

Enhancing Cloud Data Security and
Storage: Integrating Zero-Knowledge

Proofs with Lightweight Homomorphic
Encryption for Efficient Deduplication

MSc Research Project
Cloud Computing

Sunandan Sekhar Das
Student ID: 23135417

School of Computing
National College of Ireland

Supervisor: Yasantha Samarawickrama

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Sunandan Sekhar Das

Student ID:

23135417

Programme:

MSc in Cloud Computing

Year:

2023-2024

Module:

MSc Cloud Research Project

Supervisor:

Yasantha Samarawickrama

Submission Due
Date:

12-08-2024

Project Title:

Enhancing Cloud Data Security and Storage: Integrating Zero-
Knowledge Proofs with Lightweight Homomorphic Encryption for
Efficient Deduplication

Word Count:

9374 Page Count 23

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Sunandan Sekhar Das

Date:

12-08-2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Enhancing Cloud Data Security and Storage:
Integrating Zero-Knowledge Proofs with Lightweight
Homomorphic Encryption for efficient Deduplication

Sunandan Sekhar Das
23135417

Abstract
The exponential growth of cloud computing has necessitated advanced solutions for

secure and efficient data management. This research presents a novel framework that
combines Lightweight Fully Homomorphic Encryption (LTFHE), Zero-Knowledge
Proofs (ZKP), and deduplication techniques to address the challenges of data security,
integrity, and storage efficiency in cloud environments. Based on the SEAL (Simple
Encrypted Arithmetic Library) for performing arithmetic operations on encrypted data, the
proposed framework facilitates secure computations without compromising privacy.
Hence, incorporating the Schnorr-based ZKP protocol guarantees secure data integrity
check without compromising the privacy of the user’s data in real-time application. Based
on a set of experiments carried out on the Amazon EC2 instances, the framework was
benchmarked for efficient performance through file sizes of 1 MB up to 200 MB. The
performance analysis substantiates linearity of both encryption and decryption algorithms
in relation to the file size however, additional enhancements are required to improve the
decryption of bigger file sizes. The ZKP protocol had fairly negligible overhead and at the
same time, was highly reliable which proves that it is effective in securing cloud storage.
Furthermore, the deduplication procedure also worked effectively in pointing out the
duplication of data to ensure reduced storage and overall system efficiency. By using
advanced cryptographic techniques this research provides a scalable and practical solution
to the cloud security problems. The results presented here lend further support to the
practical applicability of the proposed framework for future research and for related
technologies in commercial cloud-based storage. Further work will involve fine-tuning the
decryption process and expanding on the ways of applying these techniques in large-scale
cloud infrastructures.

1 Introduction

The adoption of cloud storage solutions has significantly transformed data management
by enabling scalable and flexible storage capabilities. However, the exponential increase in
data volume has also posted significant problems in matters concerning security as well as
efficiency in these systems. As the data is stored and processed in the cloud environments, the
risks of data breaches, unauthorized access, and privacy violations are higher, and therefore,
proper security measures should be incorporated. On the same note, the need to find ways of
dealing with redundancy and how to effectively store items in the limited space available has
been more pronounced than ever.

2

Over the past few years, the market for cloud storage has been rapidly expanding due to
the large amounts of data being produced by corporations and customers. According to
Marketsandmarkets, the global cloud computing market is expected to nearly double from
$626.4 billion to $1,266.4 billion by 2028, with a compound annual growth rate (CAGR) of
15.1% (Marketsandmarkets, 2023). Likewise, Gartner (2023) reveals that organizations’
expenditure on public cloud services is expected to grow to $597. 3 billion, which indicates the
need for more cost-efficient solutions delivered through cloud environments. However, there
are still issues of security and 39% of companies have known data breaches in the cloud
environment in 2022 according to Thales Group (2023). This is why there has been a call for
enhanced security measures especially when it comes to data deduplication.

Even though data deduplication is a critical process for eliminating the redundant data
and thus, enhancing the efficiency of storage, it has its specific issues when implemented in
cloud settings. Conventional methods of deduplication have been known to pose a threat to the
privacy of the data because some of the data has to be viewed to identify the duplicates. This
poses a challenge between the need to have storage space and the need to have high security
on data. The proposed solution is based on the Lightweight Fully Homomorphic Encryption
(LTFHE) and Zero-Knowledge Proofs (ZKP). ZKP can make sure that the data is unique, and
LTFHE can perform computations on encrypted data so that the data remains private at all
times during the deduplication process.

Motivated by this significant research problem, this study poses the following open-
ended research question: How can the integration of Zero-Knowledge Proof (ZKP) with
Lightweight Fully Homomorphic Encryption Over the Torus (TFHE) ennhance data
deduplication in cloud storage for better privacy and efficiency of data storage? This paper
discusses these approaches to guarantee the privacy and security of the data during the
deduplication process as a way of solving the main issues that were highlighted in the literature
review section.

2 Related Work

In the digital world, the era of digital breakthrough is facing a big challenge in the increasing
capacity of storage in the cloud while maintaining the security of data storage. Cloud storage
is the ideal contemporary approaches to data management that employ methods that address
the need for data confidentiality and integrity, as well as storage needs. In this section, related
work of data deduplication is discussed, which can undoubtedly be considered one of the most
critical methods for eliminating redundant data that occupies storage space. It presents a
considerable challenge: between the need to expand the cloud storage capacity on the one hand
and the introduction of a set of new security and privacy technique other. However, the
efficiency of the traditional deduplicate method to remove the duplicate data from the system
is an issue that offset the data privacy gap to be achieved in order to improve the cloud storage
system. The capability to create deduplication methods that seek to improve the storage
capacity to security ratio is one of the achievements of cloud computing.
This section discusses the existing literature on data deduplication and cryptographic measures
that ensure the safety of cloud storage, mainly the ZKP and TFHE. The reason why this part is
here is to let the readers find out the possible path that the deduplication technologies could
follow along the development of the security threats, so that the readers could be able to see
that ZKP and TFHE are the most advanced technologies that can not only protect the data
privacy but also provides the best solution for data storage.

3

In this regard, this section compares the current methods seeking to discover the challenges
associated with the newly developed techniques before announcing the brilliant technology,
which will make it easier to deal with the situation of cloud storage security issue. It forms the
ground upon which additional research in the content of the proficiency of the cryptography
and cloud storage can be done especially in the extent of security and performance.
Chillotti et al. (2020) has proposed a new approach for FHE known as TFHE. The reduction
of bootstrapping time in the result of the research got down to 13ms from the previous 690ms
which is a leap in making Fully Homomorphic Encryption more practically applicable in the
cloud. The primary advantage of this method is getting the computation facilitated and in the
same process, the key size of bootstrapping could be reduced so that TFHE could carry out
safely and competently cloud operations in real-time with definite focus on data security and
efficiency. Alongside TFHE hardware optimization, the MATCHA hardware accelerator
developed by Jiang et al. (2022) focuses on energy efficiency and speed in TFHE operations,
aiming to enhance energy efficiency.

