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Optimizing Resource Scheduling in Cloud
Environments with Docker Containers and Advanced

Auto-Scaling Algorithms

Kurian George
X22191437

Abstract

This research presents a novel approach to optimizing resource scheduling in
cloud environments by integrating Docker containers with an advanced Ant Colony
Optimization (ACO) algorithm. The newly proposed version of the ACO al-
gorithm addresses the inefficiencies of traditional resource scheduling methods by
cost-efficiently handling dynamic and fluctuating workloads in cloud infrastructure.
This proposed algorithm features adaptive pheromone updating strategies and an
improved decision-making process to allocate resources more effectively while min-
imizing operational costs. This study uses the EdgeSimPy simulator, in which the
servers are made as Docker containers for an effective testing environment. This
study demonstrates that the proposed new ACO algorithm outperforms conven-
tional methods like First Come First Serve (FCFS) and offers a better and more
cost-efficient solution for managing cloud resources. This study marks a signific-
ant contribution to cloud resource management by providing an optimal resource
scheduling solution in variable cloud environments.

1 Introduction

In this technological era, the use of web applications has skyrocketed and become a daily
routine. Thousands of web applications are deployed on the internet daily and are ac-
cessed by millions of users around the world. These deployed applications experience
varied numbers of users throughout the year. Therefore, depending on the user requests,
the resources for the application need to be scaled. Traditionally, these requirements
were met by purchasing more servers whenever there was a necessity. However, it is an
expensive method, and once the requirement or the peak demand is over, these addition-
ally bought servers become useless and result in a wastage of investment.

Lately, people have started moving to Cloud Platforms to deploy web applications to
address the on-demand resource requests. Cloud Platforms offer a pay-as-you-go model,
which allows the users to pay only for the resources they use. This feature of the Cloud
Platform allowed many developers to host their web applications in the Cloud. This
approach eliminates the need to buy additional servers when there is a spike in the
application requests than the usual amount, which would otherwise require additional
resources to provide quality service to the user Mireslami et al. (2015). A significant
amount of revenue can be saved since these additional resources are needed only for a
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specific time and can be dynamically released when the requirement is over. Therefore,
unlike the traditional methods, a lot of money can be saved by not purchasing new servers.

One efficient way to host web applications on the cloud platform is to containerize and
deploy the application. Containerization is the process that allows an application and its
dependencies (application’s code, libraries, and runtime environment) to run in isolated
environments called containers, which share the kernel of the host Operating System
(OS) while maintaining isolated user spaces. Containers are efficient and less resource
intensive compared to Virtual Machines (VM), as VMs require a separate OS for each
instance Srirama et al. (2020). The structure of VMs and containers is shown in figure1.
This feature of Containers leads to faster startup times, and better resource utilization,
and provides a higher level of security by isolating applications from each other.

Figure 1: Virtual Machine and Container

There are several methods to containerize web applications, and one such efficient way
is by using Docker. Docker is an open-source platform that simplifies and automates the
deployment of applications inside containers by using lightweight, standalone container
images and dependency packages Wan et al. (2018). It is platform-independent, and the
dockerized application can be deployed effortlessly without worrying about the underly-
ing OS. Therefore contributing to an efficient cloud resource scheduling.

The basis of this research is the question ”Can we achieve cost-efficient resource scheduling
in Cloud Environments using Docker containers and the advanced Auto Scaling algorithm
Ant Colony Optimization (ACO)?”

This research focuses on addressing this question. Several objectives need to be sat-
isfied to achieve the solution. Firstly, finding a cloud simulator that can develop the
same scenario, as developing and testing this resource scheduling experiment in the cloud
is a costly process that requires significant resources. Develop and implement a frame-
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work that can run the ACO algorithm to schedule resources. Additionally, compare the
results with traditional scheduling algorithms like First Come First Serve (FCFS) to de-
termine the cost efficiency of the proposed model. This research aims to find an effective
cost-efficient solution for the proposed resource scheduling problem.

The remainder of the paper is structured as follows: Section 2 is the Related Work,
which discusses the previous works, their contributions, and limitations on conventional
resource scheduling algorithms, advanced scheduling algorithms, and cloud simulators.
Section 3 is the Methodology, which describes the materials, and equipment used in the
research and why they are used for this research. Section 4 is the Design Specification,
which shows the techniques, and framework used for this project. It also contains the
flowchart of the proposed algorithm. Section 5 is the Implementation, which describes in
detail how the project was implemented and the outputs generated. The Section 6 is the
Evaluation section, where the outputs obtained are discussed in detail and the Section
7 is the Conclusion and Future Work, which summarizes the research’s objectives and
findings, and also suggests the future works that can be done.

