method adds new virtual
machines (VMs) if the current number of VMs is less than the target. After then, the
broker receives these new virtual machines and adds the extra resources to the cloud
environment. On the other hand, extra VMs are eliminated if the total number of VMs
surpasses the goal. To do this, pick VMs at the end of the list, then use the vmDestroy
function on the VM’s host to deallocate its resources.

The method logs certain information, such as the current simulation time and the modi-
fications in VM allocation, during the resource adjustment process. These logs help to
monitor and troubleshoot the dynamic modifications while also offering transparency.
The ”adjustResourcesBasedOnLoad” method efficiently improves cloud performance and
user experience by continuously adjusting VM resources based on real-time latency data,
guaranteeing that the cloud environment stays optimal and responsive.

5.3.3 Using Predicted Latency for Probisioning Sumulation

The "loadQoSData” method simulates the generation of QoS metrics for multiple en-
tities. It creates a map of QoSMetric objects, each associated with a random latency
value between 10 and 40 milliseconds. This method provides a simplified way to generate
variability in QoS metrics, which can be used to test the dynamic provisioning logic. The
generated QoS metrics reflect different latencies for different entities and are used in the
simulation to adjust resources and evaluate performance.

The ”simulateUserPerception” method evaluates the perceived quality of service for
cloudlets based on their execution metrics. It compares the actual CPU time and QoS
metrics of each cloudlet with a threshold (e.g., 50 ms). If the latency exceeds this
threshold, it simulates user perception of lag and calls ”adjustResourcesBasedOnFeed-
back” to adjust resources. Otherwise, it prints a message indicating good quality. This
method helps simulate user experience and feedback, allowing the system to dynamically
adjust resources based on perceived performance.

The " getPredictedLatencies” method is crucial for integrating machine learning predic-
tions into the cloud resource management process. This method interfaces with a Python
script that utilizes a trained Gradient Boosting Machine (GBM) model to forecast net-
work latency values. The script’s purpose is to predict future latencies based on historical
data and current network conditions, providing actionable insights for resource provision-
ing.

As Furtuna et al. (2023) discuss the interaction of Java with Python, when invoked,
the method initiates a ”ProcessBuilder” to execute the Python script, specified by its
path in the system. This script is designed to process input data, apply the GBM model,
and output predicted latency values. The ”ProcessBuilder” handles the execution and
captures the output from the Python script’s standard output stream.

The output is read line-by-line from the script’s output stream using a ” BufferedReader”.
Each line represents a predicted latency value, which is parsed from a string to a ’double’

13

and collected into a list. This list of latency predictions is then converted into a ’double’
array, which is used for further processing within the Java simulation.

6 Evaluation

The application on three fundamental experiments is examined in the evaluation section.
The goal of the first experiment is to assess how well the simulation manages varying
user loads and how this affects system performance and resource provisioning. In the
second experiment, the effectiveness of various training models in predicting latency is
evaluated, and the reasons why GBM is the optimal option are discussed. The third
experiment aims to analyze the cost-effectiveness of dynamic resource provisioning and
how effectively the cloud environment scales with rising workloads.

At time 0.0, the simulation starts with the initialization phase. Five cloudlets, or tasks,
and a virtual machine (VM #0) are added to the simulation environment at this phase.
Establishing the fundamental tasks and resources that will be overseen during the simu-
lation requires careful planning at this early stage. The log shows that at this point in
time, all entities, including the virtual machine and cloudlets, are generated properly.

Then, the initialization of CloudSim version 3.0 takes place. The simulation begins
when the broker and the datacenters (Datacenter-0 and Datacenter_1) are started. By
doing this initialization, you can be sure that the simulation environment is configured
correctly and that all required parts are working.

The final results of the simulation show that all of the cloudlets were handled correctly.
Each cloudlet’s status, the data center and virtual machine (VM) it was connected to,
the processing delay, and the start and end times are all included in the output details.
According to the results, each cloudlet was finished with a latency of 2000.0 milliseconds,
and the start and finish processing times were both recorded at 0.1 seconds.

The VM details portion also provides a snapshot of resource management during the
simulation, confirming that VM #0 was created at time 0.0. Overall, the simulation
shows that it was successfully executed, with activities completed quickly and resources
handled skillfully, achieving the dynamic provisioning simulation’s goals.