2.1 Evolution and Importance of Data Deduplication
Data deduplication technologies have been a key factor in the evolution of cloud storage as a
result of the overall drive for digital data management efficiency and sustainability. The first
versions were founded on the methods of deduplication of the files only, that is, the methods
of their identification and exclusion. The structure of the deduplication method became more
complex with the rise in the production of digital data. It led to the occurrence of block-level
deduplication as well as byte-level deduplication. hese techniques have been purposed to
reduce the problem of repetitiveness of information hence improving on the storage capacity.
Kaur et al. (2018) in the course of the review showed this evolution, pointing out that, in
addition to other processes related to data manipulation, deduplication is gradually turning into
a method that addresses the challenges of the rapidly growing data.
Also, it raises the question of how to securely store deduplicated data, which has turned into a
monumental issue, and this demonstrates one of the issues in determining where and how the
perfect equilibrium of cloud storage systems between privacy and effectiveness can be
achieved. Shin et al. (2017) also covers this issue and presents various secure deduplication
protocols that offer confidentiality and integrity. Nevertheless, they show that the deduplication
process and data security are intricate and explain the threats and the crypto art approaches that
can be used to mitigate them. Their research also shows that the process of de-duplication is a
very complex one, which does not allow for preserving the security and privacy of the data at
the same time. They described what is wrong with it and what hazards are connected with it
and they suggested some original cryptographic approaches to the problems. Their research
on secure deduplication techniques highlights a key problem in managing cloud storage: how
critical it is to ensure that the cloud storage is optimally utilized and at the same time ensure
that the information is kept secure. Our research is based on fundamental information, and it
describes a new method of data deduplication by using ZKP and lightweight TFHE, which
addresses the issues mentioned by Shin et al ., and Kaur et al . They presented an efficient or
secure method, while our method will include both of them. This new method will not only
solve the present problems but will also set a new course for the deduplication method of cloud
data which will be a discovery in the field of cloud storage.

4

2.2 Cryptographic Techniques in Data Deduplication
This part gives a brief of the techniques and studies that have positively impacted the subject.
Cryptographic techniques have enhanced data deduplication and security in cloud storage
leading to efficient cloud storage. The research study conducted by Jin Li et al. (2021) explores
a new approach that enhances the security of data in deduplication through the formulation of
an appropriate re-encryption technique. This has brought out their study on minimizing the
computational cost, hence the privacy of data through the application of a method they called
convergent all-or-nothing transform (CAONT). But they came across a potential challenge:
their cryptographic operations become complex hence deployment issues in large cloud
platforms which demand large datasets for deduplication. In other words, complexity of
cryptographic operations might become an issue for deployment in a large-scale cloud
environment where various and extensive datasets require deduplication. This has created a
gap showing that there is need for a cryptographic solution that can be scaled up and integrated
easily into the cloud infrastructure without much computational and storage overhead.
In the process of deduplication, Shuguang Zhang et al. (2023)’s work slightly discusses the
problem of dynamic data ownership. Their framework is good in terms of the secure
infrastructure in managing the ownership of databases thus making the data more secure.
However, the research lacks information on one of the biggest issues that can arise, increase in
latency resulting from the incorporation of additional layers of security. It means that it is
necessary to find the proper balance between the deduplication’s efficiency and the changes in
the security patterns. The paper leaves space for further research and development of the
optimization techniques that might assist in reducing the negative effects on the performance
of the system, particularly in the sphere of time-sensitive cloud storage.
In their paper, Fan et al. (2019) describe the privacy-preserving deduplication scheme that is
based on encryption. Such an approach is critical in achieving deduplicated data. While it is a
good solution in the sense of preserving the user’s privacy, the approach used in the protocol
leads to an increase in computation complexity with respect to encryption processes. This raises
a big challenge in as much as the effectiveness of the deduplication process in relation to the
use of encryption protocols is concerned. The identified gaps here point towards a bigger
challenge: designing lightweight and optimized cryptographic protocols that are responsible
for data security and confidentiality and at the same time should not hamper deduplication
effectiveness which is crucial for cloud storage systems.
Li et al. (2021), Zhang et al. (2021), and Fan et al. (2019) have identified several research
directions and gaps in the area of cloud deduplication, based on which, our novel approach is
to integrate ZKP with lightweight TFHE in the deduplication technique. With respect to these
challenges, the research strategy adopted is to ensure that data privacy and data integrity are
preserved, system latency is small and computational overhead is small while at the same time
ensuring data security and efficient deduplication. To this end, the methodology to be
employed in the current study will entail the use of ZKP’s privacy-preserving nature and the
computational flexibility of TFHE. Both of these will assist us in eliminating the issue of secure
data deduplication, therefore paving the way for cloud storage research. This itself will be
useful to solve the existing deduplication problems but also will open up new opportunities and

5

further advancements and innovations in cryptographic methodologies for cloud computing
environment.

2.3 Zero-Knowledge Proofs (ZKP) in Cloud Storage
Cloud computing is among the most utilized inventions that have led to issues of insecurity
when it comes to data. The technique of ZKP, is the confirm that the data belongs to particular
entity, without disclosing the identity of the owner. Zhang et al. (2020) used zero knowledge
proof method to validate the integrity of the data in cloud. This method is thus is more secure
than traditional method of data verification. Drawback of ZKP like the computational
complexity was also discussed by them.
Kaaniche et al. (2014) identified a new technique in ZKP in this paper. In the research, they
designed a protocol with public verifiability and communication efficiency to enhance the
means of data validation hence enhancing privacy of data. This research approach assists in
confirming the validity of the data without passing it to the verifier hence conforming to the
zero-knowledge protocol. The study also reveals that the ZKP method is only capable of
handling dynamic data, therefore, further work is required to define the full potential of data
storage in the cloud.
Unlike prior work where there has been work done on integrity check of data or policies for
deduplication only, our work will be unique in that it will incorporate zero knowledge proofs
combined with lightweight TFHE for data duplication in the cloud. This method will help in
the removal of the privacy concerns that Zhang et al. (2020) and Kaaniche et al. (2014) pointed
out and also improve on the storage efficiency by use of smart data deduplication techniques.
The integration of privacy preservation by ZKP and computational performance by TFHE will
make it possible to create a new secure and efficient cloud storage system. However, our
research work covers the scalability and performance issues more than that, they also introduce
the solutions which are scalable, efficient, and preserve the privacy in the system. This
comparison accentuates the novelty of our research in the context of secure cloud storage using
ZKP and TFHE with the objective of addressing the issues of data privacy and efficient
storage..

