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Abstract 
The exponential growth of cloud computing has necessitated advanced solutions for 

secure and efficient data management. This research presents a novel framework that 
combines Lightweight Fully Homomorphic Encryption (LTFHE), Zero-Knowledge 
Proofs (ZKP), and deduplication techniques to address the challenges of data security, 
integrity, and storage efficiency in cloud environments. Based on the SEAL (Simple 
Encrypted Arithmetic Library) for performing arithmetic operations on encrypted data, the 
proposed framework facilitates secure computations without compromising privacy. 
Hence, incorporating the Schnorr-based ZKP protocol guarantees secure data integrity 
check without compromising the privacy of the user’s data in real-time application. Based 
on a set of experiments carried out on the Amazon EC2 instances, the framework was 
benchmarked for efficient performance through file sizes of 1 MB up to 200 MB. The 
performance analysis substantiates linearity of both encryption and decryption algorithms 
in relation to the file size however, additional enhancements are required to improve the 
decryption of bigger file sizes. The ZKP protocol had fairly negligible overhead and at the 
same time, was highly reliable which proves that it is effective in securing cloud storage. 
Furthermore, the deduplication procedure also worked effectively in pointing out the 
duplication of data to ensure reduced storage and overall system efficiency. By using 
advanced cryptographic techniques this research provides a scalable and practical solution 
to the cloud security problems. The results presented here lend further support to the 
practical applicability of the proposed framework for future research and for related 
technologies in commercial cloud-based storage. Further work will involve fine-tuning the 
decryption process and expanding on the ways of applying these techniques in large-scale 
cloud infrastructures. 

 
 

1 Introduction 
 

The adoption of cloud storage solutions has significantly transformed data management 
by enabling scalable and flexible storage capabilities. However, the exponential increase in 
data volume has also posted significant problems in matters concerning security as well as 
efficiency in these systems. As the data is stored and processed in the cloud environments, the 
risks of data breaches, unauthorized access, and privacy violations are higher, and therefore, 
proper security measures should be incorporated. On the same note, the need to find ways of 
dealing with redundancy and how to effectively store items in the limited space available has 
been more pronounced than ever. 
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Over the past few years, the market for cloud storage has been rapidly expanding due to 
the large amounts of data being produced by corporations and customers. According to 
Marketsandmarkets, the global cloud computing market is expected to nearly double from 
$626.4 billion to $1,266.4 billion by 2028, with a compound annual growth rate (CAGR) of 
15.1% (Marketsandmarkets, 2023). Likewise, Gartner (2023) reveals that organizations’ 
expenditure on public cloud services is expected to grow to $597. 3 billion, which indicates the 
need for more cost-efficient solutions delivered through cloud environments. However, there 
are still issues of security and 39% of companies have known data breaches in the cloud 
environment in 2022 according to Thales Group (2023). This is why there has been a call for 
enhanced security measures especially when it comes to data deduplication. 

Even though data deduplication is a critical process for eliminating the redundant data 
and thus, enhancing the efficiency of storage, it has its specific issues when implemented in 
cloud settings. Conventional methods of deduplication have been known to pose a threat to the 
privacy of the data because some of the data has to be viewed to identify the duplicates. This 
poses a challenge between the need to have storage space and the need to have high security 
on data. The proposed solution is based on the Lightweight Fully Homomorphic Encryption 
(LTFHE) and Zero-Knowledge Proofs (ZKP). ZKP can make sure that the data is unique, and 
LTFHE can perform computations on encrypted data so that the data remains private at all 
times during the deduplication process. 

Motivated by this significant research problem, this study poses the following open-
ended research question: How can the integration of Zero-Knowledge Proof (ZKP) with 
Lightweight Fully Homomorphic Encryption Over the Torus (TFHE) ennhance data 
deduplication in cloud storage for better privacy and efficiency of data storage? This paper 
discusses these approaches to guarantee the privacy and security of the data during the 
deduplication process as a way of solving the main issues that were highlighted in the literature 
review section. 
 