There are three aspects related my approach that are discussed and compared with
literature; integration of cloud gaming and virtual reality, user centric approach and
technology advancement and lastly balancing latency. A direct comparison with literat-
ure, related the scalability of my approach is not discussed, but indirectly the scalability
of my approach is covered as my research does discuss the computational challenges of in-
tegrating VR and cloud gaming, particularly in managing latency and bandwidth, which
are crucial for scalable solutions. The section also highlights the advantages of GBM in
terms of prediction accuracy and adaptability by comparing it with other methods, such
as Random Forest and AdaBoost. These comparisons indirectly imply that scalability
may be attained by carefully choosing and fine-tuning machine learning models.

Generally, scalability of my approach depends upon dynamic resource provisioning of

14

Latency Balance

yo
VMs Allocated
25

20 100
15 80

10 s 50

0 10 50 100 200 300 500 300 1500 800 3000
10 50 100 200 300 500 300 1500 800 3000

==——Pre-Allocation Latency (ms) Post-Allocation Latency (ms)

VMs Allocated

Figure 5: Latency Balance with Alloca-
Figure 4: Allocated VMs based on Load tion

resources at edge, another key aspect is how effectively the load is being balanced across
multiple edge nodes. Furthermore, things like hierarchical models in cloud to manage
more number of users or complex applications are mentioned in literature, use of micro-
services and containerization and offloading and task scheduling algorithms could be the
alternatives. By utilizing advanced machine learning technique like Gradient Boosting
Machines (GBM) for more accuracy and adaptability, my approach outperforms other
approaches found in the literature. Through real-time adaptation and customization
customized to individual applications, it provides enhanced scalability and flexibility.

6.1 Experiment 1

Performance Evaluation Under Varying User Loads

An experiment with different user load situations was carried out to evaluate the ef-
fectiveness of the dynamic provisioning technique and overall system performance. This
experiment aimed to assess the effects of varying user demand on system stability, Qual-
ity of Service (QoS) metrics, and resource allocation. In order to get insight into the
scalability and effectiveness of resource management strategies used in the simulation,
the experiment was developed to watch and analyze the system’s behavior under low,
medium, and high load situations.

Three tiers made up the experimental setup: edge devices, a fog layer, and a cloud
layer. Cloudlet requests were generated by edge devices in order to simulate user interac-
tions. Operating as a middleman, the fog layer dynamically provisioned virtual machines
(VMs) in response to real-time needs and quality of service (QoS) indicators. These
virtual machines (VMs) were hosted by the cloud layer in datacenters, which supplied
the required processing power. Two CPUs and 500MB of RAM were the exact resources
needed by the cloudlets, which represented user jobs. A total of five milliseconds were
allotted to the simulation, which included simulating several user load conditions.

In order to replicate various demand scenarios, user load levels were systematically
changed. A baseline number of virtual machines and a low volume of cloudlet requests
were used in the first configuration. In order to replicate medium and heavy user demands,
the number of requests was gradually raised. Important information was captured during
the simulation, such as the quantity of running virtual machines (VMs), latency, cloudlet
response times, and resource usage metrics (RAM and CPU usage). The purpose of this

15

data collection was to document the system’s adaptability to changing circumstances and
its capacity to uphold QoS requirements.

The experiment’s main focus was the dynamic provisioning system. It was anticipated
that the system would expand the number of active virtual machines (VMs) to meet
the growing demand as user load rose. On the other hand, the system ought to scale
down and release superfluous resources as the load dropped. This behavior was tracked
and examined, with a focus on the relationship between the quantity of running vir-
tual machines (VMs) and user load. Furthermore, since latency and reaction time are
important measures of user experience, the effect on QoS metrics was carefully monitored.

The expected results are visualized through plots[4 and 5] In the line chart two scenarios
are captured where without running the code the normal latency values are shown, while
the orange line shows once the VMs are being allocated based on load dynamically, the
latency does not cross the ideal threshold and a balanced latency can be seen.

The experiment was carried out by executing the simulation for every user load level and
methodically gathering and examining the data that was obtained. The experiment’s
results provide insightful information about the system’s advantages and its shortcom-
ings. In particular, a thorough assessment was conducted on the dynamic provisioning
mechanism’s capacity to sustain peak performance in the face of varying demands. The
analysis’s conclusions emphasized the system’s resilience and offered ideas for potential
improvements to improve handling of high-load situations.

6.2 Experiment 2

Latency Prediction Accuracy

In this experiment, I aim to assess the accuracy of latency predictions using different
machine learning models, keeping in view the best practices discussed by |[Poldrack et al.
(2020)) specifically Gradient Boosting Machines (GBM), AdaBoost, and Random Forest.
The primary objective is to determine which model provides the most accurate latency
predictions for dynamic resource provisioning in a cloud and fog computing environment.
To evaluate the models, I compare their predictions against actual observed latencies and
use standard performance metrics: Mean Absolute Error (MAE), RSquared (R2), Root
Mean Square Error (RMSE), and Mean Squared Error (MSE).

