
Dynamic Infrastructure Scaling Mechanism
in Preallocated Resource Environments: A

Practical Deployment Approach with Apache
Solr

MSc Research Project
MSc In Cloud Computing

Sunil Suresh Gadhe
Student ID: X22179607

School of Computing
National College of Ireland

Supervisor: Shaguna Gupta

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Sunil Suresh Gadhe
Student ID: X22179607
Programme: MSc In Cloud Computing
Year: 2023-24
Module: MSc Research Project
Supervisor: Shaguna Gupta
Submission Due Date: 12/08/2024
Project Title: Dynamic Infrastructure Scaling Mechanism in Preallocated

Resource Environments: A Practical Deployment Approach
with Apache Solr

Word Count: 7,493
Page Count: 19

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sunil Gadhe

Date: 12th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). ⇤
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

⇤

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not su�cient to keep
a copy on computer.

⇤

Assignments that are submitted to the Programme Coordinator o�ce must be placed
into the assignment box located outside the o�ce.

O�ce Use Only
Signature:

Date:
Penalty Applied (if applicable):

Dynamic Infrastructure Scaling Mechanism in
Preallocated Resource Environments: A Practical

Deployment Approach with Apache Solr

Sunil Suresh Gadhe
X22179607

Abstract

In today’s world, it’s crucial to optimize both the design and deployment
strategies for applications. Traditional approach to scale out infrastructures on
the cloud involves the use of the host metrics which include CPU, Disc I/O and
memory usage. New nodes are brought, or nodes are removed from a node cluster
based on given metrics conditions being met. However, this approach is ine↵ective
in environments with preallocated resources, such as an Apache Solr cluster. In
these configurations, a certain amount of memory is dedicated to the Solr service
that implies di↵erent and constant memory usage at various queries requests. This
can lead to a negative impact on the functioning of the application and results to
time delay. To maintain optimal application performance, manual intervention is
necessary to add and remove nodes from the cluster.Due to very high numbers of
query requests, then the cluster must have maximum nodes in order to control the
numerous Query requests. However, this approach results in resource wastage when
the number of queries is relatively low. This paper introduces a dynamic scaling
algorithm and deployment strategy that leverages a scheduler machine to address
the challenge of e�cient resource utilization in Apache Solr clusters. The overall
goal of the study is to improve resource usage, extend the Solr cluster sustain-
ably, avoid waste, and ensure the application’s high throughput during the busiest
period, where some focuses are associated with each goal. The dynamic scaling
algorithm will follow chosen metrics like the rate of Solr queries and the latency
over the time frame of 1 min, or 5 mins. It will then scale in/out the size of the
Apache Solr cluster to the production level in the most e�cient manner possible.

Keywords— Cloud computing, Dynamic resource allocation, Scheduler ma-
chine, optimal resource allocation strategy, Service Principle, Azure Cloud, Al-
gorithm for Resource Allocation, Resource scheduling, Resource management,
VMSS, Apache Solr

1 Introduction

1.1 Background And Motivation

An overall problem one can observe today is how to e�ciently manage architectural
design and deployment for applications in the constantly shifting context of today’s digital
environment. This is the chance to find the ways of e�cient resource management,
avoiding the creation of more waste, and building the proper infrastructure that will

1

allow providing high application performance. The traditional ways of scaling widely
based on the usage of such indicators as CPU and memory are insu�cient in cases when
resources are pre-allocated, for example in the Apache Solr clusters. Apache Solr which
is a search platform is a perfect example of this challenge; this is because Solr is an open
source search platform that is widely reputed for its capabilities in real-time indexing
and searching. This paper is focused on how to solve the scaling problem when deploying
Apache Solr to Azure Cloud Platform using the Azure services, Virtual Machine Scale
Sets (VMSS), Azure File Share, Azure Compute Gallery, and Azure App Registration.
In this research, the focus is made on the investigation of dynamic scaling techniques,
relating to preallocated resource environments in order to improve the resource usage and
application performance to propagate knowledge of contemporary cloud solutions.

1.2 Objective

The main objective of the study paper is to assess the implementation of Apache Solr
in the context of the Azure Cloud Platform with the focus on designing and implementing
dynamic scaling method for the Apache Solr cluster and enhance application performance.
The purpose of the study is to prove that solutions to the identified dynamic scaling
problems are both feasible and challenging in implementation, while o↵ering the highest
levels of resource usage and application performance in contemporary cloud environments.

1.3 Research Question

1. How can we enhance the performance of an application that integrates with Apache
Solr, while also optimizing resource allocation and keeping deployment costs low?

2. How does the implementation of a dynamic scaling algorithm, based on Solr query
rates, impact resource utilization and application performance in preallocated re-
source environments?

1.4 Problem Statement

In the contemporary world of digital solutions, organizing resources and infrastruc-
ture growth are paramount to achieving high results in application handling. Preallocated
resource environments are di�cult to optimize as resources like Apache Solr clusters and
Kubernetes clusters are pre-allocated. Other techniques like scaling using host metrics
or relying on the intervention of operations personnel are not e�cient in such cases. The
first is to make use of a dynamic method of scaling that will allow the application to
distribute resources properly, avoid wastage and activate all servers as soon as needed in
the competence environment, without reference to host indicators.