2 Related Work 
 
In the digital world, the era of digital breakthrough is facing a big challenge in the increasing 
capacity of storage in the cloud while maintaining the security of data storage. Cloud storage 
is the ideal contemporary approaches to data management that employ methods that address 
the need for data confidentiality and integrity, as well as storage needs. In this section, related 
work of data deduplication is discussed, which can undoubtedly be considered one of the most 
critical methods for eliminating redundant data that occupies storage space. It presents a 
considerable challenge: between the need to expand the cloud storage capacity on the one hand 
and the introduction of a set of new security and privacy technique other. However, the 
efficiency of the traditional deduplicate method to remove the duplicate data from the system 
is an issue that offset the data privacy gap to be achieved in order to improve the cloud storage 
system. The capability to create deduplication methods that seek to improve the storage 
capacity to security ratio is one of the achievements of cloud computing.  
This section discusses the existing literature on data deduplication and cryptographic measures 
that ensure the safety of cloud storage, mainly the ZKP and TFHE. The reason why this part is 
here is to let the readers find out the possible path that the deduplication technologies could 
follow along the development of the security threats, so that the readers could be able to see 
that ZKP and TFHE are the most advanced technologies that can not only protect the data 
privacy but also provides the best solution for data storage.  
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In this regard, this section compares the current methods seeking to discover the challenges 
associated with the newly developed techniques before announcing the brilliant technology, 
which will make it easier to deal with the situation of cloud storage security issue. It forms the 
ground upon which additional  research in the content of the proficiency of the cryptography 
and cloud storage can be done especially in the extent of security and performance. 
Chillotti et al. (2020) has  proposed a new approach  for FHE known as TFHE. The reduction 
of bootstrapping time in the result of the research got down to 13ms from the previous 690ms 
which is a leap in making Fully Homomorphic Encryption  more practically applicable in the 
cloud. The primary advantage of this method is getting the computation facilitated and in the 
same process, the key size of bootstrapping could be reduced so that TFHE could carry out 
safely and competently cloud operations in real-time with definite focus on data security and 
efficiency. Alongside TFHE hardware optimization, the MATCHA hardware accelerator 
developed by Jiang et al. (2022) focuses on energy efficiency and speed in TFHE operations, 
aiming to enhance energy efficiency. 