Among the three models, it has been found that GBM offers the most precise latency
estimates. By building weak learners one after the other and combining them to create
a strong learner, its iterative boosting technique is able to capture complicated patterns
in the data. GBM performs better because of its capacity to decrease the loss function
and efficiently manage overfitting. Plotting the real against anticipated latencies demon-
strates the remarkable accuracy of GBM’s predictions, which closely match the actual
values.

The comparative analysis in figures [0] and [7] clearly demonstrates that in this simula-
tion setting, GBM predicts latency better than AdaBoost and Random Forest. The
improved performance of GBM can be ascribed to its capacity to decrease prediction
errors and grasp intricate, non-linear correlations in the data. Thus, in this dynamic

16

MAE: 0.0060, R2: 0.0870, RMSE: 0.1265

Random Forest

AdaBoost

MAE: 0.0300, R2: -0.1540, RMSE: 0.1423

Gradient Boosting Machine
MAE: 0.0079, R2: 0.3241, RMSE: 0.1089

@ Actual Latency
X Predicted Latency

® Actual Latency

Predicted Latency

)

. ® Actual Latency
X Predicted Latency

x
x o ®
L
.
.
L]
xo

0.200

4000 6000
Data Points

Figure 6: Actual

Random Forest

2000

4000
Data Points

6000

8000

[2000 4000 6000 8000
Data Points

and Predicted Latency Comparison

AdaBoost

Gradient Boosting Machine

0.1825

0175

0150
0.1357

0125
9
2 0.100
2

0075
0.050 0.0481
00333
0025

0.0184

0.0062

0.000

MAE R2 RMSE MSE MAE R2 RMSE MSE MAE R2

RMSE MSE

Figure 7: Performance Metrics Comparison

provisioning scenario, GBM is the optimum option for latency prediction, guaranteeing
optimal resource allocation and improved system performance. In cloud and fog comput-
ing settings, the adoption of GBM can result in more responsive and effective resource
management, which will eventually enhance the user experience.

6.3 Experiment 3

Scalability and Cost Efficiency

In the third experiment, the cost-effectiveness of dynamic resource provisioning is eval-
uated along with the cloud environment’s scalability under growing workloads. The
purpose of this experiment is to determine how well the system can handle increases in
demand and how well it handles the expenses related to dynamic resource provisioning.

I observe how the system adjusts its resources as I mimic a growing volume of user
queries. The number of virtual machines (VMs) allotted in response to the system’s in-
creasing workload and response time is a key indicator of scalability. The entire cost spent
as a result of VM provisioning, including the cost per VM per time unit, is calculated
to determine cost efficiency. This comprises variable expenses (depending on resource
utilization, such as CPU, memory, and bandwidth) and fixed costs (such virtual machine
setup).

The simulation replicates a cloud environment in which user demands grow over time.

17

Load Level | Number of VMs | Response Time (ms) | Total Cost ($) | Cost per User
Request
Low D 100 200 0.05
Medium 10 150 1200 0.08
High 15 200 2000 0.1
Very High 20 250 3000 0.12

Table 1: Comparative Overview of System’s Scalability and Cost Efficiency at Various
Load Levels

The system loads down slowly at first and uses few resources. The system dynamically
provisioned more virtual machines (VMs) to meet performance requirements as the work-
load increased. Both the overall system cost and the cost of each extra virtual machine
are tracked.

The results show that as workloads increase, the cloud environment can scale well. But
as the load rises, the cost efficiency falls. The system can handle different loads thanks
to the dynamic resource provisioning technique, but doing so will come at a higher cost,
particularly in situations with extremely high loads. For cloud resource management, this
trade-off between scalability and cost-effectiveness is critical because it emphasizes the
necessity of optimizing provisioning mechanisms to strike a balance between performance
and cost.

6.4 Discussion

The three experiments carried out offer insightful information on how well a cloud en-
vironment performs, how accurate predictions are made, and how economical it is in
different scenarios. The system’s ability to dynamically scale resources to maintain ser-
vice levels is demonstrated in Experiment 1, which focuses on performance evaluation
under varying user loads. The system’s ability to quickly allocate more virtual machines
(VMs) in response to an increase in user load guarantees that latency and response times
stay within reasonable bounds. Experiment 2 emphasizes how crucial it is to use machine
learning models to estimate latency accurately in order to manage resources dynamically.