1.5 Problem Solution

The proposed solution is based on the pro-active dynamic scaling of the Apache
Solr cluster depending on the Solr query rate. In particular, the focus of the present
investigation is to set up Apache Solr on the Azure Cloud platform by employing Azure
services including Azure Virtual Machine Scale Set (VMSS), Azure File Share, Azure
Compute Gallery, Service Principles, etc. This solution tries to remove the disadvantages
of the old scaling ways which is the problem of the preallocated resource environments

2

and tries to give an e↵ective, actual ways to scale Apache Solr on Azure Cloud Platform
for improving the e�ciency of the resources and performance of the application.

2 Related Work

Understanding Apache Solr and it’s use in the distributed system is required for
researching and finding a solution to achieve optimal performance and . This section
will discuss di↵erent components such as Azure Cloud Components and Apache Solr.
It will also explain what has already been done to address di↵erent resource allocation
techniques used to improve the resource allocation and application performance.

2.1 Azure Cloud Platform

Azure, developed by Microsoft, is a comprehensive cloud computing platform that
provides a wide range of cloud services including those for computing, analytics, storage,
and networking. It allows users to build, deploy, and manage applications and services
through a global network of Microsoft-managed data centers. Following are the Azure
resources that has been used in the literature background work so far:

2.1.1 Azure Virtual Machine Scale Set (VMSS) ju shim (2024)

Azure Virtual Machine Scale Sets (VMSS) is a cloud service that a user can use
to create one or more VMs and have them managed automatically by Azure, with those
VMs being identical to each other and load-balanced. VMSS is supposed to help scale the
number of the VMs in regards to their usage, so that the application does not experience
load issues in the case of increased tra�c.

2.1.2 Azure App Registration rwike77 (2023)

This is a process in Azure Active Directory, through which one can register the
particular application and enables it by providing a unique identity in a tenant. This
is also known as Service Principal that is used by the application to authenticate in
the Azure services, to gain access to the resources and perform operations based on the
authority granted.

2.1.3 Azure Compute Gallery ju shim (2023)

Azure Compute Gallery is the one of the services o↵ered by the Microsoft Azure,
which is used to store, organize and deploy the authorized Virtual Machine images in the
organization. Azure Compute Gallery comes with many advanced features when used
alongside VMSS and can be used to manage and deploy instances of VM e�ciently.

2.1.4 Azure Virtual Machine cynthn (2024)

Azure Virtual Machine (VM) is a virtualized computing resource through the Azure
services o↵ered through a partner facility by Microsoft. It is a kind of copy or simulation
of the physical computer that is hosted on the Azure cloud environment. Azure VMs can
be used to execute applications, host websites, and so on, all the while giving the user the

3

ability to utilize computer resources while completely removing them from the necessity
of having to deal with physical machines.

2.2 Apache Solr

Apache Solr is an open source search platform created as an inclusion of Apache
Lucene to enable e↵ective search and indexation. It should be noted that in the area of
distributed systems, the Solr server can be employed in a special distributed node called
SolrCloud.

Here’s how Apache Solr fits into a distributed system:Here’s how Apache Solr fits into a
distributed system:

Distributed Search and Indexing: SolrCloud is a flexible system allowing data to be
indexed and searched in multiple points within a Solr. This indicates that big data can be
partitioned so that some parts (shards) are stored in di↵erent servers. Then concurrent
queries are performed on these shards and results obtained are compiled and given to the
user.
Scalability: Another advantage of Solr in a distributed setup is the ability to scale up
the clusters horizontally, that is, scale up by having more nodes. Which is more import-
ant as and when data increases to a new level one or more nodes can be added to the
Solr cluster to meet the new loads without stress.
Fault Tolerance and High Availability: SolrCloud also ensures that the system is
always available despite the nodes which are exist in the system. This make data copies
at di↵erent nodes for if one node goes down another node can be there to ensure the
service is on.
Load Balancing: In a distributed setup, Solr can partition queries and can let them
out to other nodes for load balancing. It assists in handling high- query rates and makes
certain that none of the nodes becomes a bottleneck.
Real-time Search: Distributed Solr setups on the other hand are more suited for real
time search where new data is indexed and made searchable in the real time in the cluster,
it therefore fits well in to applications that require real time search.

2.3 Summary of Literature Review

The papers listed in the below table focuses on the cloud computing resource al-
location, and the available literature discusses a vast number of methods that help to
improve resource usage and improve the overall system performance. The adaptive re-
sourcing has been formulated in key research works through techniques like the agent
based model, genetic algorithms and heuristic in nature that learn the load as and when
it is experienced. These methods have been helpful in cases where there is an attempt to
reduce wastage to resources, balancing in the loads and response times. Multi-objective
optimization and other methods of machine learning enhance the e�ciency of resource
distribution by considering workload and addressing the issues raised by urgent requests,
and increase both cost and performance in the cloud services. This line of research focuses
on the importance of advanced scheduling and forecasting procedures in a logical use of
the cloud computing systems.