2 Related Work

2.1 Conventional Resource Scheduling Algorithms

The paper by Tawfeek et al. (2013) examines the limitations of conventional scheduling
algorithms like Round Robin (RR) and First Come First Serve (FCFS) in cloud comput-
ing environments and highlights the advantages of an Ant Colony Optimization (ACO)
based approach. The RR and FCFS are commonly used due to their easiness and simpli-
city of implementation. However, there are major drawbacks to these models. The RR
model allocates tasks to the Resource that is the Virtual Machine (VM) in a cyclic order
without considering the length of the task and the Resource (VM) capabilities, which
leads to resource wastage and increased makespan, especially when there are heavy work-
loads.

Mishra and Jaiswal (2012) also highlights the bottlenecks caused by the FCFS algorithms
and the advantage of using ACO to minimize these drawbacks. The FCFS does task
scheduling based on the request arrival time thus completely ignoring the resource re-
quirements and execution times, resulting in the overloading of VMs and inefficient task
handling. Whereas Sharma et al. (2022) compares the ACO with advanced algorithms like
genetic algorithms (GA) and particle swarm optimization (PSO). However, ACO consist-
ently outperforms them regarding convergence speed and solution quality thus ensuring
a better QoS-based task scheduling in cloud computing. These conventional methods
which used to work efficiently in the olden days are overthrown by new algorithms In this
project ACO algorithm is implemented to efficiently allocate the tasks to the resources.
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2.2 Advanced Scheduling Algorithm ACO

The concept of ACO was introduced by French entomologist Pierre-Paul Grasse, he no-
ticed that ants communicate indirectly through chemicals called pheromones. This form
of communication involves several factors like modifying environmental factors and can
only be accessed by nearby insects of the same species. The first developed algorithm
inspired by this ant behavior was Ant SystemsDorigo et al. (1996). However, despite its
initial success, Ant Systems could not compete with other algorithms for the Travelling
Salesman Problem Goyal (2010). However, the concepts initiated by the Ant Systems
were well rooted which lead to additional studies on the ACO. Currently, there are many
applications that employ ACO and provide state of the art solution for several optimiz-
ation tasks Dorigo and Stützle (2019).

The paper by Mishra and Jaiswal (2012) focuses on discussing the application of Ant
Colony Optimization (ACO) technique to solve load-balancing issues in cloud environ-
ment. As compared to the Traditional approach, ACO approach is more dynamic in
nature and hence can be well deployed in the dynamic cloud environment where the
workload and resources are very dynamic or keep on fluctuating. ACO is a bio-match al-
gorithm that tries to replicate the nature of ants searching for the shortest routes Stützle
et al. (2011). The ants stated in the algorithm outline solutions for the problem; when
they traverse the potential solution space, they’re said to deposit pheromones on the paths
they traverse. These are chemical signals that those other ants follow, and a stronger
trail of pheromones means that it is a better run route.

As noted in the studying paper by Sharma et al. (2022), such changes reflect the pos-
sibility of the ACO model learning from the situation by updating the pheromone trail
maps which are representative of the learning capability of the ant agents. This leads
to an increase in load distribution, decrease in the time taken to execute the task, and
efficient use of resources as compared to other approaches Dorigo (2007). This way, ACO
outperforms RR and FCFS by providing a flexible, adaptive and efficient solution to
social network scheduling problems. Therefore, ACO algorithm usage leads to better
load distribution, shorter computation times, and optimal usage of resources, which are
paramount in cloud services’ performance and dependability. ’

Li et al. (2011) discusses an advanced task-scheduling algorithm for cloud computing
environments. Many variations of ACO algorithms have been released in the past years
but each version is specifically designed for certain individual purposes. Therefore, this
paper uses the Ant Colony Optimization Regression algorithm to get the desired output.
That is to allocate the task based on its size to the available resource which is if the task
is small then it should be allocated to the nearest small empty resource and if the task
is comparatively huge then it will be allocated to the empty bigger resource available for
efficient task scheduling.

2.3 Cloud Simulators

The paper ”Ahmed and Sabyasachi (2014)” by Arif Ahmed presents an in-depth analysis
of various cloud computing simulators. The Simulators provide a cost-effective, repeat-
able, and controllable environment to test and model multiple cloud applications and
configurations. Some common cloud simulators are CloudSim, the most popular sim-
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ulator CloudAnalyst, which has a GUI interface, GreenCloud simulator which focuses
on energy consumption analysis, MDCSim which focuses on multi-tier data centers and
EdgeAISim for simulating AI models in edge computing environments. However, there
are many drawbacks to the existing Simulators as few of them are tailored to satisfy
particular requirements and do not meet all the criteria for this project.