2.1 Evolution and Importance of Data Deduplication 
Data deduplication technologies have been a key factor in the evolution of cloud storage as a 
result of the overall drive for digital data management efficiency and sustainability. The first 
versions were founded on the methods of deduplication of the files only, that is, the methods 
of their identification and exclusion. The structure of the deduplication method became more 
complex with the rise in the production of digital data. It led to the occurrence of block-level 
deduplication as well as byte-level deduplication. hese techniques have been purposed to 
reduce the problem of repetitiveness of information hence improving on the storage capacity. 
Kaur et al. (2018) in the course of the review showed this evolution, pointing out that, in 
addition to other processes related to data manipulation, deduplication is gradually turning into 
a method that addresses the challenges of the rapidly growing data. 
Also, it raises the question of how to securely store deduplicated data, which has turned into a 
monumental issue, and  this demonstrates one of the issues in determining where and how the 
perfect equilibrium of cloud storage systems between privacy and effectiveness can be 
achieved. Shin et al. (2017) also covers this issue and presents various secure  deduplication 
protocols that offer confidentiality and integrity. Nevertheless, they show that the deduplication 
process and data security are intricate and explain the threats and the crypto art approaches that 
can be used to mitigate them. Their research also shows that the process of de-duplication is a 
very complex one, which does not allow for preserving the security and privacy of the data at 
the same time. They  described what is wrong with it and what hazards are connected with it 
and they suggested some original  cryptographic approaches to the problems. Their research 
on secure deduplication techniques highlights a key problem in managing cloud storage: how 
critical it is to ensure that the cloud  storage is optimally utilized and at the same time ensure 
that the information is kept secure. Our research is based on fundamental information, and it 
describes a new method of data deduplication by using ZKP and lightweight TFHE, which 
addresses the issues mentioned by Shin et al ., and Kaur et al . They presented an efficient or 
secure method, while our method will include both of them. This new method will not only 
solve the present problems but will also set a new course for the deduplication method of cloud 
data which will be a discovery in the field of cloud storage. 
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2.2 Cryptographic Techniques in Data Deduplication 
This part gives a brief of the techniques and studies that have positively impacted the subject. 
Cryptographic techniques have enhanced data deduplication and security in cloud storage 
leading to efficient cloud storage. The research study conducted by Jin Li et al. (2021) explores 
a new approach that enhances the security of data in deduplication through the formulation of 
an appropriate re-encryption technique. This has brought out their study on minimizing the 
computational cost, hence the privacy of data through the application of a method they called 
convergent all-or-nothing transform (CAONT). But they came across a potential challenge: 
their cryptographic operations become complex hence deployment issues in large cloud 
platforms which demand large datasets for deduplication. In other words, complexity of 
cryptographic operations might become an issue for deployment in a large-scale cloud 
environment where various and extensive datasets require deduplication. This has created a 
gap showing that there is need for a cryptographic solution that can be scaled up and integrated 
easily into the cloud infrastructure without much computational and storage overhead. 
In the process of deduplication, Shuguang Zhang et al. (2023)’s work slightly discusses the 
problem of dynamic data ownership. Their framework is good in terms of the secure 
infrastructure in managing the ownership of databases thus making the data more secure. 
However, the research lacks information on one of the biggest issues that can arise, increase in 
latency resulting from the incorporation of additional layers of security. It means that it is 
necessary to find the proper balance between the deduplication’s efficiency and the changes in 
the security patterns. The paper leaves space for further research and development of the 
optimization techniques that might assist in reducing the negative effects on the performance 
of the system, particularly in the sphere of time-sensitive cloud storage. 
In their paper, Fan et al. (2019) describe the privacy-preserving deduplication scheme that is 
based on encryption. Such an approach is critical in achieving deduplicated data. While it is a 
good solution in the sense of preserving the user’s privacy, the approach used in the protocol 
leads to an increase in computation complexity with respect to encryption processes. This raises 
a big challenge in as much as the effectiveness of the deduplication process in relation to the 
use of encryption protocols is concerned. The identified gaps here point towards a bigger 
challenge: designing lightweight and optimized cryptographic protocols that are responsible 
for data security and confidentiality and at the same time should not hamper deduplication 
effectiveness which is crucial for cloud storage systems. 
Li et al. (2021), Zhang et al. (2021), and Fan et al. (2019) have identified several research 
directions and gaps in the area of cloud deduplication, based on which, our novel approach is 
to integrate ZKP with lightweight TFHE in the deduplication technique. With respect to these 
challenges, the research strategy adopted is to ensure that data privacy and data integrity are 
preserved, system latency is small and computational overhead is small while at the same time 
ensuring data security and efficient deduplication. To this end, the methodology to be 
employed in the current study will entail the use of ZKP’s privacy-preserving nature and the 
computational flexibility of TFHE. Both of these will assist us in eliminating the issue of secure 
data deduplication, therefore paving the way for cloud storage research. This itself will be 
useful to solve the existing deduplication problems but also will open up new opportunities and 
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further advancements and innovations in cryptographic methodologies for cloud computing 
environment. 

2.3 Zero-Knowledge Proofs (ZKP) in Cloud Storage 
Cloud computing is among the most utilized inventions that have led to issues of insecurity 
when it comes to data. The technique of ZKP, is the  confirm that the data belongs to  particular 
entity, without disclosing the identity of the owner. Zhang et al. (2020) used zero knowledge 
proof method to validate the  integrity of the data  in cloud. This method is thus is more secure 
than traditional method of data verification. Drawback of ZKP like the computational 
complexity was also discussed by them. 
Kaaniche et al. (2014) identified a new technique in ZKP in this paper. In the research, they 
designed a protocol with public verifiability and communication efficiency to enhance the 
means of data validation hence enhancing privacy of data. This research approach assists in 
confirming the validity of the data without passing it to the verifier hence conforming to the 
zero-knowledge protocol. The study also reveals that the ZKP method is only capable of 
handling dynamic data, therefore, further work is required to define the full potential of data 
storage in the cloud. 
Unlike prior work where there has been work done on integrity check of data or policies for 
deduplication only, our work will be unique in that it will incorporate zero knowledge proofs 
combined with lightweight TFHE for data duplication in the cloud. This method will help in 
the removal of the privacy concerns that Zhang et al. (2020) and Kaaniche et al. (2014) pointed 
out and also improve on the storage efficiency by use of smart data deduplication techniques. 
The integration of privacy preservation by ZKP and computational performance by TFHE will 
make it possible to create a new secure and efficient cloud storage system. However, our 
research work covers the scalability and performance issues more than that, they also introduce 
the solutions which are scalable, efficient, and preserve the privacy in the system. This 
comparison accentuates the novelty of our research in the context of secure cloud storage using 
ZKP and TFHE with the objective of addressing the issues of data privacy and efficient 
storage.. 