However, the research summarized here is mostly centered around the use of LP, the

4

so-called ‘classic’ method of host metric monitoring for estimating resources. Although
these methods are helpful, they do not fully satisfy when it comes to the need of scal-
ing Apache Solr. On the other hand, the proposed solution will be entirely designed to
capture new metrics that are specific to Solr such as query rates over 1 min intervals of
time, 5 min, and 15 min. This approach is intended to time toen o↵er a better solution
to the dynamic nature of cloud environement for optimisation of Solr.

Paper Title Objective Methodology KeyFindings/Results Implications

Agent-based ad-
aptive resource
allocation algorithms
for cloud computing
Bhanuprakash and
Sunitha (2018)

Develop adaptive al-
gorithms for resource
allocation in cloud
computing.

Proposed algorithms
include swapping
and backfilling for
managing resource
allocation based on
agent-based negoti-
ation and counter
o↵ers.

Algorithms improve
resource utilization
and minimize request
rejection by generating
counter o↵ers and using
backfilling for e�cient
resource scheduling.

Enhances cloud resource
management, reduces re-
source wastage, and im-
proves service satisfac-
tion rates.

A cloud resource al-
location method sup-
porting sudden and
urgent demands Chen
(2018)

To propose a cloud
resource allocation
method tailored to
support sudden and
urgent demands e�-
ciently.

Develops a method
that calculates new
priorities for resource
allocation based on
user priorities and ur-
gency levels. Utilizes
a multi-objective op-
timization model to
ensure minimal per-
formance match dis-
tance between virtual
machines and phys-
ical machines and to
minimize the number
of physical machines
used.

The method shows ad-
vantages in reducing the
number of physical ma-
chines required and im-
proving CPU utilization.
It supports rapid and
optimal resource alloc-
ation during emergen-
cies, outperforming tra-
ditional methods in ur-
gent scenarios.

This method enhances
the cloud’s ability to
handle emergency re-
source demands, making
it suitable for scenarios
requiring quick response
times. It can poten-
tially reduce energy con-
sumption and improve
resource utilization e�-
ciency in data centers.

Autonomic resource
allocation mechanism
for service-based
cloud applications
Bhardwaj et al.
(2019)

Design algorithms
that dynamically ad-
just resources based
on varying workloads
to improve resource
utilization and reduce
operational costs.

Heuristic approach. Proposed an autonomic
resource allocation
mechanism for cloud ap-
plications that improves
resource utilization and
response time using
simple heuristics.

Optimizes resource util-
ization and improves re-
sponse time for cloud ap-
plications.

Automated index-
ing of structured
scientific metadata
using apache solr
Guntupally et al.
(2020)

To develop an ef-
ficient automated
indexing system for
structured scientific
metadata using
Apache Solr.

Implemented an in-
dexing system using
Apache Solr, focusing
on metadata extrac-
tion, indexing, and
search functionalities.

Enhanced search e�-
ciency and accuracy for
scientific metadata.

Facilitates better data
retrieval and manage-
ment in scientific data-
bases.

Resource allocation
based on genetic
algorithm for cloud
computing Chen
et al. (2021)

To address overload-
ing problems in Vir-
tual Machines (VMs)

Utilizes a Markov
chain model to pre-
dict system states
and GA for resource
allocation to achieve
load balance.

Achieved load balance
for VMs and PMs by
using the proposed GA
method.

Improved system per-
formance and resource
utilization in cloud com-
puting environments.

Analysis on resource
allocation for par-
allel processing and
scheduling in cloud
computingKumar
et al. (2021)

To analyze and
improve resource al-
location strategies for
parallel processing
and scheduling in
cloud computing

Reviews and com-
pares various re-
source allocation
strategies including
TARA and ACO.

Identified TARA and
ACO as e↵ective
strategies for resource
allocation in cloud en-
vironments.

Provides insights into
the selection of resource
allocation strategies to
optimize performance in
cloud computing.

Machine learning
based workload pre-
diction for auto-
scaling cloud applic-
ations Singh et al.
(2023)

To develop a machine
learning model to
predict workloads for
better auto-scaling in
cloud applications.

Utilizes machine
learning techniques
to analyze historical
workload data and
predict future de-
mands.

ML models significantly
improve the accuracy
of workload predictions,
leading to more e�-
cient auto-scaling and
resource utilization.

Enhances auto-scaling
mechanisms in cloud
environments, reducing
costs and improving
performance by anticip-
ating and responding to
workload changes more
e↵ectively.

Table 1: Summary of Previous Research Work on Cloud Computing Resource Allocation.

5

Some of the related works discussed in literature are Bhanuprakash and Sunitha (2018)
which proposed an agent-based adaptive resource allocation algorithms for cloud com-
puting. This is dissimilar from the present work as their work is structured mainly on
agent-based negotiation not Solr query rates. Similarly, Singh et al. (2023) have come up
with a machine learning-based workload prediction for auto-scaling in cloud applications.
However, their research is based on historical workload and predicted workload from the
machine learning approach rather than the current Solr query metrics which has been
discussed here. The key di↵erence lies in the application-specific focus and the direct
in-tegration with Solr’s query handling to optimize performance.