Therefore, The paper ”Souza et al. (2023)” introduces EdgeSimPy which addresses the
shortcomings of existing simulators by providing a modular architecture that includes
several functional abstractions for edge servers, network devices, and applications. It is
completely developed in Python and is designed to model and evaluate resource manage-
ment policies in edge-computing environments. EdgeSimPy allows detailed simulation
scenarios by incorporating built-in models for user mobility, application composition,
and power consumption, which also matches our requirements. The EdgeSimPy helps
in the simulation of the algorithm in efficiently mapping the resources by addressing the
requirements.

The paper uses EdgeSimPy to implement the ACO Algorithm and obtain the desired
output. The ACO algorithm is tailored according to our requirements and the output is
obtained after successful simulation. The dataset provided by the EdgeSimPy simulator
is taken as the sample input and the simulation is performed by using them. This easy
and convenient Python-based simulator helps in developing the algorithm and tailoring
it to our needs to obtain the desired output.

3 Methodology

The objective of this research is to evaluate the performance and cost efficiency of auto-
scaling dockerized container cloud resources using an advanced Ant Colony Optimiz-
ation (ACO) algorithm. This evaluation is conducted by simulating scenarios within
the Python-based cloud simulator, EdgeSimPy. The ACO algorithm is imported from
the open-source Python library mealpy into the placement algorithm of EdgeSimPy
Van Thieu and Mirjalili (2023). The imported ACO algorithm is tailored to the re-
quirements and simulations are conducted accordingly. Additionally, the research will
compare the ACO algorithm with traditional scaling algorithms such as First Come First
Serve (FCFS) to demonstrate the effectiveness of the ACO algorithm in efficiently scaling
cloud resources in response to user demands.

By analyzing various performance metrics and execution times, this study aims to provide
a comprehensive assessment of the ACO algorithm’s capability to enhance resource man-
agement in cloud environments. The findings highlight the potential improvements in
scalability, load balancing, and overall system efficiency that can be achieved through the
application of advanced ACO techniques.

3.1 EdgeSimPy Cloud Simulator

As the second step towards the implementation of the project, the Python-based Cloud
simulator EdgeSimPy is used to develop a custom cloud resource scheduling scenario.
After carefully analyzing different cloud simulators the EdgeSimPy was finally found
suitable for the project because of three main reasons. Firstly the simulator consists
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of six servers and each server consists of containers that can replicate the application
provisioning method of Docker and can be easily integrated with the DockerHub repos-
itory. Secondly, it is developed in Python and therefore any Python library can be easily
called or integrated into the simulator. Finally, it can be easily customized based on
the requirements, its user-friendly Python interface helps in developing and running the
algorithms Souza et al. (2023). The ACO algorithm from the open-source library mealpy
can be efficiently customized into the placement algorithm of the cloud simulator as both
the library and simulator are Python-based therefore minimizing the time in configuring
the algorithm in different languages or simulators.

The proposed scenario includes six servers and a set of different services and each service
should be assigned to its suitable servers based on the services. The architecture diagram
of EdgeSimPy is shown in the figure 2 The EdgeSimPy simulator has two sets of datasets
that can be used in this scenario and from that, ’sample dataset2’ is used for the simu-
lation. All the services are predefined in the dataset. The objective of the simulation is
for the algorithm to schedule smaller services to the smallest free resource efficiently and
bigger services should be scheduled to the biggest free resources. Similarly, the FCFS
algorithm was also tested in the EdgeSimPy Cloud Simulator to compare and contrast
the results obtained.

Figure 2: EdgeSimPy Architecture Souza et al. (2023)

For the simulation, the server capacities and service characteristics were defined in
the EdgeSimPy dataset. The ACO algorithm was customized to match these schedul-
ing requirements, ensuring services were allocated to the most suitable resources. Key
parameters of the algorithm, including pheromone levels were adjusted to optimize per-
formance. Similarly, the traditional FCFS algorithm was also tailored to this scenario
and run to compare FCFS and ACO algorithms.

Data collection involved multiple simulation iterations to gather performance metrics
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such as service completion time, resource utilization, and operational costs. Measure-
ments focused on tracking service completion times and load distribution across servers.

Figure 3: EdgeSimPy’s Simulation Workflow Souza et al. (2023)

3.2 Proposed Scheduling Algorithm: ACO

The fundamental principle of Ant Colony Optimization is to stimulate and follow the for-
aging behavior of the ant colonies. The ant group’s specialty is that whenever it searches
for food, it leaves a chemical known as pheromone to communicate with each other. At
first, the ants start searching for food in random ways, and when one of them finds a
path to the food source they leave the chemical pheromone on the path. Therefore once
an ant finds food and leaves its pheromone other ants will follow this trail by sensing the
pheromone on the ground. Soon all the ants start coming to the food source thus finding
the smallest way as there are huge amounts of pheromones on the ground to the food
sourceDorigo et al. (2006). Therefore, it is clear that the ACO algorithm can be used and
applied to any integrative problem as it will efficiently find the smallest path required to
execute a job.

