
User Configuration Manual for Research
Project: Decentralized Based SDP for
IoT Ecosystem in Edge Computing
Prabhav gaur
x22245316@student.ncirl.ie

1. Introduction
This manual provides detailed instructions on the required software tools, configurations, and
settings needed to successfully replicate the experimental setup of the research project titled
"Decentralized Based SDP for IoT Ecosystem in Edge Computing." It assumes that the reader
has basic knowledge of the necessary programming languages, blockchain technologies, and
IoT frameworks.

2. Software Tools and Libraries

2.1. Python Environment
● Version: Python 3.8 or later
● Key Libraries:

○ web3: For interacting with the Ethereum blockchain.
○ azure-iot-device: For connecting to Azure IoT Hub.
○ pandas: For handling data and logging metrics.
○ python-dotenv: For managing environment variables.

2.2. Ethereum Blockchain
● Node Provider:

○ Use a public provider like Infura or a locally hosted Ethereum node.
● Smart Contract Deployment:

○ Solidity Compiler Version: ^0.8.0
○ Deployment Platform: Remix IDE or Truffle
○ Network: Ropsten (Testnet) or Mainnet (for production)

https://infura.io/

2.3. Azure IoT Hub
● Azure Subscription: Ensure you have an active Azure account and IoT Hub instance.
● Device Provisioning: Devices must be registered in the IoT Hub, and keys must be

generated for each device.

2.4. Development Tools
● IDE: Visual Studio Code or PyCharm (with Solidity plugin for smart contract

development).

3. Configuration Details

3.1. Environment Variables Setup

Create a .env file in the root directory of your project with the following content:

Azure IoT Hub Configuration

IOT_HUB_HOSTNAME=your_iothub_hostname_here

DEVICE_ID=your_device_id_here

DEVICE_KEY=your_device_key_here

Blockchain Configuration

BLOCKCHAIN_URL=your_blockchain_url_here

CONTRACT_ADDRESS=your_contract_address_here

CONTRACT_ABI='[json]'

PRIVATE_KEY=your_private_key_here

3.2. Blockchain Setup
1. Smart Contract Deployment:

○ Compile the provided Solidity contract using Remix IDE or Truffle.
○ Deploy the contract on the Ethereum network using meta mast sign in (Ethereum

Testnet).
○ Note down the contract address and ABI.

2. Web3 Connection:
○ Use web3.py to establish a connection to the Ethereum network via the

provided node URL.
○ Ensure your wallet is funded with sufficient ETH for transactions (use faucets for

Testnet).

3.3. Azure IoT Hub Configuration
1. Device Registration:

○ Register all the IoT devices intended for simulation in your Azure IoT Hub.
○ Obtain the connection string for each device.

2. IoT Hub Configuration:
○ Configure the IoT Hub to accept connections from the devices using the

connection strings.
○ Set up necessary routes and endpoints for data processing.

3.4. Python Script Configuration

1. Load the .env file in your script to configure environment variables.
2. Initialize the IoT Hub client using the azure-iot-device library.
3. Set up Web3 with the blockchain URL and the private key for signing transactions.

4. Running the Experiment

4.1. Start the IoT Device Simulation
1. Run the Python script:

python IOT.py

○ This will simulate the interaction of registered IoT devices, process data at the
edge and fog layers, and log communications on the blockchain.

2. Monitor the Logs:
○ The script will generate blockchain logs, communication logs, and metrics logs in

CSV format.
○ Review these logs for analysis and validation.

4.2. Managing the Experiment

● Stopping the Simulation: Use Ctrl+C to gracefully stop the simulation.
● Log Review: Logs are saved in metrics_log.csv and communication_logs.csv

files for post-experiment analysis.

5. Troubleshooting
● Blockchain Connection Issues:

○ Ensure your blockchain node (e.g., Infura) is reachable.
○ Verify that the correct BLOCKCHAIN_URL is set in the .env file.

● IoT Hub Connectivity:
○ Double-check the device credentials in the IoT Hub.
○ Confirm that the DEVICE_ID and DEVICE_KEY match the IoT Hub configuration.

● Smart Contract Errors:
○ Ensure that the smart contract ABI and address are correctly referenced in the

script.
○ If using Testnet, verify that the wallet has sufficient funds for transaction fees.

6. Conclusion
This configuration manual outlines the necessary tools, environment settings, and steps to
replicate the experimental setup of the research project. Proper adherence to the configurations
provided will ensure that the simulation runs as expected and that the results are consistent with
those reported in the research study.