2.4 Lightweight TFHE: Advancing Cloud Storage Security and Efficiency
Chillotti et al. (2020) proposed a new scheme of Fully Homomorphic Encryption, namely
TFHE. This particular work cuts bootstrapping time down by about 99%, from 690 ms to 13
ms, a massive leap in usability and applicability of FHE in cloud services. The primary
advantage of this method is the acceleration of the computation process, while the key size of
bootstrapping can be reduced, which allows TFHE to securely and efficiently perform the real-
time cloud operations, the main aims of which are data security and optimization.
Other than the discussed TFHE hardware optimization Jiang et al. (2022) proposed the
MATCHA hardware accelerator to optimize the energy efficiency and speed of TFHE
operations in an attempt to improve the energy efficiency. MATCHA utilizes approximate
multiplication-less integer FFTs as well as a pipelined datapath; hence it achieves a 2.3x boost
in gate processing throughput and a 6.3x improvement for throughput per watt compared to
former accelerators. Furthermore, these developments not only increase the likelihood of using

6

TFHE in large-scale cloud platforms but also become a new standard for how to deploy energy-
efficient cryptographic protocols.
Wang et al. (2023) have thus combined this cryptographic progress with practical cloud
operations by developing a feasible fully homomorphic encryption sorting algorithm based on
TFHE. They have surpassed the deficiencies of earlier FHE implementations, which were
characterized by the inability to execute complicated operations on encrypted data due to the
low performance of their hardware. This scheme provides a nearly 50% faster sorting process
when compared to others, achieved through optimized homomorphic additions. They prove
that TFHE can be effectively used in the day-to-day running of cloud services without
compromising the workload or security.
In this proposed research will be advancing the current stage of research by introducing a novel
approach that strengthens cloud security and performance. By deploying the performance
capabilities exhibited by Chillotti et al. (2020) and Jiang et al. (2022), and the sorting algorithm
enhanced by Wang et al. (2023), we are confident that we will be able to improve data
processing in mainstream cloud computing. The objective of this activity is to branch out the
cloud infrastructure so that it can be safe and efficient enough to process high volumes of data
and help cloud services manage challenging tasks. We are seeking to expand the applications
of TFHE by making this research more practical. Thus, trying to advance the possibilities of
the development of cloud computing technologies.

2.5 Encryption and decryption techniques and technologies in mobile
cloud computing

Baharon et al. (2015), Feldmann et al. (2021), and Wang et al. (2023) have mentioned about
the usage of cryptographic techniques in cloud computing in their respective research studies,
and their primary focus was to improve security and efficiency
Mobile cloud computing has been discussed by Baharon et al. (2015) who have put forward a
scheme for Lightweight Homomorphic Encryption (LHE). Especially this scheme gives less
computational overhead which is quite important in case of resource constraints of a mobile
device. The LHE scheme is also amicable to addition and multiplication operations as required
in real-time processing of encrypted data. Nevertheless, the scheme is not very efficient for
large-scale cloud environments and volumes of data and operations that are much higher in
comparison with the local environments.
Different from the above works, Feldmann et al. (2021) proposed the F1 accelerator, a
hardware design targeting to optimize the FHE computation. The F1 accelerator acquires high-
performance gains by moving data efficiently and integrating hardware units for intense
operations. This hardware acceleration makes FHE more practicable for highly computational
problems such as private deep learning However, this FHE approach leans on special platforms
for execution hence making it hard when implemented in resource constrained environments
such as mobile cloud computing.
Wang et al. (2023) did not implement a new cryptographic scheme using TFHE, but rather
provided a novel use of TFHE in the field of cloud computing, by indicating that a sorting
algorithm based on it were 50% faster than other instances of a similar algorithm. This work
also exemplifies the applicability of TFHE in real-life cloud services by improving the

7

homomorphic operators for efficient performance. Nevertheless, the work of Wang et al. is
focused mostly on certain tasks and its potential of applying TFHE for most of the cloud
computing activities is not explored enough, especially has regard to the situations that require
high scale and efficiency.
Following these works, this proposed research/contributions consist of the integration of Zero-
Knowledge Proofs (ZKP) and Lightweight TFHE. This combination handles the scalability
issues that Baharon et al identified by making sure that the encryption scheme that it develops
can easily handle large data sets without having to compromise on security. In contrast to
Feldmann et al. ’s usage of computation apparatuses, our method is concocted without prior
demands to the specific ingredients of hardware resources, and therefore can be undertaken
efficaciously in environments that are deprived of hardware resources. Moreover, whereas
Wang et al. design for frequently optimizing special operations, this study not only applies to
TFHE for various other cloud computing operations but also guarantees security and efficiency
at the same time.

Table 1: Related work summary.
Research

Article Methodology Research Focus Key
Achievements Limitations Distinctive

Features

Kaur et al.
(2018)

Block/byte-level
deduplication

Cloud storage/data
management

Enhanced storage
efficiency by
reducing redundancy

Privacy/security
challenges in
deduplication

Evolution from file
to byte-level
deduplication

Shin et al.
(2017)

Secure
deduplication
protocols

Data security in cloud
storage

Balanced storage
efficiency with data
security

Risk of data exposure
during deduplication

Focus on optimizing
storage while
ensuring data privacy

Jin Li et al.
(2021)

Convergent All-Or-
Nothing Transform
(CAONT)

Cryptographic techniques
in deduplication

Reduced
computational costs
while maintaining
data privacy

Scalability challenges
in large-scale
environments

Integration of
cryptography with
deduplication

Zhang et al.
(2023)

Dynamic data
ownership
management

Cloud
storage/deduplication

Efficient dynamic
data ownership
management

Scalability and
efficiency issues

Secure management
of dynamic data
ownership

Chillotti et
al. (2020)

Lightweight Fully
Homomorphic
Encryption (TFHE)

Cryptographic protocols
for cloud storage

Reduced
bootstrapping time
from 690 ms to 13 ms

Limited exploration
in large-scale
environments

Significant reduction
in bootstrapping time

Jiang et al.
(2022)

MATCHA
hardware
accelerator for
TFHE

Energy-efficient
cryptographic
computations

2.3x boost in
processing
throughput, 6.3x in
energy efficiency

Hardware-specific
improvements may
not translate to
software
implementations

New standard for
cryptographic
protocol deployment

Wang et al.
(2023)

FHE sorting
algorithm using
addition over
TFHE

Cloud operations/data
security

50% faster sorting
process than
traditional methods

Complexity in
existing cloud
infrastructure
implementations

Bridging
cryptographic
advancements with
cloud operations

8

3 Research Methodology

This section presents the comprehensive description of the research methodology regarding
how and what was performed during the conduct of the research to evaluate Secure
Deduplication Framework (SDZ-LTFHE) in the context of cloud. This section gives a
description of the research procedure, which serves to verify the whole research process.