3 Methodology

3.1 Methodology

This research adopts a practical approach to developing and evaluating a dynamic
scaling mechanism for Apache Solr in preallocated resource environments, specifically
utilizing the Azure Cloud Platform. The methodology is divided into three primary
stages: system setup, algorithm development, and evaluation.

3.2 System Setup

The system is built on the Azure Cloud Platform using several core services:

• Azure Virtual Machine Scale Set (VMSS): This service is used to automat-
ically manage and scale the number of virtual machines based on demand.

• Azure App Registration: This process allows secure authentication and au-
thorization of the application in Azure, facilitating interactions with other Azure
services.

• Azure Compute Gallery: Employed to store and deploy VM images e�ciently.

• Apache Zookeeper: It is a critical component of SolrCloud, Solr’s distributed
search platform. It serves as the central nervous system for managing and coordin-
ating the Solr cluster.

• Apache Solr: The open-source search platform is set up in a SolrCloud configur-
ation for distributed search and indexing.

The Solr cluster is initially configured manually on the Azure platform, where nodes are
added or removed based on application demand. This setup serves as the baseline for
evaluating the e↵ectiveness of the dynamic scaling mechanism.

3.3 Algorithm Development

The core of the research lies in the development of a dynamic scaling algorithm
designed to respond to changes in query rates. The algorithm is designed to monitor
the query rate over intervals of 1 minute, 5 minutes, and 15 minutes, and to adjust the
number of active Solr nodes accordingly. The algorithm operates as follows:

6

• Data Collection: Metrics such as query rates are continuously collected from the
Solr nodes.

• Threshold Definition: Predefined thresholds are established for di↵erent metrics
(e.g., query rate per minute) to trigger scaling actions.

• Scaling Actions: Based on the collected data and defined thresholds, the al-
gorithm determines whether to scale in (remove nodes) or scale out (add nodes).

• Deployment: The algorithm automatically adjusts the number of nodes in the
Solr cluster using the Azure VMSS API, ensuring that resources are aligned with
current demand.

Figure 1 illustrates the flow diagram of the scaling algorithm and its operation.

Figure 1: System Architecture With Auto-scaling Mechanism

3.4 Metrics for Evaluation

For the evaluation, the following performance metrics will be analyzed:

• Mean Rate: The average rate at which requests are processed by the system.

• Mean Response Time (ms): The average time (in milliseconds) taken to process a
request.

• Median Response Time (ms): The midpoint value of response times, indicating the
typical request processing time.

• 95th Percentile Response Time (p95): The response time below which 95% of re-
quests are processed, providing insight into the system’s performance under higher
loads.

7

These metrics provide a comprehensive understanding of how well the dynamic scal-
ing mechanism optimizes resource usage, maintains application performance in a cloud
environment and eventually reduce infra costs.

3.5 Justification of Methodology

The chosen methodology is justified by the need to address the ine�ciencies of tra-
ditional scaling methods in preallocated resource environments, particularly for applica-
tions like Apache Solr that exhibit non-linear resource usage patterns. Traditional scaling
methods, which rely on host metrics such as CPU and memory usage, are insu�cient for
environments where resources are preallocated and fixed.
By focusing on query rates and response times as key metrics, the dynamic scaling al-
gorithm is better aligned with the operational characteristics of Apache Solr, leading to
more e�cient resource usage and improved application performance. The use of Azure’s
robust cloud services further supports the practical implementation and evaluation of the
proposed solution in a real-world cloud environment.

4 Design Specification

Figure 2: System Architecture Without Auto-scaling Mechanism

System architecture plays significant role in resources opimization and cost optimiz-
ation. The Figure 2 below; which shows the original Solr cluster scaling manually when
nodes are added or removed in order to correspond with application performance. While
this method may help in the short-term resolve some performance problems it is manual

8

and time-consuming and thus cannot be used in the long run. Futhermore, if the cluster
is not scaled down, it leads to additional cost during periods where the load on the system
is low and is considered or wastage of resources.

Figure 3: System Architecture With Auto-scaling Mechanism

Figure 3 highlights the system architecture that contains an auto-scaling mechanism.
In this setup, there is a monitoring algorithm/script resident on the scheduler node that
monitors one or several Solr metrics, in this case the query rate. When these metrics
get to these set thresholds, the algorithm captures it and adds or removes Solr nodes on
the Apache Solr Cluster which is a Azure VMSS to ensure resource optimization as well
as avoid wastage without the need for the administrator to do it. Also, the algorithm
is responsible for creation of new shards and replicas on each Solr node, which again
improves the performance and scalability of the system.

4.1 Scaling Algorithm/Script

This script is designed to manage and automate scaling for a Solr search cluster based on
various performance metrics. It uses Azure Virtual Machine Scale Sets (VMSS) and Solr
utilities to monitor performance, make scaling decisions, and perform scaling operations.
The script also integrates with Kibana for additional performance insights.