In ACO algorithms there is an evaporation rate, which refers to the process of pher-
omone trials which was led by the ants decreasing and vanishing over time if no new
pheromones are laid by the antsEbadinezhad (2020). This means that the older the path
becomes the more it loses its ability to give optimal solution. Therefore, in the proposed
ACO algorithm a new method is implemented. To make sure continuous optimization is
followed instead of pheromone evaporation, the algorithm uses parameters like pheromone
importance, intent factor, and exploration factor to control and distribute the solutions.
Therefore the proposed algorithm performs without worrying about the evaporation rate.

Here in this paper, the ACO algorithm is used by calling the library mealpy Van Thieu
and Mirjalili (2023). It is an open-source library for meta-heuristic algorithms in Python.
The ACO algorithm seamlessly finds the best path to the solution that is it will allocate
the resources to the exact servers based on the parameters described. After calling the
ACO algorithm from the mealpy library and tailoring it with the placement algorithm in
the EdgeSimPy simulator based on the project requirement the ACO algorithm will effi-
ciently allocate the exact resources for the oncoming services thus seamlessly distributing
the loads at a low cost of operation. The algorithm gives the execution time, service-to-
server allocation, best solution, and pheromone importance to calculate the performance
of our proposed algorithm Zhao and Stankovic (1989).
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4 Design Specification

This research focuses on developing an effective cloud resource scheduling solution by us-
ing advanced ACO algorithms and frameworks. The main components for the project are
cloud simulator EdgeSimPy, to run the simulation, placement algorithm ACO from the
mealpy library, and parameters that need to be defined to achieve the optimal resource
allocation in a simulated cloud environment.

For the smooth working of this project, high-end resources are required. To minimize the
cost and expense that will be caused by these resources a Cloud simulator EdgeSimPy is
used to simulate the same cloud scenario. The simulator is run using a free platform for
Python code execution called Google Colab which is connected to the Google Compute
Engine and provides the necessary RAM and Disk space to run the simulation.

The ACO algorithm is customized and additional features are added to cover the main
objective of the paper which is to scale resources cost-efficiently to servers by minimizing
the total execution time and to distribute resources to servers based on their size and
availability. To calculate the variance in resource utilization across edge servers and to
estimate the execution time of services an ’objective function(solution)’ is defined.
This function initializes arrays to track the total load on each server, initializes sets to
track which servers are used, and initializes a list to store execution times for services.
The service assignment logic is also implemented inside this function. This function en-
ables the code to iterate through the solution array and assign services to servers based
on the optimized solution obtained from the algorithm.

To check if the target server has enough capacity to handle the service’s CPU demand a
capacity check logic is also developed in the code. A logic to check the least execution
time and total execution time is also implemented in the code. It estimates the execution
time based on the service’s CPU demand and the server’s CPU capacity. Additionally,
a logic to calculate the variance in resource utilization is added to the code and a logic
is implemented to add a penalty if not all servers are utilized. A function to retrieve the
number of services assigned to the servers is also initialized in the code. The figure 4
shows the flowchart of the proposed ACO algorithm.
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Figure 4: ACO Flowchart

5 Implementation

For the implementation of this project several factors needed to be structured and organ-
ized to obtain the desired results.

5.1 Creating EdgeSimPy Workspace

For the simulation, the EdgeSimPy Simulator environment was established by connecting
it to the Google Compute Engine via Google Colab. This setup helped in facilitating the
necessary computational power required for the cloud resource scheduling experiment.
The requirements for the simulators were installed to satisfy the dependency issues. The
ACO algorithm was then integrated within the placement algorithm framework by im-
porting the mealpy library. The ACO algorithm is then developed to track the servers
assigned to each service. This Python library for algorithms enabled the efficient applic-
ation of ACO to our specific use case.
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5.2 Integrating the proposed ACO Algorithm

The ’my algorithm’ function is defined within this framework to enclose the entire op-
timization process. The ’objective function’ helps in calculating the load on each server
and the corresponding variances in these loads. This variance is an important metric as it
shows how effectively the services are distributed across the servers. A penalty is added
to the variance in case all the available servers are not used. This ensures that all the
available servers are used for resource allocation thus ensuring maximum utilization.