When the Gradient Boosting Machine (GBM), AdaBoost, and Random Forest mod-
els are compared, it is clear that the GBM model provides better accuracy because of its
higher R2 score and lower MAE, RMSE, and MSE. This result emphasizes how well GBM
forecasts cloudlet latencies, allowing for more effective resource allocation. The system
can grow effectively with rising workloads, but there is a trade-off between scalability
and cost efficiency, as demonstrated by Experiment 3, which looks at both aspects. The
cost per user request rises with workload, suggesting the need for better provisioning
techniques.

In the context of the research, the direct impact of reduced latency on user perception and
the overall gaming experience is measured through both simulated and real-time feedback
mechanisms. The function simulateUserPerception() plays a crucial role in this process.
The purpose of the function is to evaluate the user’s perception of the VR experience
by examining the delay encountered when cloud-lets (workload units) are executed. The

18

function assesses whether the user’s latency is more than a predetermined threshold (such
as 50 ms), which is believed to have a negative impact on the user experience. By tracking
the actual CPU time of cloud-lets and the latency related to each cloud-let’s execution,
this method provides an objective measurement of latency. When the latency falls within
acceptable limits, the function determines that the user believes they had a high-quality
encounter. On the other hand, the function reports that the user experiences lag if the
latency goes above the threshold, triggering a dynamic resource adjustment. The system
could be extended to incorporate user feedback through surveys or direct input.

As mentioned, throughput is generally addressed by increasing the number of virtual
machines (VMs) on a system, this does not always result in decreased latency unless the
application is specially made to take use of the new configuration. In order to effectively
distribute its workload across several virtual machines (VMs), the VR application that
is currently running may need to have its code-base modified to enable load balancing
or parallel processing. In the research, it was assumed that the VR application and the
supporting infrastructure had been improved to utilize more virtual machines (VMs) in
an efficient manner, especially by using task parallelization and efficient scheduling al-
gorithms. This configuration makes sure that the extra processing power translates into
noticeable latency reductions, which enhances the immersive experience.

With all factors considered, these tests highlight how important it is to strike a balance
between cost control, predictive model accuracy, and performance in order to create a
cloud infrastructure that is both responsive and effective. The results provide a thorough
grasp of the difficulties and solutions in cloud computing environments by highlighting
the crucial role that predictive analytics plays in cloud resource management and the
effect that dynamic provisioning has on cost effectiveness.

7 Conclusion and Future Work

I explored the dynamic provisioning of resources in cloud and fog computing environ-
ments, focusing on performance under varying user loads, the accuracy of latency predic-
tions using machine learning models, and the scalability and cost efficiency of the system.
My findings demonstrate the efficacy of adaptive resource management strategies in main-
taining Quality of Service (QoS) metrics and optimizing cost efficiency.

Even though the present research has established a strong basis for dynamic resource
management, there are still a number of areas that need to be explored. Investigating
more advanced machine learning models, such as deep learning approaches, is one pos-
sible path. These models have the potential to produce even more accurate predictions
by identifying intricate temporal patterns in latency data. Furthermore, using real-time
data analytics could improve the system’s accuracy and responsiveness when allocating
resources and investigate more around the lines discussed by Liu et al.| (2017).

Further study efforts may expand the simulation framework to encompass a wider range
of authentic and varied workloads, integrating heterogeneous cloudlet attributes and in-
tricate user behavior models. This would further validate the research findings and offer
a deeper understanding of system performance under a wider range of settings.

19

References

Bahad, P. and Saxena, P. (2020). Study of adaboost and gradient boosting algorithms
for predictive analytics, International Conference on Intelligent Computing and Smart
Communication 2019: Proceedings of ICSC 2019, Springer, pp. 235-244.

Breiman, L. (2001). Random forests, Machine Learning 45(1): 5-32.
URL: https://doi.org/10.1023/A:1010933404324

Dani, M. N. J. (2019). Impact of virtual reality on gaming, Virtual Reality 6(12): 2033—
2036.

Deng, X., Zhang, J., Zhang, H. and Jiang, P. (2023). Deep-reinforcement-learning-based
resource allocation for cloud gaming via edge computing, IFEE Internet of Things
Journal 10(6): 5364-5377.

Freund, Y., Schapire, R. E. et al. (1996). Experiments with a new boosting algorithm,
tcml, Vol. 96, Citeseer, pp. 148-156.

Furtuna, T. F., Vinte, C. and Proscanu, C. (2023). Interchanging java-python data
with applications in machine learning solutions, in C. Ciurea, P. Pocatilu and F. G.
Filip (eds), Education, Research and Business Technologies, Springer Nature Singapore,
Singapore, pp. 329-342.