3.1 Research Procedure

The research began with the introduction of the SDZ-LTFHE architecture that includes LTFHE
and ZKP with deduplication. The framework was initially tested for its functionality by
implementing it locally and later it was implemented on an Amazon EC2 instance for further
testing.

• Framework Development: The SDZ-LTFHE which has been proposed was
implemented using Python language and SEAL library for homomorphic encryption.
The design concentrated on developing a system that could be divided into several
independent parts that can be tested and optimized individually: Encryption, ZKP, and
deduplication are the three main processes that are used in the context of blockchain
technology.

• Initial Testing: For the first run, it was performed on a local machine with the
specifications of Intel(R) Core (TM) i5-6200U CPU @ 2. 80 GHz and 16. 0 GB RAM
to determine if the constituent elements of the framework work as expected and to get
an initial idea of the framework’s performance. This first phase of testing has helped in
making a distinction of the problems that were present and solving them before the tests
were to be carried out on a cloud environment.

• Cloud Deployment: The framework was deployed on an Amazon EC2 t2. 2xlarge
instance since the computation is high and can handle big data. The needed software
such as Python, Flask and Microsoft SEAL were installed and the environment was
configured correctly.

Research
Article Methodology Research Focus Key

Achievements Limitations Distinctive
Features

Zhang et al.
(2020)

ZKP for data
integrity
verification in
cloud storage

Data security/privacy in
cloud storage

Maintained data
integrity without
exposing sensitive
information

Scalability and
computational
overhead in large
datasets

ZKP integration in
cloud storage for
secure data
verification

Kaaniche et
al. (2014)

ZKP protocol for
Proof of Data
Possession (PDP)

Cloud storage
security/data validation

Public verifiability
and communication
efficiency in data
validation

Limited handling of
dynamic data

Maintaining data
privacy with public
verifiability in cloud
storage

Fan et al.
(2019)

Lightweight FHE
for data security

Data
deduplication/privacy in
cloud

Enhanced data
privacy without
significant
computational
overhead

Complexity in large-
scale cloud
environments

Balancing privacy
and performance in
cloud data
deduplication

Shuguang
Zhang et al.
(2023)

Data deduplication
with dynamic
ownership
management

Cloud data
management/security

Improved security via
effective ownership
management

Potential latency due
to added security
layers

Secure ownership
management in
dynamic cloud
storage environments

9

3.2 Software and Hardware requirements

This paper employed the use of both the hardware and software solutions to build, implement,
and analyze the Secure Deduplication Framework (SDZ-LTFHE). The first tests were
conducted on local machines, Amazon EC 2 was used in case of cloud based tests. The software
stack referred to the number of tools and libraries which were integrated into the framework
and the successful implementation as well as performance of the software was realized from
the use of the software stack. Software and hardware requirements are outlined in the tables
below:

Table 1: Hardware configuration

Component Specifications

Local Machine Intel(R) Core (TM) i5-6200U CPU, 16GB RAM

Cloud Instance Amazon EC2 t2.2xlarge, 8 vCPUs, 32 GB RAM

Table 2: Software Configuration

Component Details

Programming Language Python

Version Python 3.9

Encryption Library Microsoft SEAL (Lightweight Fully Homomorphic
Encryption - LTFHE)

Web Framework Flask (for developing the user interface)

Operating System Ubuntu (deployed on the EC2 instance)

3.3 Experimental Setup
The experiments were designed to test three key components of the framework: LTFHE’s
encryption and decryption than other similar solutions; the Schnorr-based ZKP; and the
deduplication scheme’s efficiency.	
.

• Data Collection: The process was done with the use of example files of different sizes.
Files of 1 MB, 10 MB, 20 MB, 50 MB, 100 MB, 200 MB were obtained from
examplefile. com to ensure consistency. These were used in order to test the use of the
proposed framework with the various loads of data as shown above..

• Data Processing:
 Encryption/Decryption: The TFHE (Fully Homomorphic Encryption)
framework was used for encryption and decryption of the files. The process was
evaluated based on several critical parameters: It measures the time taken to set
up the parameters, time taken to generate the keys, time taken to encrypt and
time taken to decrypt the message. Each of these metrics was taken to determine

10

the level of efficiency and performance of the encryption and decryption
procedures for the various file sizes. TFHE integration guarantee the privacy of
encrypted data even when it was processed and decrypted while preserving the
confidentiality of the plain text.
 ZKP: To generate and verify the zero-knowledge proofs of different file sizes,
Schnorr-based protocol was used. The information flow of the framework was
to extract a prover’s secret from the file hash then construct a proof that would
enable the verifier to confirm the authenticity of the secret without getting to
know it. The time taken to construct and validate these proofs, as well as the
rate of successful validation, were the main measures of the protocol’s
efficiency. Moreover, the protocol was combined with a homomorphic
encryption to keep the data private while generating and verifying the proof;
thus, the data is not disclosed at any stage of the process.
Deduplication: Deduplication was carried out to reduce file duplication which
was seen to take a lot of space in storage systems. This was done by calculating
a SHA-256 hash for each file as this provides a unique value of the contents of
the file. The system kept a record of hashes as the record of all the files that the
system had processed before. When a new file is created, the hash of the new
file was calculated and compared to the hash log. If a matching hash was found
then the file was recognized as a duplicate and this prevented duplication of
files. Scatter storage method is effective in such a way that it only stores the
files once yet the file’s content is shared in many places hence reduces the
storage space and improves the efficiency of the system.

3.4 Data Analysis

The data collected during the experiments was analyzed to assess the performance, scalability,
and security of the SDZ-LTFHE framework.

• Performance Metrics: The efficiency of the framework was measured based on the
encryption and decryption time, proof generation and verification time, and
deduplication factor that were recorded for different file sizes and for different data
loads. From this analysis, it was possible to gain understanding on how efficient the
framework was and some of the variations in performance that could be expected.

• Statistical Techniques: Basic statistical analysis, such as calculating averages and
variances, was used to assess the consistency and reliability of the framework’s
performance across different scenarios.

• Comparison and Validation: Performance data collected from the use of cloud
deployment was then compared to the benchmark achieved from the local system
environment. Through this comparison, it was evident that the framework was scalable
and would be useful even if taken from a locally controlled environment to a cloud
environment. The comparison confirmed that all the elements of the solution stayed
top-notch and safeguarded in the stress test of a real-life cloud environment. Design
Specification.