To structure the optimization problem the ’problem dict’ dictionary is defined. This
dictionary includes the ’bounds’ for the variables, the objective function, and the optim-
ization directions. The bounds initiate the possibility of allocation of each server to each
service, ensuring that each service will only be assigned to a valid server index. Similarly,
the ’obj func’ in the dictionary is linked to the ’objective function’, which helps in
evaluating the quality of each solution.

Several parameters for the efficient functioning of ACO are described in the algorithm to
showcase the resource scheduling such as:

epoch: This parameter describes and sets the number of iterations the algorithm will
run. That is each epoch is a representation of one complete cycle of the algorithm’s
operation.

pop size: This parameter sets the number of solutions considered for each iteration
in other words the number of ants to find the right path. The number of ants describes
how fast they can find an efficient path.

sample count: This parameter defines the amount of samples that are drawn in each
iteration. This parameter has a great influence as it can determine the diversity and
quality of solutions.

intent factor: This parameter affects how strongly the pheromone trails influence the
search process. It also has a great influence on the selection probability of solutions based
on their quality.

zeta: The zeta parameter helps in controlling the influence of the pheromone trail on the
solution construction. The strong pheromone influence leads to finding the best solutions.

These parameters are crucial as they balance the entire process within the optimiza-
tion algorithm. These parameters also have an impact on the algorithm’s ability to
find high-quality solutions efficiently. Once the parameters were configured, the ’solve’
method was used to execute the algorithm. This method applies the optimization to the
problem defined in the ’problem dict’. Then the execution time is measured to evalu-
ate the efficiency of the algorithm. The pseudo-code for the proposed ACO algorithm is
represented in algorithm1.
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Algorithm 1 Proposed Ant Colony Optimization Algorithm

1: Define Function my algorithm(parameters)
2: Define Function objective function(solution)
3: total load ← zeros(size of EdgeServers)
4: assigned servers ← empty set
5: execution times ← empty list
6: for each service idx, server idx in enumerate(solution) do
7: server idx ← round(server idx)
8: if server idx invalid: continue
9: total load[server idx] ← total load[server idx] + service.cpu demand
10: add server idx to assigned servers
11: if edge server has ’cpu’:
12: execution time ← service.cpu demand / edge server.cpu
13: append execution time to execution times
14: end for
15: variance ← variance(total load)
16: if not all servers used: variance ← variance + 10
17: return variance + sum(execution times)
18: model ← initialize ACO with parameters
19: g best ← model.solve(problem dict)
20: best solution ← g best.solution
21: least execution time ← ∞
22: for each service idx, edge server idx in enumerate(best solution) do
23: edge server idx ← round(edge server idx)
24: if edge server idx invalid: continue
25: if service not provisioned then
26: if edge server can host service then
27: provision service to edge server
28: end if
29: end if
30: if edge server has ’cpu’:
31: execution time ← service.cpu demand / edge server.cpu
32: least execution time ← min(least execution time, execution time)
33: end for
34: print results and summaries

The outputs from the cloud simulation provided a detailed understanding of the per-
formance and behavior of the ACO algorithm. The result of the simulation explains the
Epoch numbers in each provisioning, the number of provisioned services, the number of
ants in each provisioning, the pheromone importance, the exploration factor zeta, the
runtime of each epoch in each provisioning, the current best, global best, and the execu-
tion time. The obtained results of the simulation of the ACO algorithm’s effectiveness in
efficiently scheduling resources. The time taken by the algorithm to provision each service
to a server helped in identifying the algorithm’s impact. Similarly the outputs detailed
which servers were assigned to different services thus providing a complete understanding
of resource allocation dynamics.
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5.3 Integrating the traditional FCFS Algorithm

To find out the efficiency of the ACO algorithm, the results obtained from the first sim-
ulation were compared with the results of the FCFS algorithm. The traditional FCFS
algorithm allocated the resources to the servers on a first come first serve basis. The
pseudo-code for traditional FCFS is represented in algorithm 2. Thus the comparison
mainly focused on the execution time and resource provisioning efficiency of both al-
gorithms. The results of FCFS and ACO highlighted the advantages of using ACO over
FCFS in terms of optimizing cloud resource scheduling.

Algorithm 2 FCFS Service Placement Algorithm

1: total load ← zeros(size of EdgeServers)
2: assigned servers ← empty set
3: Measure start time
4: for each service in Service.all() do
5: server idx ← 0 {Start with the first server}
6: while server idx ¡ length of EdgeServers do
7: edge server ← EdgeServer.all()[server idx]
8: if edge server can host service then
9: provision service to edge server
10: total load[server idx] ← total load[server idx] + service.cpu demand
11: add server idx to assigned servers
12: break {Move to the next service}
13: end if
14: server idx ← server idx + 1
15: end while
16: end for
17: Measure end time
18: execution time ← end time - start time
19: variance ← variance(total load)
20: print results and summaries {Total load, variance, execution time, and provision-

ing status}

This research demonstrates that the advanced ACO algorithm significantly improves
scalability, load balancing, and cost efficiency compared to traditional methods like FCFS.
After conducting several simulations in the simulator with the proposed scenario the ad-
vanced ACO algorithm showed results that were much more efficient than the traditional
FCFS algorithms. The scenario was tested with both algorithms to find and compare the
efficiency, cost implications, and execution time.