2.4 Lightweight TFHE: Advancing Cloud Storage Security and Efficiency 
Chillotti et al. (2020) proposed a new scheme of Fully Homomorphic Encryption, namely 
TFHE. This particular work cuts bootstrapping time down by about 99%, from 690 ms to 13 
ms, a massive leap in usability and applicability of FHE in cloud services. The primary 
advantage of this method is the acceleration of the computation process, while the key size of 
bootstrapping can be reduced, which allows TFHE to securely and efficiently perform the real-
time cloud operations, the main aims of which are data security and optimization. 
Other than the discussed TFHE hardware optimization Jiang et al. (2022) proposed the 
MATCHA hardware accelerator to optimize the energy efficiency and speed of TFHE 
operations in an attempt to improve the energy efficiency. MATCHA utilizes approximate 
multiplication-less integer FFTs as well as a pipelined datapath; hence it achieves a 2.3x boost 
in gate processing throughput and a 6.3x improvement for throughput per watt compared to 
former accelerators. Furthermore, these developments not only increase the likelihood of using 
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TFHE in large-scale cloud platforms but also become a new standard for how to deploy energy-
efficient cryptographic protocols. 
Wang et al. (2023) have thus combined this cryptographic progress with practical cloud 
operations by developing a feasible fully homomorphic encryption sorting algorithm based on 
TFHE. They have surpassed the deficiencies of earlier FHE implementations, which were 
characterized by the inability to execute complicated operations on encrypted data due to the 
low performance of their hardware. This scheme provides a nearly 50% faster sorting process 
when compared to others, achieved through optimized homomorphic additions. They prove 
that TFHE can be effectively used in the day-to-day running of cloud services without 
compromising the workload or security. 
In this proposed research will be  advancing the current stage of research by introducing a novel 
approach that strengthens cloud security and performance. By deploying the performance 
capabilities exhibited by Chillotti et al. (2020) and Jiang et al. (2022), and the sorting algorithm 
enhanced by Wang et al. (2023), we are confident that we will be able to improve data 
processing in mainstream cloud computing. The objective of this activity is to branch out the 
cloud infrastructure so that it can be safe and efficient enough to process high volumes of data 
and help cloud services manage challenging tasks. We are seeking to expand the applications 
of TFHE by making this research more practical. Thus, trying to advance the possibilities of 
the development of cloud computing technologies. 
 

2.5 Encryption and decryption techniques and technologies in mobile 
cloud computing 

Baharon et al. (2015), Feldmann et al. (2021), and Wang et al. (2023) have mentioned about 
the usage of cryptographic techniques in cloud computing in their respective research studies, 
and their primary focus was to improve security and efficiency 
Mobile cloud computing has been discussed by Baharon et al. (2015) who have put forward a 
scheme for Lightweight Homomorphic Encryption (LHE). Especially this scheme gives less 
computational overhead which is quite important in case of resource constraints of a mobile 
device. The LHE scheme is also amicable to addition and multiplication operations as required 
in real-time processing of encrypted data. Nevertheless, the scheme is not very efficient for 
large-scale cloud environments and volumes of data and operations that are much higher in 
comparison with the local environments. 
Different from the above works, Feldmann et al. (2021) proposed the F1 accelerator, a 
hardware design targeting to optimize the FHE computation. The F1 accelerator acquires high-
performance gains by moving data efficiently and integrating hardware units for intense 
operations. This hardware acceleration makes FHE more practicable for highly computational 
problems such as private deep learning However, this FHE approach leans on special platforms 
for execution hence making it hard when implemented in resource constrained environments 
such as mobile cloud computing. 
Wang et al. (2023) did not implement a new cryptographic scheme using TFHE, but rather 
provided a novel use of TFHE in the field of cloud computing, by indicating that a sorting 
algorithm based on it were 50% faster than other instances of a similar algorithm. This work 
also exemplifies the applicability of TFHE in real-life cloud services by improving the 
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homomorphic operators for efficient performance. Nevertheless, the work of Wang et al. is 
focused mostly on certain tasks and its potential of applying TFHE for most of the cloud 
computing activities is not explored enough, especially has regard to the situations that require 
high scale and efficiency. 
Following these works, this proposed research/contributions consist of the integration of Zero-
Knowledge Proofs (ZKP) and Lightweight TFHE. This combination handles the scalability 
issues that Baharon et al identified by making sure that the encryption scheme that it develops 
can easily handle large data sets without having to compromise on security. In contrast to 
Feldmann et al. ’s usage of computation apparatuses, our method is concocted without prior 
demands to the specific ingredients of hardware resources, and therefore can be undertaken 
efficaciously in environments that are deprived of hardware resources. Moreover, whereas 
Wang et al. design for frequently optimizing special operations, this study not only applies to 
TFHE for various other cloud computing operations but also guarantees security and efficiency 
at the same time. 
 