The script automates the process of scaling a Solr cluster by:

• Monitoring performance metrics from Solr and Kibana.

• Determining scaling needs based on these metrics.

9

• Executing scaling operations (both scale-in and scale-out) on the Azure VMSS.

• Performing cleanup to remove unused resources and log the operations.

Below is the code snippet for the monitoring algorithm:

1 # Import necessary modules and u t i l i t i e s

2 IMPORT nece s sa ry modules for handl ing JSON, time , date ,
c o l l e c t i o n s , and custom u t i l i t i e s l i k e AzureVmss , So l rUt i l ,
e t c .

3

4 # Define a func t i on to ge t the timestamp o f the l a s t ’n ’

minutes

5 FUNCTION get t imes tamp la s t n mins (n) :
6 RETURN current t ime minus n minutes in format ’

YYYYMMDDHHMMSS’
7

8 # Define a func t i on to handle Kibana response time s c a l i n g

9 FUNCTION k ib ana r e s p t ime s c a l i n g (key) :
10 LOG the input key
11 INITIALIZE a r e s u l t d i c t i ona r y with ’ s c a l e i n ’ and ’

s c a l e o u t ’ set to True
12 INITIALIZE avg key r e s t ime as None
13 IF key i s ’ c l u s t e r i n g ’ :
14 CALCULATE last n min t imestamp
15 FETCH avg key r e s t ime for c l u s t e r i n g from Kibana

l o g s
16 SET low thre sho ld and h i gh th r e sho ld for c l u s t e r i n g
17 ELSE IF key i s ’ s ugge s t i on ’ :
18 CALCULATE last n min t imestamp
19 FETCH avg key r e s t ime for sugge s t i on from Kibana

l o g s
20 SET low thre sho ld and h i gh th r e sho ld for sugge s t i on
21 ELSE:
22 SET avg key r e s t ime to 0 .0
23 SET low thre sho ld and h i gh th r e sho ld to 0 and 100

r e s p e c t i v e l y
24

25 IF avg key r e s t ime i s None :
26 SET avg key r e s t ime to 1
27 SET low thre sho ld and h i gh th r e sho ld to 0 and 2
28

29 DETERMINE s c a l i n g a c t i on s based on
avg key re s t ime , l ow thresho ld , and
h i gh th r e sho ld

30 RETURN avg key r e s t ime and r e s u l t d i c t i ona ry
31

32 # Define a func t i on to c a l c u l a t e average search r a t e s f o r

shards

10

33 FUNCTION avg s e a r c h r a t e s f o r s h a r d s (c o l l e c t i o n s e a r c h r a t e s)
:

34 INITIALIZE sha rd r a t e s as an empty d i c t i ona ry
35 LOG the c o l l e c t i o n search r a t e s
36

37 FOR each s h a r d r e p l i c a and r a t e s in
c o l l e c t i o n s e a r c h r a t e s :

38 SPLIT sh a r d r e p l i c a to get shard and r e p l i c a
39 APPEND ra t e s to sha rd r a t e s [shard]
40

41 LOG shard r a t e s
42

43 INITIALIZE avg sha rd ra t e s as an empty d i c t i ona ry
44 FOR each shard and r a t e s l i s t in s ha rd r a t e s :
45 INITIALIZE l i s t s for one mins , f i v e mins , and

f i f t e e n m i n s
46 FOR each d i c t o b j in r a t e s l i s t :
47 APPEND correspond ing ra t e va lue s to l i s t s
48

49 CALCULATE average r a t e s and s t o r e in avg sha rd ra t e s
50 RETURN avg sha rd ra t e s
51

52 # Define a func t i on to f i nd hot and co ld shards f o r s c a l i n g

53 FUNCTION f i n d ho t c o l d s h a r d s (azure obj , s o l r o b j) :
54 TRY:
55 GET current machines from Azure
56 EXCEPT:
57 LOG e r r o r and SET mach ine s i p i d s to an empty

d i c t i ona ry
58

59 LOG cur rent VMs
60

61 IF mach in e s i p i d s i s not empty :
62 FETCH VM shard s t a tu s and shard IP mapping from So l r
63 ELSE:
64 SET vm cores and shard ip mapping to empty

d i c t i o n a r i e s
65

66 LOG cur rent shard to VM d i s t r i b u t i o n
67

68 FETCH search r a t e s from So l r
69 INITIALIZE avg s e a r ch r a t e s and s c a l e op as empty

d i c t i o n a r i e s
70

71 FOR each c o l l e c t i o n in c o l l e c t i o n s t o mon i t o r :
72 FETCH search r a t e s for the c o l l e c t i o n
73 CALCULATE avg search r a t e s for shards
74 STORE avg search r a t e s in avg s e a r ch r a t e s

11

75

76 LOG avg search r a t e s
77

78 FOR each shard and r a t e s in s h a r d s e a r c h r a t e s :
79 DETERMINE the number o f r equ i r ed r e p l i c a s based on

search r a t e s
80 STORE the r e s u l t in s c a l e op
81 RETURN sca l e op and avg s e a r ch r a t e s
82