6 Evaluation

The experiment was conducted on EdgeSimPy Cloud Simulator which was run on Google
Colab. The platform Google Colab was connected to the Google Compute Engine to get
the resources like RAM and Disk space required to run the simulation. Each server in the
EdgeSimPy simulator has the properties of docker containers consisting of CPU, RAM,
container image, disk, and layers. There are six servers in the EdgeSimPy simulator
which is apt for the simulation. The ACO algorithm is integrated into the placement
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algorithm of the simulator. The parameters which define the behavior and efficiency of
the algorithm are defined. The dataset in the simulator is loaded to the algorithm and
the simulation is executed.

The Cloud scenario has to be run multiple times with two different algorithms to compare
and contrast the results. The first and second simulation was with the developed ACO
algorithm to find out the efficiency of the proposed algorithm. The third simulation was
with the traditional FCFS algorithm to find out the differences and similarities between
these two algorithms.

6.1 Scenario 1 with 50 Ants

The first simulation uses the proposed ACO algorithm. The dataset was loaded in the
algorithm. The parameters which determine the behavior and efficiency of the algorithm
are defined as follows. The epoch value was set to 100 (which means there will be 100
iterations in search of the optimal solution), the pop size value was set to 50 (total of 50
ants at each iteration), the sample count value was set to 25 (the number of solutions
sampled from the probability density function generated by the pheromones is 25), the
intent factor value was set to 0.5 (affects the influence of pheromone concentration), and
the zeta value was set to 1.0 (maintain balance between convergence speed and solution
diversity). The table 1 shows the output obtained.

Table 1: ACO Algorithm Output with 50 Ants
Number Pheromones Exploration Server Best Solution Least Execution
of Ants Factor (variance) Time (sec)

50 0.5 1.0 Server 1 0.45490336 0.08
50 0.5 1.0 Server 2 2.12304361 0.08
50 0.5 1.0 Server 3 3.84371329 0.08
50 0.5 1.0 Server 4 2.55933762 0.08
50 0.5 1.0 Server 5 0.50089009 0.08
50 0.5 1.0 Server 6 4.82672705 0.08

The optimal service placement is indicated by the solution vector [0.45490336 2.12304361
3.84371329 2.55933762 0.50089009 4.82672705] . This vector is the representation of ser-
vices assigned to specific servers which are the dockerized containers. The current best
value is the best solution found in the current epoch and is obtained 10.958333333333334
for the first 7 iterations and the global best which represents the best solution found
across all epochs is obtained 10.958333333333334 till 7th iteration. This means that the
algorithm has not yet found a better solution which is the shortest path. The average
runtime for these epoch’s were around 0.017 to 0.018 seconds. The figure 5 shows that.
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Figure 5: Output of First 12 epoch’s

However, from 8th iteration the current best value obtained is 0.6666666666666666
which means that the algorithm discovers a significantly better solution and this new
value becomes the new global best value. Therefore, from epoch 8 onwards, the values
of current best and global best remains at 0.6666666666666666 which means that this
solution is stable. The current best and global best remains at 0.6666666666666666 till
the end of the provisioning indicating that the algorithm has converged to an optimal
solution. The average runtime for these epoch’s were around 0.017 to 0.025 seconds. The
figure 6 shows that.

Figure 6: Output of rest of the epoch’s and best solution found with 50 Ants

The number of provisioned services is 6 out of 6 which means that all the services
were efficiently scheduled to the servers. The list of services that were assigned to each
server is obtained. The service 1 is assigned to server 2, service 2 is assigned to server 3,
service 3 is assigned to server 4, service 4 is assigned to server 6, service 5 is assigned to
server 5, service 6 is assigned to server 1 which shows that the resource is allocated to
different servers based on the size and the availability of the servers. The runtime of each
iteration is available and the execution time obtained is 0.08 seconds and least execution
time is 0.08 seconds which means that it used less time to find the smallest path and
provision the resources. The figure 7 shows that.

Figure 7: Output of Service to Server Provisioning with 50 Ants

14



6.2 Scenario 2 with 25 Ants

The second simulation uses the ACO algorithm with parameters set to a minimum. The
epoch value was set to 50, the pop size value was set to 25 (25 ants at each iteration), the
sample count value was set to 15 (the number of solutions sampled from the probability
density function generated by the pheromones is 25), the intent factor value was set to
0.5 (affects the influence of pheromone concentration), and the zeta value was set to 1.0.
The table 2 shows the output obtained.