4 Design Specification

The Design Specification part provides an architectural plan of the work that is proposed and
the techniques that are applied in aspects of Secure Deduplication Framework with Lightweight

11

Fully Homomorphic Encryption (SDZ-LTFHE). This section describes a) how design,
elements and flow work together to support the functionality of the system for the achievement
of the goals of the framework which is secure storage and deduplication.

4.1 System Architecture
The framework is built on a modular architecture, comprising three core components:
The SDZ-LTFHE framework is expected to run on the cloud and therefore, offers an efficient
solution to data storage. The system architecture integrates several key components:

1. Web Interface: The front-end of the system is created with the assistance of the Flask
web framework. It is useful and gives a path to the file upload, status check, and results.

2. Encryption Module: This module is specifically used for encryption and decryption
of data using the Lightweight Fully Homomorphic Encryption (LTFHE). This module
makes use of Microsoft SEAL that guarantees the data is encrypted and its privacy kept
safe even in computation. The module effectively manages generation of keys,
encryption of data and decryption of data which makes it suitable for large data
management.

3. Zero-Knowledge Proof (ZKP) Module: The ZKP module guarantees the data’s
authenticity without exposing its content to the respective parties. With the help of
Schnorr protocol, the system can provide cryptographic proofs that can confirm the
integrity of the data and provide the additional level of security.

 Figure 1 below shows the working mechanism of ZKP.

Figure 1: ZKP working mechanism

4. Deduplication Module: This component optimizes the storage space by removing files
that are similar to one another. The module calculates SHA-256 hash for each file and
checks this hash against hashes of files stored in deduplication log. In case of duplicate
files, the system deletes one of the copies which makes the use of disk space more
efficient and minimizes the amount of data processing.

Figure 2 below illustrates the architecture of the framework.

12

Figure 2: Architecture of the Framework

4.2 Workflow of the Framework
The workflow of the LTFHE framework is structured to verify each component functions
correctly:
Below flowchart describes the workflow if the framework.

Figure 3: Workflow flowchart of the Framework

13

1. File Upload: Files are submitted through the web interface, and they are sent to the
deduplication module for the first check.

2. Deduplication Check: This module calculates the hash of the file and then checks the
records to find the presence of the same. If such a duplicate is found, the file is rejected.
Otherwise, it moves to the next step, which is encryption.

3. Encryption: LTFHE scheme is used to encrypt the file. Encryption is performed to be
able to accommodate large amounts of data without compromising on the data’s
confidentiality.

4. ZKP Generation and Verification: Zero-Knowledge Proof is created for the
encrypted file to prove its authenticity. The proof is then checked to confirm that the
content of the file has not been altered.

5. Homomorphic Computation: Homomorphic operation such as dot product that are
homomorphic to the encryption scheme can be computed on the encrypted data. This
step is very important for those applications which involve the processing of data that
should not be exposed.

6. Storage: The encrypted and verified data is then stored in the cloud storage system as
shown in the following figure.

4.3 Design Considerations
Several design considerations were considered during the development of the SDZ-LTFHE
framework:

• Scalability: The framework is intended to be scalable in proportion to the size of the
data being worked on. Such sub-components as the encryption module and
homomorphic computation engine are designed to perform efficiently irrespective of
data volume.

• Security: Privacy and confidentiality is very important and this is achieved through the
use of encryption, zero-knowledge proof, and deduplication. Every layer is designed to
work autonomously with the idea that if one layer is penetrated, the others will still hold
up the security of the whole system.

• Efficiency: he framework is kept simple to avoid much computation especially during
the encryption and decryption phases. The level of encryption used is light to enable
the system to run in environments that may have limited resources.

5 Implementation

The implementation section of the proposed solution aims at providing security measures and
fast data processing of large data sets in the cloud. The system incorporates several advanced
cryptographic techniques, and the design of the system is to ensure that it takes minimal space
while ensuring that the data stored is secure. This section describes the elements and phases of
the implementation process, the technologies applied, and the problems faced.

5.1 Encryption Process

The encryption process was designed to ensure data security at every stage:

14

• Parameter Setup: The polynomial modulus degree and coefficient modulus were set
to meet the security requirements and achieve high performance. These parameters are
important for determining the parameters of the encryption strength and effectiveness.

• Key Generation: The system then produced a group of keys such as the public and
secret keys, the relinearization keys, the Galois keys and others. These keys are required
to encrypt the data, to perform the homomorphic operations on the encrypted data and
then decrypt the data.

• Data Preparation and Encryption: To handle this issue, the input data was divided
into smaller segments, and batch encoding was applied. These chunks were then
encrypted in parallel, this is because of multi-threading which is used to increase the
efficiency.

The encryption process helps to keep data safe from unauthorized access even during the
data processing stage and through the use of homomorphic encryption that enables
computations on encrypted data.

Pseudocode: HomomorphicEncryptionSystem

Function IntegratedEncryptionSystem(input_path, encrypted_folder,
decrypted_path):
 Initialize results dictionary

 // Setup encryption parameters and context
 Set parameters for SEAL context (e.g., polynomial modulus,
coefficient modulus, plain modulus)
 Initialize SEAL context

 // Key Generation
 Generate public, secret, relinearization, and Galois keys
 Initialize encryptor, evaluator, decryptor, and encoder

 // Read and process input file
 Read input text file and convert to integer array

 // Encrypt Data in Chunks
 Encrypt data chunks using parallel processing
 Store encrypted chunks

 // Save Encrypted Data
 Save encrypted chunks to specified folder

 // Homomorphic Dot Product
 Perform homomorphic dot product on encrypted chunks
 Store result of dot product

5.2 Decryption Process

The decryption process mirrors the encryption process but focuses on quickly and accurately
restoring the original data:

• Parallel Decryption: Similar to the encryption, the decryption of data chunks was done
in parallel to save much time that would have been used in processing large data.

• Data Reconstruction: The decrypted chunks were then put together in order to
reconstruct the original file and it was confirmed that no data was lost or altered.

15

• Efficiency Considerations: The decryption process was made to be faster than the
encryption process since this is useful for applications that need data to be retrieved
quickly.

This decryption process was optimized to achieve the middle ground between the time
efficiency and the correctness of the system to make it functional.

5.3 Deduplication Process
To optimize storage space, a deduplication mechanism was integrated:To optimize storage space, a
deduplication mechanism was integrated:

• SHA-256 Hashing: Every file submitted to the system was hashed through SHA-256
which generated a string that could represent the file’s contents.