 
 

Table 1: Related work summary. 
Research 

Article Methodology Research Focus Key 
Achievements Limitations Distinctive 

Features 

Kaur et al. 
(2018) 

Block/byte-level 
deduplication 

Cloud storage/data 
management 

Enhanced storage 
efficiency by 
reducing redundancy 

Privacy/security 
challenges in 
deduplication 

Evolution from file 
to byte-level 
deduplication 

Shin et al. 
(2017) 

Secure 
deduplication 
protocols 

Data security in cloud 
storage 

Balanced storage 
efficiency with data 
security 

Risk of data exposure 
during deduplication 

Focus on optimizing 
storage while 
ensuring data privacy 

Jin Li et al. 
(2021) 

Convergent All-Or-
Nothing Transform 
(CAONT) 

Cryptographic techniques 
in deduplication 

Reduced 
computational costs 
while maintaining 
data privacy 

Scalability challenges 
in large-scale 
environments 

Integration of 
cryptography with 
deduplication 

Zhang et al. 
(2023) 

Dynamic data 
ownership 
management 

Cloud 
storage/deduplication 

Efficient dynamic 
data ownership 
management 

Scalability and 
efficiency issues 

Secure management 
of dynamic data 
ownership 

Chillotti et 
al. (2020) 

Lightweight Fully 
Homomorphic 
Encryption (TFHE) 

Cryptographic protocols 
for cloud storage 

Reduced 
bootstrapping time 
from 690 ms to 13 ms 

Limited exploration 
in large-scale 
environments 

Significant reduction 
in bootstrapping time 

Jiang et al. 
(2022) 

MATCHA 
hardware 
accelerator for 
TFHE 

Energy-efficient 
cryptographic 
computations 

2.3x boost in 
processing 
throughput, 6.3x in 
energy efficiency 

Hardware-specific 
improvements may 
not translate to 
software 
implementations 

New standard for 
cryptographic 
protocol deployment 

Wang et al. 
(2023) 

FHE sorting 
algorithm using 
addition over 
TFHE 

Cloud operations/data 
security 

50% faster sorting 
process than 
traditional methods 

Complexity in 
existing cloud 
infrastructure 
implementations 

Bridging 
cryptographic 
advancements with 
cloud operations 
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3 Research Methodology 

This section presents the comprehensive description of the research methodology regarding 
how and what was performed during the conduct of the research to evaluate Secure 
Deduplication Framework (SDZ-LTFHE) in the context of cloud. This section gives a 
description of the research procedure, which serves to verify the whole research process. 

3.1 Research Procedure 

The research began with the introduction of the SDZ-LTFHE architecture that includes LTFHE 
and ZKP with deduplication. The framework was initially tested for its functionality by 
implementing it locally and later it was implemented on an Amazon EC2 instance for further 
testing. 

• Framework Development: The SDZ-LTFHE which has been proposed was 
implemented using Python language and SEAL library for homomorphic encryption. 
The design concentrated on developing a system that could be divided into several 
independent parts that can be tested and optimized individually: Encryption, ZKP, and 
deduplication are the three main processes that are used in the context of blockchain 
technology. 