Table 2: ACO Algorithm Output with 25 Ants
Number Pheromones Exploration Server Best Solution Least Execution
of Ants Factor (variance) Time (sec)

25 0.5 1.0 Server 1 5. 0.08
25 0.5 1.0 Server 2 1.02972597 0.08
25 0.5 1.0 Server 3 0. 0.08
25 0.5 1.0 Server 4 2.90972066 0.08
25 0.5 1.0 Server 5 4.12903057 0.08
25 0.5 1.0 Server 6 1.88101963 0.08

In the second simulation, the optimal service placement is indicated by the solution
vector[5. 1.02972597 0. 2.90972066 4.12903057 1.88101963]. The current best and global
best value obtained is 11.0 for the first 3 iterations. This means that the algorithm has
not yet found a better solution or the shortest path. The average runtime for these
epoch’s were around 0.010 to 0.011 seconds. In epoch 4, a slightly better solution than
the previous epochs are found which is indicated by the current best and global best
values at 10.958333333333334. The runtime increases slightly to 0.01251 seconds. The
figure 8 represents that.

Figure 8: Output of First 10 Epoch’s

However, from epoch 5 the algorithm finds the optimal solution which is indicated by
the current and global best values of 0.6666666666666666. The average runtime remains
stable at 0.01279 seconds, showing that the algorithm efficiently identified this perfect
solution without a significant increase in computational cost. The figure 9 represents
that.

Similarly in the second simulation, all the resources are efficiently scheduled. The
service 1 is assigned to server 3, service 2 is assigned to server 1, service 3 is assigned to
server 6, service 4 is assigned to server 4, service 5 is assigned to server 5, service 6 is
assigned to server 2 which shows that the resource is allocated to different servers based
on the size and the availability of the servers with the help of the optimal solution. The
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Figure 9: Output of rest of the Epoch’s and best solution found with 25 Ants

runtime of each iteration is available and the execution time obtained is 0.12 seconds
and least execution time is 0.08 seconds which means that it used less time to find the
smallest path and provision the resources. The figure 10 represents that.

Figure 10: Output of Service to Server Provisioning with 25 Ants

6.3 Scenario 3 with FCFS Algorithm

This simulation uses the traditional FCFS algorithm for scheduling. The purpose of FCFS
algorithm is to schedule the first requests to the first available server. This traditional
algorithm do not check the service size or resource size and directly assigns the services
to the first server. For this simulation there are 6 servers and the dataset with services is
loaded in the algorithm developed. After running the simulation the table 3 is obtained.

Table 3: FCFS Algorithm Output
Load on Service Server Variance of Execution
Server Server Load Time (sec)

6 Service 1 Server 1 5 0.0
0 Service 2 Server 1 5 0.0
0 Service 3 Server 1 5 0.0
0 Service 4 Server 1 5 0.0
0 Service 5 Server 1 5 0.0
0 Service 6 Server 1 5 0.0

The total load on Servers for each provisioning is different. The FCFS algorithm
does not split the services and schedule it to the next server. The load on the server is
obtained to be 6 for the first provisioning indicating that all the services are assigned
to the server 1 in the first provisioning. That means FCFS assigns all services to the
nearest server till it gets completely occupied rather than distributing the services based
on the service size. The figure12 represents that. The variance of server load obtained
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is 5 which means that all the loads were placed on a single Server which reflects the
imbalance in resource distribution. The execution time obtained is 0.0 that is because
the FCFS algorithm is not searching for the optimal path but just assigning the services
to the first server thus making it execute faster which is not ideal for a real situation.

Figure 11: Optmial Placement results of FCFS

Figure 12: Output of Service to Server Provisioning with FCFS

6.4 Discussion

After conducting three simulations, two with the proposed ACO algorithm and one with
the traditional FCFS algorithm it is observed that our proposed design achieved the de-
sired output. It efficiently scheduled resources by finding the optimal solution with less
time thus achieving cost efficiency. In both the ACO simulation, the ACO algorithm
demonstrated a balanced load distribution with minimal execution times. To site, in the
first scenario with 50 Ants, the algorithm found the optimal solution by the 8th iteration
and in the second scenario with 25 ants, the algorithm found the optimal solution by the
5th iteration. Whereas, the FCFS algorithm assigned all the services to the first available
server without checking the resource availability or load distribution. The variance in the
server load showed that this algorithm is inefficient for efficient resource scheduling and
therefore could not be used for distributing resources efficiently. This leads us to the
fact that the proposed ACO algorithm is a milestone in container resource scheduling
problems.