83 # Main execu t i on b l o c k

84 IF name == ’ ma in ’ :
85 INITIALIZE s t a r t t ime and a s l o g d i c t i ona ry
86

87 TRY:
88 SETUP logg e r and l og i n i t i a l c o n f i g u r a t i o n s
89 UPDATE a s l o g with i n i t i a l s e t t i n g s
90 IF SKIP KIBANA i s Fal se :
91 TRY:
92 PERFORM Kibana response time s c a l i n g for

c l u s t e r i n g and sugge s t i on
93 DETERMINE s c a l e i n f l a g and s c a l e o u t f l a g based

on r e s u l t s
94 EXCEPT:
95 LOG e r r o r and SET s c a l e i n f l a g and

s c a l e o u t f l a g to True
96 ELSE:
97 SET s c a l e i n f l a g and s c a l e o u t f l a g to True
98 UPDATE a s l o g with s c a l i n g d e c i s i o n s
99

100 IF s c a l i n g i s needed (s c a l e i n f l a g or s c a l e o u t f l a g) :
101 INITIALIZE AzureVmss and So l rU t i l o b j e c t s
102 FIND hot and co ld shards
103 UPDATE a s l o g with s c a l i n g ope ra t i on s
104

105 IF s c a l e i n f l a g :
106 PERFORM sc a l e in opera t i on
107 ELSE:
108 LOG no s c a l e in r equ i r ed
109 UPDATE a s l o g with s c a l e in r e s u l t s
110

111 IF s c a l e o u t f l a g :
112 SLEEP for a shor t durat ion
113 PERFORM sc a l e out opera t i on
114 ELSE:
115 LOG no s c a l e out r equ i r ed
116 UPDATE a s l o g with s c a l e out r e s u l t s
117 ELSE:
118 LOG no s c a l i n g needed

12

119 CLEAN UP i f r equ i r ed :
120 SLEEP for a shor t durat ion
121 FIND and remove empty nodes
122 DELETE VMs i f nece s sa ry
123 UPDATE a s l o g with removed VMs
124 GET cur rent machines and update a s l o g
125 LOG the r e s u l t s us ing c l og
126

127 EXCEPT:
128 LOG e r r o r and update a s l o g with e r r o r d e t a i l s
129 LOG the r e s u l t s us ing c l og
130 LOG f i n i s h e d execut ion

5 Implementation

This implementation plan outlines the steps for setting up and configuring the components
necessary for the project, including the Scheduler/Zookeeper VM, Standalone Solr VM,
Solr base image creation, Azure VM Scale Set (VMSS), and App Registration. This
plan ensures the proper setup and configuration of all necessary components for e↵ective
scaling and management of the Solr deployment.

5.1 Scheduler And Zookeeper Virtual Machine

Package Installation: Download and extract ZooKeeper packages. Install OpenJDK
using the system package manager.
Configuration Setup: Verify and create the ZooKeeper configuration file (zoo.cfg).
Ensure it includes necessary parameters like tickTime, dataDir, and clientPort.
Permissions and Directory Setup: Check and set appropriate permissions for the
ZooKeeper directories and files.
Service Verification: Start ZooKeeper and check its status. Troubleshoot any issues
by reviewing the ZooKeeper logs.

5.2 Setup Standalone Solr Machine

Java Installation: Install OpenJDK on the standalone Solr VM.
Solr Installation: Download and extract the Solr package. Adjust the configuration to
allow remote access to the Solr Admin Dashboard.
Service Configuration: Start the Solr service in cloud mode and configure it to connect
to the ZooKeeper instance.

5.3 Create Solr Base Image on Azure

Machine Deployment: Deploy a new VM for Solr setup to avoid interfering with the
original VM. Perform the standalone Solr setup steps on this VM.
Automation Setup: Configure the rc.local file to ensure Solr starts automatically on
VM deployment. Set necessary permissions and start the rc-local service.

13

Image Creation: Capture an image of the Solr VM through the Azure portal. Ensure
it is shared to an Azure compute gallery and configured as ”Specialized.”

5.4 Virtual Machine Scale Set (VMSS) Using Solr Base Image

Image Selection: Access the Azure compute galleries dashboard, choose the Solr base
image, and select the relevant image definition and version.
VMSS Creation: Create a new VMSS with the selected image. Set the orchestration
mode to Uniform and manually adjust the scaling capacity. Ensure the VMSS is in the
same virtual network (VNet) as the standalone Solr VM for proper communication.

5.5 App Registration to Access and Control Solr VMSS

App Registration: Register a new application in Azure to manage and control the
VMSS. Create and securely store application secrets.
CLI Configuration: Install Azure CLI on the scheduler machine and configure it using
the application registration details for authentication.

5.6 Schedule Cron Job to Run Monitoring Script Every 15
Minutes

Create a cron job on the scheduler machine to run the monitoring script
(solr autoscaling.py) every 15 minutes.