• Duplicate Detection: The system then checked the hash of the new file with the hashes
kept in the deduplication log. If a match was found it then flagged the file as a duplicate
to the user.

• Storage Optimization: The identified duplicates were eliminated from the system
which helped save space and enhance the system’s productivity.

This deduplication process is especially useful when dealing with large data in the cloud so as
not to waste storage space.

Psuedocode: Deduplication
Function compute_hash(file_path):

Initialize hasher as SHA-256

Open file at file_path in binary mode

While reading chunks from the file:

 Update hasher with the chunk

Return the computed hash as a hexadecimal string

Function is_duplicate(file_path, log_path):

new_hash = compute_hash(file_path)

If log file does not exist at log_path:

 Create an empty log file

Open log file at log_path

Read all recorded hashes from the log

If new_hash exists in the log:

 Return True, new_hash # File is a duplicate

Append new_hash to the log

Return False, new_hash # File is not a duplicate

5.4 Zero-Knowledge Proof (ZKP) Generation and Verification

The ZKP mechanism was implemented to enhance data integrity verification:

• Schnorr Protocol: The system used Schnorr protocol that generated zero knowledge
proofs which are proofs that the data is valid without revealing the data.

16

• Proof Generation: For each file, a proof was created with the different parts of the
argument such as the commitment (t), the challenge (c), and the response (s). These
elements are obtained from the hash of the file and the keys that are used in the
cryptography process.

• Proof Verification: The verifier then verifies the proof by repeating calculation of
some of the values that were inputted by the prover. If the value is correct, the proof is
added to check if data is correct or not in order to confirm the data integrity.

The ZKP process involves an extra step of adding more security to the data while at the
same time making it possible to check the data’s authenticity.

Psuedocode: Deduplication
Initialize p, g

Function hash_function(data):
 Return SHA-256 hash of data as integer

Function generate_proof(secret):
 Compute h = g^secret mod p
 Choose random r, compute t = g^r mod p
 Compute c = hash_function(g, h, t) mod p
 Compute s = (r + c * secret) mod (p-1)
 Return t, c, s, h

Function verify_proof(g, h, p, t, c, s):
 Compute t' = (g^s * h^-c) mod p
 Return t' == t

Function hash_large_file(file_path):
 Return SHA-256 hash of file as integer

Function generate_file_proof(file_path):
 Compute file_hash, use as secret
 Generate and return ZKP

Function verify_file_proof(file_path, file_hash, proof):
 Recompute file hash
 If hash matches, verify proof, return result
 Else, return False

6 Evaluation

The evaluation of the Lightweight Fully Homomorphic Encryption (LTFHE) framework
involved several experiments designed to assess its performance and scalability in various
scenarios. This section presents the results from these experiments, comparing encryption and
decryption performance between a local machine and a cloud environment, examining the
effectiveness of the deduplication process, and evaluating the efficiency of the Zero-
Knowledge Proof (ZKP) implementation.

6.1 Encryption and Decryption Performance in Cloud Environment

In this experiment on the LTFHE framework the effectiveness and the efficiency of the
encryption and decryption method was tested under different sized of data files. In this section
the encryption and decryption time will be tested to see if it is efficient for a cloud infrastructure
for a deduplication process.

Objective:

17

This experiment was performed with the objective of determining the scalability and the
effectiveness of the developed LTFHE framework in a cloud environment. The main concern
was to know the effectiveness of the encryption and decryption processes of the file based on
the size of the file.

Results:

The below table illustrates performance of system for the encryption and decryption times
cloud environment:

Table 3: Performance matrix of Encryption and Decryption

File Size Parameter Setup
(s) Key Generation (s) Encryption (s) Decryption (s)

1 MB 0.005 0.052 0.439 0.186
10 MB 0.002 0.048 5.022 1.834
20 MB 0.003 0.049 9.78 4.316
50 MB 0.002 0.038 24.043 9.176

100 MB 0.002 0.038 49.241 20.847
200 MB 0.002 0.038 106.125 49.591

The graph below presents the correlation between the size of the file to be encrypted decrypted
and the time taken to perform the two processes.

Figure 3: Encryption and Decryption Times Across Different File Sizes

Analysis

The experiments prove that there is a direct, positive correlation between the size of the file
and time required for encryption/decryption. With the increase in file size, both encryption and
decryption time increase, mainly due to the nature of homomorphic encryption. Encryption as
a process is usually slower than decryption but as the size of the file to be encrypted increases
the time difference reduces.

18

 Nevertheless, the cloud environment seems to execute these operations effectively, and this
indicates that it can effectively support large-scale applications with secure data processing
requirements. The fact that LTFHE achieved virtually similar levels of security across the three
file sizes suggests that the framework is scalable and would be appropriate for use in cloud-
based storage and processing.

6.2 Cloud vs. Local Encryption and Decryption Performance Comparison

Objective:
This experiment was performed to analyze the effect of local computing machine and cloud
computing on the efficiency of encryption and decryption of messages using LTFHE
framework.
Results:
Figure 4 and 5 compares the encryption and decryption times between the cloud environment
and the local machine for different file sizes.
Encryption Performance: The first graph is a bar graph that shows the comparison of the
encryption time taken in the two environments.
Decryption Performance: The second graph shows decryption time for the two environments.

Analysis:
This comparison shows that the cloud environment has a faster processing time than the local
machine in encrypting and decrypting the files especially for large files. As a result of the
higher processing power of the cloud, the execution times of the homomorphic encryption are
reduced considerably due to the intensive calculations involved.
The only exception was made for the decryption time of the 200 MB file on the local machine
where the decryption time was higher than the encryption time; this is contrary to the increase
in the decryption time of the small files and in the cloud environment. This implies that the
local machine resources could have been exhausted, thus causing the inefficiency during
decryption.

Figure 4: Encryption Time Comparison
Cloud vs. local

Figure 5: Decryption Time Comparison
Cloud vs. Local

19

The result also supports the fact that the computational capacities have to be considered when
deploying the homomorphic encryption frameworks. Local machines might be sufficient for
the smaller tasks, but cloud environments give much more performance at the larger and more
complex tasks.