Le, D.-N., Pal, S. and Pattnaik, P. K. (2022). Cloudsim: A Simulator for Cloud Com-
puting Environment, John Wiley Sons, Ltd, chapter 16, pp. 269-285.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119682318.ch16

Lean Yu, Rongtian Zhou, R. C. and Lai, K. K. (2022). Missing data preprocessing in
credit classification: One-hot encoding or imputation?, Emerging Markets Finance and
Trade 58(2): 472-482.

URL: https://doi.org/10.1080/1540496X.2020.1825935

Liu, N., Li, Z., Xu, J., Xu, Z., Lin, S., Qiu, Q., Tang, J. and Wang, Y. (2017). A
hierarchical framework of cloud resource allocation and power management using deep
reinforcement learning, 2017 IEEFE 37th International Conference on Distributed Com-
puting Systems (ICDCS), pp. 372-382.

Natekin, A. and Knoll, A. (2013). Gradient boosting machines, a tutorial, Frontiers in
neurorobotics 7: 21.

Poldrack, R. A., Huckins, G. and Varoquaux, G. (2020). Establishment of Best Practices
for Evidence for Prediction: A Review, JAMA Psychiatry 77(5): 534-540.
URL: https://doi.org/10.1001 /jamapsychiatry.2019.5671

Selvaraj Kesavan, E. Saravana Kumar, A. K. and Vengatesan, K. (2021). An investigation
on adaptive http media streaming quality-of-experience (qoe) and agility using cloud
media services, International Journal of Computers and Applications 43(5): 431-444.
URL: https://doi.org/10.1080/1206212X.2019.157503

20

Shahid, M. A.; Alam, M. M. and Su’ud, M. M. (2023). A systematic parameter analysis
of cloud simulation tools in cloud computing environments, Applied Sciences 13(15).
URL: https://www.mdpi.com/2076-3417/13/15/8785

Sukhmani, S., Sadeghi, M., Erol-Kantarci, M. and El Saddik, A. (2019). Edge caching and
computing in 5g for mobile ar/vr and tactile internet, IEEE MultiMedia 26(1): 21-30.

Taieb, S. B. and Hyndman, R. J. (2014). A gradient boosting approach to the kaggle
load forecasting competition, International journal of forecasting 30(2): 382-394.

Vaidya, S., Abou-Zeid, H. and Krishnamurthy, D. (2023). Transfer learning for online
prediction of virtual reality cloud gaming traffic, GLOBECOM 2023 - 2023 IEEE
Global Communications Conference, pp. 4668-4673.

Wang, Q. J., Barbosa Escobar, F., Alves Da Mota, P. and Velasco, C. (2021). Getting
started with virtual reality for sensory and consumer science: Current practices and
future perspectives, Food Research International 145: 110410.

URL: https://www.sciencedirect.com/science/article/pii/S096399692100309/

Xu, Y., Shen, Q., Li, X. and Ma, Z. (2018). A cost-efficient cloud gaming system at scale,
IEEE Network 32(1): 42-47.

Zhao, S., Abou-zeid, H., Atawia, R., Manjunath, Y. S. K., Sediq, A. B. and Zhang,
X.-P. (2021). Virtual reality gaming on the cloud: A reality check, 2021 IEEE Global
Communications Conference (GLOBECOM), pp. 1-6.

Zhu, L., Sui, X., Song, W., Liu, R., Liu, D. and Li, L. (2022). A network migrating
framework based on CloudSim, in F. Cen and G. Tan (eds), International Conference
on Intelligent Traffic Systems and Smart City (ITSSC 2021), Vol. 12165, International
Society for Optics and Photonics, SPIE, p. 121650Z.

URL: https://doi.org/10.1117/12.2627859

21

	Introduction
	Research Question
	Research Objectives and Contributions

	Related Work
	Integration of Cloud Gaming and Virtual Reality
	User-Centric Approach & Technological Advancement
	Balancing Latency
	Random Forest
	Adaptive Boosting (AdaBoost)

	Methodology
	Design Specification
	System Architecture
	VR Head-Mounted Displays (HMDs):
	Edge Computing Nodes:
	Network Topology:
	Machine Learning Module:

	Data Processing and Machine Learning
	Data Acquisition and Preprocessing:
	Machine Learning:

	Simulation Environment
	CloudSim Configuration:
	Dynamic Resource Provisioning:

	Implementation
	Data Loading and Processing
	Feature Selection and Data Encoding
	Dynamic Provisioning Simulation
	Setting Up Simulation Resources
	Building Logic for Resource Adjustment
	Using Predicted Latency for Probisioning Sumulation

	Evaluation
	Experiment 1
	Experiment 2
	Experiment 3
	Discussion

	Conclusion and Future Work