5.7 API URL for Monitoring Solr Admin Dashboard and Solr
Performance Metrics

Apache Solr Admin Dashboard URL: http://<Solr-StandAloneIP>:
8987/solr/#/~cloud
Apache Solr Performance Metrics URL: http://<Solr-StandAloneIP>:
8987/solr/admin/metrics?regex=QUERY%5C./select%5C.requestTimes.*

6 Evaluation

The evaluation of our system focuses on comparing the performance metrics under dif-
ferent configurations: with and without the auto-scaling mechanism. We conducted
experiments to understand how auto-scaling impacts query performance and resource
utilization. Below, we present and analyze the results from our two key experiments.

6.1 Experiment / Case Study 1

Performance metrics at di↵erent query rates without Auto-Scaling Mechan-
ism:

Figures 4 and 5 depict the system configuration, highlighting the nodes and shards
setup without an auto-scaling mechanism. The cluster consists of a single Solr node with
6 replicas. Due to the static configuration, the system is prone to performance bottlenecks

14

as the load increases. This underscores the importance of implementing dynamic scaling
solutions to ensure optimal performance.

Avg Query Request Per Minute 500 Requests/Min 1000 Requests/Min
Avg meanRate 1.4 2.08
Avg mean ms 12.64 15.09
Avg median ms 10.37 13.166

p95 ms 19.40 23.87

Table 2: Performance metrics at di↵erent query rates without Auto-Scaling Mechanism.

Figure 4: Solr Cluster Nodes Without Auto-scaling Mechanism

Figure 5: Shards and Replicas Without Auto-scaling Mechanism

In this experiment, we analyzed the performance metrics of our system operating
without an auto-scaling mechanism. The metrics were evaluated at two di↵erent query
rates: 500 requests per minute and 1000 requests per minute.
The data shows that as the query rate increased from 500 to 1000 requests per minute,
there was a noticeable increase in the average meanRate, mean response time (mean ms),
median response time (median ms), and 95th percentile response time (p95 ms). Spe-
cifically, the mean response time increased from 12.64 ms to 15.09 ms, and the 95th
percentile response time rose from 19.40 ms to 23.87 ms.

6.2 Experiment / Case Study 2

Performance metrics with Auto-Scaling Mechanism:
In the second experiment, we evaluated the performance metrics of our system with

the auto-scaling mechanism enabled, again at a query rate of 1000 requests per minute.
Figure 6 illustrates the system’s behavior after implementing the scaling algorithm.

When the meanRate metric met the scaling threshold, the algorithm responded by adding
a new node and creating 2 additional replicas to accommodate the increased demand.
This demonstrates the e↵ectiveness of auto-scaling in optimizing resource allocation and
performance.

15

Figure 6: Solr Cluster Nodes With Auto-scaling Mechanism

Figure 7: Shards and Replicas With Auto-scaling Mechanism

With the auto-scaling mechanism enabled, the performance metrics show improve-
ments compared to the non-auto-scaling scenario. The average meanRate increased to
3.11, while the average response time (mean ms) decreased to 11.46 ms, and the 95th
percentile response time improved to 18.7 ms.

Avg Query Request Per Minute 1000 Requests/Min
Avg meanRate 3.11
Avg mean ms 11.46
Avg median ms 10.22

p95 ms 18.7

Table 3: Performance metrics with Auto-Scaling Mechanism.

6.3 Comparison Evaluation of two case studies

The evaluation clearly shows that the auto-scaling mechanism enhances the system’s
ability to handle higher loads more e�ciently compared to a static configuration.

Figures 8 and 9 illustrate the significant improvements in performance metrics fol-
lowing the implementation of the dynamic scaling mechanism. These enhancements are
evident in both response time and throughput, underscoring the e↵ectiveness of this
approach in maintaining optimal system performance.

• Increased Mean Rate: The addition of more nodes and replicas has led to an increase
in the mean rate, enabling the cluster to handle a greater number of queries in
parallel. This enhancement allows the system to process more queries per minute,
provided the load balancer e↵ectively distributes the queries across the nodes.

• Decreased Response Times: The metrics for mean, median, and p95 response times
have all decreased, indicating a higher likelihood of faster query responses. This im-
provement suggests that the dynamic scaling mechanism has successfully enhanced
the system’s ability to serve queries more e�ciently.

16

Figure 8: Solr Performance Metrics

Figure 9: Solr Performance Metrics

7 Conclusion and Future Work

In this research, we have successfully implemented a dynamic infrastructure scaling
mechanism within a preallocated resource environment using Apache Solr on the Azure
Cloud Platform. The primary objective was to enhance resource utilization and improve
application performance by dynamically adjusting the size of the Apache Solr cluster
based on query metrics. Our approach addresses the limitations of traditional scaling
methods, which often rely on static host metrics and require manual intervention, leading
to resource wastage and suboptimal performance.

The proposed dynamic scaling algorithm demonstrated a significant improvement in
resource e�ciency, ensuring that the Solr cluster could handle varying query loads without
unnecessary resource consumption. By automating the scaling process and integrating

17

key Azure services such as Virtual Machine Scale Sets (VMSS), Azure File Share, and
Azure Compute Gallery, we provided a robust solution that not only maintains high
performance during peak periods but also reduces operational costs during low-demand
periods.