6.3 Experiment / Case Study 3: Zero-Knowledge Proof (ZKP)
Implementation

Objective:
The objective of this experiment was to assess the efficiency and resilience of the LTFHE
library’s ZKP based on the Schnorr protocol. The accent was made that the correctness of the
proofs, generated and verified during the experiment, was to be checked without revealing the
data on which the proof was based.
Methodology:
The ZKP protocol was then performed and the test was conducted with files of varying sizes.
The process involved:

The steps for generating and verifying a proof are as follows:

1. Hash the file: In this case, compute the SHA-256 of the file.
2. Generates Prover Secret (𝒙): Extract the secret from the file hash.
3. Compute Commitment (𝒉): Compute ℎ = 𝑔!	𝑚𝑜𝑑	𝑝
4. Choose Random Number (𝒓): Choose a random number 𝑟 and compute

 𝑡 = 𝑔" 	𝑚𝑜𝑑	𝑝
5. Compute Challenge (𝒄): Use the hash function to calculate the challenge c.
6. Compute Response (𝒔): Compute the response 𝑠 = (𝑟 + 𝑐 ⋅ 𝑥)𝑚𝑜𝑑(𝑝 − 1)
7. Verify Proof: Compute 𝑡# =	 (𝑔$. ℎ%&)	𝑚𝑜𝑑	𝑝 and check if 𝑡# = 𝑡.

These ZKP tests were conducted using the same instance of EC2. Different file sizes were
used in the test, these were 1MB, 10MB, 20MB, 50MB, 100MB and 200MB respectively.

Results

• Proof Generation: During the generation of the proof for each file, the steps involved
hashing of the file, determination of the prover’s secret, calculation of the commitment,
generation of a random number, generation of the challenge, and calculation of the
response.

• Proof Verification: Verification was done by the recomputation of 𝑡#and and
comparing it with 𝑡. the outcome of the verification process was a match between the
two.

Analysis
The evaluations of the (ZKP) methodology reveal that the timeliness of proof creation
and validation, which takes only a few milliseconds for small and medium-sized files.
This rapid execution time makes it possible for real-time applications that frequently

20

call data integrity check. This protocols operation is simple and computational
requirements are low making and easily to adapt. The operation of the protocols is
simple, and the computational requirement are low making it easily adaptable to
existing system. The possibility to check the data and its authenticity and
simultaneously guarantee the confidentiality of the information is another advantage.
All in all, it can be concluded that due to the efficiency of the ZKP protocol along with
the reliability of the solution it offers, it can be used in applications that require secure
cloud storage and other data-driven techniques.

6.4 Deduplication verification
Objective:
The aim of this experiment was to observe the effectiveness of the deduplication process in a
cloud storage to reduce the number of used storages by identifying similar files.
Methodology
The deduplication process involved several key steps designed to identify and eliminate
redundant files effectively:

1. Compute File Hash: Get the SHA-256 of each file so as to have a hash value that will
represent the content of the file. This step ensures that if the file names are different but
the contents of the files are the same, the hash generated will be the same also and thus;
help in identifying the duplicates

2. Check for Duplicates: Compare the hash of the new file with the hashes available in
the deduplication log. This log preserves files that have been uploaded before and
their hash.

3. Remove Duplicates: If a match is found (i. e. the hash just obtained matches with one
of the hashes stored in the log), the new file is deleted to avoid duplication. This step
is very crucial in order to eliminate the tendency of creating copies of files which are
very essential in space preservation.

Results
The deduplication process proved useful as it helps in eliminating the occurrence of duplicate
files which results to increase in storage space. It is evident that the time required to conduct
deduplication checks was minimal regardless of the size of the file, which proves the
efficiency of the mechanism.
Experiment Example: Example of deduplication check for a 1 MB file is as follows:

• File: uploads/1MiB.txt
• Computed Hash:

a642e41b6e2b54248f900c6a46ab0ba8186bc15c7f467ad67f4f1ce5f1cfcde2
• Log Check: Duplicate found (hash match with existing file)
• Action: File removed; deduplication successful.

This experiment illustrates the process by which duplicate files are detected and eliminated,
highlighting the efficiency of the deduplication mechanism in maintaining storage integrity and
optimizing space usage.
Analysis
This process of deduplication is very fast, a check on most files taking less than one second.
The drastic reduction in storage space is an indication of the deduplication mechanism in
dealing with repetitive data. Therefore, the procedure for such exclusion ensures the efficient
usage of storage resources, the absence of redundancy, and the optimisation of system
outcomes.

21

Therefore, the outcomes reveal that the deduplication process can be efficient in big datasets
without much impact on the time needed for the process. This efficiency is important in cloud
storage systems since the storage space is always increasing while the available space is always
a constraint.

6.5 Discussion
The discussion critically analyzes the results of the experiments performed in this research,
especially concerning the performance, scalability, and reliability of the LTFHE framework
with ZKP and deduplication mechanisms. The analysis also looks at possible enhancements
and sets the findings in the context of the prior studies.
Critical Analysis of Experimental Findings:

• Encryption and Decryption Performance: The experiments show that the LTFHE
framework is able to scale with increase in file sizes, especially if the computational
resources are in the cloud. Nevertheless, the findings show that encryption is always
slower than decryption, except in the case of the file of 200 MB on the local machine
where decryption time was longer than encryption. This anomaly pointed to possible
local bottlenecks that may be related to memory or CPU when dealing with large files,
a problem that is less existent in the cloud.

• One aspect that could enhance the framework is the incorporation of GPU acceleration
which could prove useful for large scale applications. The parallel processing capability
of the GPU makes it a perfect fit for performing the high computational complexity
normally encountered in homomorphic encryption and decryption processes.
Subsequent studies should expand on the integration of GPU in an attempt to enhance
the framework and possibly cut down the time taken to encrypt and decrypt files in the
greatest file size.

• Zero-Knowledge Proof (ZKP) Efficiency: The adoption of Schnorr protocol in the
ZKP approach was done, and it was observed that it has a negligible effect on the time
taken to process transactions while keeping the system very secure. This efficiency is
very important for real-time application where data integrity is checked frequently
without the need to slow down the application. Nonetheless, the integration of ZKP
may raise some issues such as the trade-off between security and performance when
the system grows larger.
To improve the speed of the ZKP in the framework, other protocols or a combination
of the protocols that provide similar security as the chosen ones but with less
computational cost could be investigated. Furthermore, one can argue that the
optimization of ZKP in terms of scalability should be investigated further, especially
when it comes to the application of this technology in large-scale cloud environments
that require frequent data integrity checks

• Deduplication Mechanism: It was observed that deduplication was a very efficient
process in the reduction of storage space as it removed duplicate data. The process that
utilized SHA-256 hashing did not display any collisions in the current experiments but
this remains a threat as data volume rises. The effectiveness of deduplication is
important in managing capacity as it is in the cloud where cost of storage is a major
factor.