However, as far as the maximum performance of the given ACO algorithm is concerned,
there are certain aspects, which could be modified to gain enhanced results. The fact that
the algorithm depends on parameters as many of ants and the influence of a pheromone,
one can suppose that it performance may greatly depend on the chosen parameters. This
sensitivity to parameter settings might result in different suboptimal outcomes in different
scenarios especially in the settings whereby workload volatility and available resources
vary greatly. In the future to improve the algorithm it may be relevant to look into
ways to make these parameters dynamic and self-adjusting in response to the situation,
possibly using concepts related to machine learning.
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7 Conclusion and Future Work

The goal of this study was to determine if better resource scheduling at less cost in the
cloud could be done with the use of Docker containers and enhanced auto-scaling ACO
algorithm. The initial aim included determining the advantages of the ACO algorithm
in order to define the logical utilization of limited resources and analyze the working
compared with the traditional FCFS algorithm. The simulations proved that the pro-
posed ACO algorithm improvises the FCFS algorithm in giving efficient utilization of
resources, lesser execution times of a job, and better performances of the system. In both
the situations where the application of the ACO algorithm was made, it was able to find
efficacious solutions in a very few number of iterations, as in the current case it was with
50 ants’ iteration 8 and with 25 ants, iteration 5. This led to proper load sharing among
the various servers hence exemplifying how the algorithm comes in handy when different
tasks are being run in cloud environments.

FCFS on the other hand was incapable of colorizing the jobs according to the avail-
ability of resources or distribution of load across several servers all the jobs got assigned
to one server which clearly led to inefficiencies and imbalances. The above results showed
the effectiveness of the proposed ACO algorithm in solving the challenges associated with
containerized resource scheduling in a cloud environment.

The future work of this project could focus on developing a dynamic and adaptive version
of the ACO algorithm which adjusts the parameters in real-time based on the current
workload and resource availability. Similarly, this research can focus on developing an
energy-efficient model by integrating energy-aware metrics into the algorithm. In this
way, this work opens the possibility for future research that can extend these directions,
likely to provide stronger, more efficient as well as more readily scalable methods of
scheduling resources in cloud environments for commercial applications.
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1. How does your work compare with other published techniques? 

My work proposed a new method of cloud resource scheduling by integrating Docker 

containers with my developed version of Ant Colony Optimization (ACO) algorithm. This 

method proved to be cost effective as the runtime is lower when compared the same scenario 

with the published First Come First Serve (FCFS) algorithm. The published techniques like 

First Come First Serve (FCFS), Round Robin (RR), Genetic Algorithm (GA), and Particle 

Swarm Optimization (PSO) all have several drawbacks such as overloading of virtual 

machines, suboptimal task handling, and have increased runtime which make them unsuitable 

for efficient resource scheduling purposes. My developed ACO algorithm overcomes all these 

issues faced by traditional methods by dynamically scheduling services based on service size 

and server availability, thereby minimizing runtime and reducing cloud utilization costs. 

 

 

2. Why have you considered only FCFS and ACO? 

I have considered FCFS and ACO for this study because these two algorithms represent two 

contrasting approaches to cloud resource scheduling. The FCFS is a traditional algorithm and 

ACO is an advanced scheduling algorithm. It serves as a good baseline for comparison in this 

study. The FCFS is commonly used in various cloud environments because of its simplicity 

and ease of implementation. However, there are some limitations to this model like lack of 

dynamic optimization, allocating services based on arrival time and not based on service size. 

This often leads to inefficient resource utilization in cloud environments. 

Whereas the advanced algorithm like ACO is designed to optimize resource scheduling by 

dynamically searching for optimal solutions in real time thus reducing cloud utilization costs. 

But certain factors like evaporation rate need to be calculated and adjusted. Therefore, I chose 

to modify the ACO algorithm to satisfy the specific requirements of my cloud scheduling 

scenario, ensuring that it not only optimizes performance but also addresses the limitations 

found in traditional methods like FCFS. 

 



 

3. Are all the decimal digits in your evaluation results significant? 

The values of solution vector, current best, global best, and least execution time are having 

decimal values. All these values are important as they represent the results. But in cloud 

resource scheduling, a difference in the third or fourth decimal place might not have a 

substantial impact on overall performance or cost. In a practical application, only the first few 

decimal digits are typically significant for decision making. However, the entire decimal digits 

are used in the results to maintain accuracy in comparisons and to maintain consistency 

throughout the evaluation process. The comparison between scenario one, two and three can 

be effectively clarified with the help of these decimal digits. This detail in decimal digits will 

also help in carrying out any future work related to this study. 
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