This research contributes to the field of cloud computing by o↵ering a practical de-
ployment strategy that can be adapted to other similar environments requiring e�cient
resource management. Future work could explore the application of this dynamic scaling
approach in di↵erent cloud platforms or with other distributed systems beyond Apache
Solr, as well as the integration of more advanced machine learning techniques to further
optimize scaling decisions.

Overall, the dynamic infrastructure scaling mechanism presented in this study o↵ers
a sustainable and e�cient approach to managing resources in cloud-based applications,
providing a foundation for further innovation in the field of cloud resource management.

Building on the current research, several avenues can be explored to enhance the sys-
tem’s capabilities and address its limitations. One promising direction is the integration
of Apache Solr with advanced monitoring tools such as Prometheus, Grafana, and ELK
(Elasticsearch, Logstash, Kibana). These tools would o↵er more sophisticated histor-
ical data analysis and provide a more intuitive user interface, enabling more informed
decision-making. By visualizing metrics over time and setting up real-time alerts, the
system could become more responsive to performance changes, leading to more e↵ective
resource scaling.

Another area for future improvement lies in addressing the current system’s limit-
ations with load distribution. The existing setup does not evenly distribute the load
across all Solr replicas, which can lead to suboptimal performance and resource util-
ization. Implementing advanced load balancing techniques could ensure a more even
distribution of query loads, thereby enhancing the overall e�ciency and reliability of the
system. Exploring these enhancements would significantly contribute to the robustness
and scalability of Apache Solr in cloud-based environments, paving the way for more
e�cient data management solutions.

References

Bhanuprakash, T. and Sunitha, N. (2018). Agent based adaptive resource allocation
algorithms for cloud computing, Proceedings of the 2018 2nd International Conference

on Trends in Electronics and Informatics (ICOEI), pp. 845–851.

Bhardwaj, T., Upadhyay, H. and Sharma, S. C. (2019). Autonomic resource alloca-
tion mechanism for service-based cloud applications, 2019 International Conference on

Computing, Communication, and Intelligent Systems (ICCCIS), pp. 183–187.

Chen, J. (2018). A cloud resource allocation method supporting sudden and urgent de-
mands, 2018 Sixth International Conference on Advanced Cloud and Big Data (CBD),
pp. 66–70.

Chen, Y.-L., Huang, S.-Y., Chang, Y.-C. and Chao, H.-C. (2021). Resource allocation
based on genetic algorithm for cloud computing, 2021 30th Wireless and Optical Com-

munications Conference (WOCC), pp. 211–212.

18

cynthn (2024). Overview of virtual machines in azure - azure virtual machines.
URL: https://learn.microsoft.com/en-us/azure/virtual-machines/overview

Guntupally, K., Dumas, K., Darnell, W., Crow, M., Devarakonda, R. and Giri, P. (2020).
Automated indexing of structured scientific metadata using apache solr, 2020 IEEE

International Conference on Big Data (Big Data), pp. 5685–5687.

ju shim (2023). Overview of azure compute gallery - azure virtual machines.
URL: https://learn.microsoft.com/en-us/azure/virtual-machines/azure-compute-

gallery

ju shim (2024). Azure virtual machine scale sets overview - azure virtual machine scale
sets.
URL: https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/overview

Kumar, P., Tharad, A., Mukhammadjonov, U. and Rawat, S. (2021). Analysis on re-
source allocation for parallel processing and scheduling in cloud computing, 2021 5th

International Conference on Information Systems and Computer Networks (ISCON),
pp. 1–6.

rwike77 (2023). Apps service principals in microsoft entra id.
URL: https://learn.microsoft.com/en-us/entra/identity-platform/app-objects-and-

service-principals?tabs=browser

Singh, S. T., Tiwari, M. and Dhar, A. S. (2023). Machine learning based workload
prediction for auto-scaling cloud applications, 2022 OPJU International Technology

Conference on Emerging Technologies for Sustainable Development (OTCON), pp. 1–
6.

19

	Introduction
	Background And Motivation
	Objective
	Research Question
	Problem Statement
	Problem Solution

	Related Work
	Azure Cloud Platform
	Azure Virtual Machine Scale Set (VMSS) ju-shim2024a
	Azure App Registration rwike772023
	Azure Compute Gallery ju-shim2023
	Azure Virtual Machine cynthn2024

	Apache Solr
	Summary of Literature Review

	Methodology
	Methodology
	System Setup
	Algorithm Development
	Metrics for Evaluation
	Justification of Methodology

	Design Specification
	Scaling Algorithm/Script

	Implementation
	Scheduler And Zookeeper Virtual Machine
	Setup Standalone Solr Machine
	Create Solr Base Image on Azure
	Virtual Machine Scale Set (VMSS) Using Solr Base Image
	App Registration to Access and Control Solr VMSS
	Schedule Cron Job to Run Monitoring Script Every 15 Minutes
	API URL for Monitoring Solr Admin Dashboard and Solr Performance Metrics

	Evaluation
	Experiment / Case Study 1
	Experiment / Case Study 2
	Comparison Evaluation of two case studies

	Conclusion and Future Work