Conclusion and Future Work

6.1 Conclusion
This research successfully managed to implement LTFHE, ZKP, and deduplication into a
cloud storage system and achieve a good level of security with reasonable performance. The

22

results of the experiment proved that the time taken to encrypt and decrypt the files was cut
down by half when using cloud resources than when using a local machine; for instance, the
time taken to encrypt a 200MB file was 186 seconds on the local machine while the same
was 106 seconds in the cloud. Also, the deduplication mechanism was found to be efficient in
minimizing the storage demands as it was able to delete similar data file which was uploaded.
The framework in general is scalable and efficient in the encryption and decryption; some of
the issues are that the decryption of large files takes a lot of time in the local machines and
this should be further optimized. Thus, the proposed framework is a significant step forward
in the enhancement of the secure and efficient methods of storing data in cloud environments
and can significantly contribute to the improvement of practical findings.

6.2 Future Work
The future work will concern the further improvement of the LTFHE framework, including the
use of GPU for enhancing the speed of encryption and decryption of the big datasets. Besides,
it is expected that more efficient ZKP protocols and improved deduplication methods, for
instance, collision-resistant hashing, or machine learning will be investigated. The
enhancements are aimed at making the framework more scalable and more suitable for
processing different types of data and near real-time processing in the cloud systems.
Additional research in these fields will help to develop new and, perhaps, still more efficient
and reliable methods of cloud storage.

References

Chillotti, I., Gama, N., Georgieva, M. and Izabachène, M. (2020) ‘TFHE: fast fully homomorphic

encryption over the torus’, Journal of Cryptology, 33, pp. 34-91. doi:
https://doi.org/10.1007/s00145-019-09319-x.

Fan, Y., Lin, X., Liang, W., Tan, G. and Nanda, P. (2019) ‘A secure privacy preserving

deduplication scheme for cloud computing’, Future Generation Computer Systems, 101, pp.
127-135. doi:10.1016/j.future.2019.04.046.

Gartner (2023) Worldwide public cloud end-user spending to reach nearly $600 billion in 2023.

Available at: https://www.gartner.com/en/newsroom/press-releases/2023-04-19-gartner-
forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023
[Accessed 20 March 2024].

Jiang, L., Lou, Q. and Joshi, N. (2022) ‘MATCHA: a fast and energy-efficient accelerator for fully

homomorphic encryption over the torus’, Proceedings of the 59th ACM/IEEE Design
Automation Conference (DAC '22), New York, NY, USA, pp. 235-240. doi:
https://doi.org/10.1145/3489517.3530435.

Kaaniche, N., Moustaine, E. E. and Laurent, M. (2014) ‘A novel zero-knowledge scheme for proof

of data possession in cloud storage applications’, 2014 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, Chicago, IL, USA, pp. 522-531. doi:
10.1109/CCGrid.2014.81.

https://doi.org/10.1007/s00145-019-09319-x
https://www.sciencedirect.com/science/article/abs/pii/S0167739X18329649
https://www.gartner.com/en/newsroom/press-releases/2023-04-19-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023
https://www.gartner.com/en/newsroom/press-releases/2023-04-19-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023
https://doi.org/10.1145/3489517.3530435
https://dl.acm.org/doi/10.1109/CCGrid.2014.81

23

Kaur, R., Chana, I. and Bhattacharya, J. (2018) ‘Data deduplication techniques for efficient cloud
storage management: a systematic review’, The Journal of Supercomputing, 74, pp. 2035-2085.
doi:10.1007/s11227-017-2210-8.

Lee, M. and Seo, M. (2023) ‘Secure and efficient deduplication for cloud storage with dynamic

ownership management’, Applied Sciences, 13(24), 13270. doi:
https://doi.org/10.3390/app132413270.

Marketsandmarkets (2023) The global cloud computing market is expected to nearly double from

$626.4 billion to $1,266.4 billion by 2028. Available at:
https://www.marketsandmarkets.com/Market-Reports/cloud-computing-market-234.html
[Accessed 20 March 2024].

Shin, Y., Koo, D. and Hur, J. (2017) ‘A survey of secure data deduplication schemes for cloud

storage systems’, ACM Computing Surveys (CSUR), 49(4), pp. 1-38. doi:
https://doi.org/10.1145/3017428.

Thales Group (2023) Cloud assets are the biggest targets for cyberattacks. Available at:

https://www.thalesgroup.com/en/worldwide/security/press_release/cloud-assets-biggest-
targets-cyberattacks-data-breaches-increase [Accessed 20 March 2024].

Wang, C., Chen, J., Zhang, X. and Cheng, H. (2023) ‘An efficient fully homomorphic encryption

sorting algorithm using addition over TFHE’, 2022 IEEE 28th International Conference on
Parallel and Distributed Systems (ICPADS), Nanjing, China, pp. 226-233. doi:
10.1109/ICPADS56603.2022.00037.

Yuan, H., Chen, X., Li, J., Jiang, T., Wang, J. and Deng, R. H. (2022) ‘Secure cloud data

deduplication with efficient re-encryption’, IEEE Transactions on Services Computing, 15(1),
pp. 442-456. doi: 10.1109/TSC.2019.2948007.

Zhang, F., Fan, X., Lei, X., Wu, J., Song, J., Huang, J., Guo, J. and Tong, C. (2020) ‘Zero

knowledge proofs for cloud storage integrity checking’, Proceedings of the 39th Chinese
Control Conference (CCC), pp. 7661-7668. doi: 10.23919/CCC50068.2020.9189231.

Baharon, M. R., Shi, Q. and Llewellyn-Jones, D. (2015) ‘A new lightweight homomorphic

encryption scheme for mobile cloud computing’, 2015 IEEE International Conference on
Computer and Information Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing,
Liverpool, UK, pp. 618-625. doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.88

Samardzic, N., Feldmann, A., Krastev, A., Devadas, S., Dreslinski, R., Peikert, C. and Sanchez, D.

(2021) ‘F1: a fast and programmable accelerator for fully homomorphic encryption’, MICRO-
54: 54th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO '21), New
York, NY, USA, pp. 238-252. doi: https://doi.org/10.1145/3466752.3480070.

https://dl.acm.org/doi/10.1007/s11227-017-2210-8
https://doi.org/10.3390/app132413270
https://www.marketsandmarkets.com/Market-Reports/cloud-computing-market-234.html
https://doi.org/10.1145/3017428
https://www.thalesgroup.com/en/worldwide/security/press_release/cloud-assets-biggest-targets-cyberattacks-data-breaches-increase
https://www.thalesgroup.com/en/worldwide/security/press_release/cloud-assets-biggest-targets-cyberattacks-data-breaches-increase
https://ieeexplore.ieee.org/abstract/document/10077981
https://ieeexplore.ieee.org/document/8873629
https://www.researchgate.net/publication/344765558_Zero_knowledge_Proofs_for_Cloud_Storage_Integrity_Checking
https://ieeexplore.ieee.org/document/7363129
https://doi.org/10.1145/3466752.3480070