• Initial Testing: For the first run, it was performed on a local machine with the 
specifications of Intel(R) Core (TM) i5-6200U CPU @ 2. 80 GHz and 16. 0 GB RAM 
to determine if the constituent elements of the framework work as expected and to get 
an initial idea of the framework’s performance. This first phase of testing has helped in 
making a distinction of the problems that were present and solving them before the tests 
were to be carried out on a cloud environment. 

• Cloud Deployment: The framework was deployed on an Amazon EC2 t2. 2xlarge 
instance since the computation is high and can handle big data. The needed software 
such as Python, Flask and Microsoft SEAL were installed and the environment was 
configured correctly. 

Research 
Article Methodology Research Focus Key 

Achievements Limitations Distinctive 
Features 

Zhang et al. 
(2020) 

ZKP for data 
integrity 
verification in 
cloud storage 

Data security/privacy in 
cloud storage 

Maintained data 
integrity without 
exposing sensitive 
information 

Scalability and 
computational 
overhead in large 
datasets 

ZKP integration in 
cloud storage for 
secure data 
verification 

Kaaniche et 
al. (2014) 

ZKP protocol for 
Proof of Data 
Possession (PDP) 

Cloud storage 
security/data validation 

Public verifiability 
and communication 
efficiency in data 
validation 

Limited handling of 
dynamic data 

Maintaining data 
privacy with public 
verifiability in cloud 
storage 

Fan et al. 
(2019) 

Lightweight FHE 
for data security 

Data 
deduplication/privacy in 
cloud 

Enhanced data 
privacy without 
significant 
computational 
overhead 

Complexity in large-
scale cloud 
environments 

Balancing privacy 
and performance in 
cloud data 
deduplication 

Shuguang 
Zhang et al. 
(2023) 

Data deduplication 
with dynamic 
ownership 
management 

Cloud data 
management/security 

Improved security via 
effective ownership 
management 

Potential latency due 
to added security 
layers 

Secure ownership 
management in 
dynamic cloud 
storage environments 
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3.2 Software and Hardware requirements 

This paper employed the use of both the hardware and software solutions to build, implement, 
and analyze the Secure Deduplication Framework (SDZ-LTFHE). The first tests were 
conducted on local machines, Amazon EC 2 was used in case of cloud based tests. The software 
stack referred to the number of tools and libraries which were integrated into the framework 
and the successful implementation as well as performance of the software was realized from 
the use of the software stack. Software and hardware requirements are outlined in the tables 
below: 

Table 1: Hardware configuration 

Component Specifications 

Local Machine Intel(R) Core (TM) i5-6200U CPU, 16GB RAM 

Cloud Instance Amazon EC2 t2.2xlarge, 8 vCPUs, 32 GB RAM 

 

Table 2: Software Configuration 

Component Details 

Programming Language Python 

Version Python 3.9 

Encryption Library Microsoft SEAL (Lightweight Fully Homomorphic 
Encryption - LTFHE) 

Web Framework Flask (for developing the user interface) 

Operating System Ubuntu (deployed on the EC2 instance) 

3.3 Experimental Setup 
The experiments were designed to test three key components of the framework: LTFHE’s 
encryption and decryption than other similar solutions; the Schnorr-based ZKP; and the 
deduplication scheme’s efficiency.	
. 

• Data Collection: The process was done with the use of example files of different sizes. 
Files of 1 MB, 10 MB, 20 MB, 50 MB, 100 MB, 200 MB were obtained from 
examplefile. com to ensure consistency. These were used in order to test the use of the 
proposed framework with the various loads of data as shown above.. 

• Data Processing:  
 Encryption/Decryption: The TFHE (Fully Homomorphic Encryption) 
framework was used for encryption and decryption of the files. The process was 
evaluated based on several critical parameters: It measures the time taken to set 
up the parameters, time taken to generate the keys, time taken to encrypt and 
time taken to decrypt the message. Each of these metrics was taken to determine 
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the level of efficiency and performance of the encryption and decryption 
procedures for the various file sizes. TFHE integration guarantee the privacy of 
encrypted data even when it was processed and decrypted while preserving the 
confidentiality of the plain text. 
 ZKP: To generate and verify the zero-knowledge proofs of different file sizes, 
Schnorr-based protocol was used. The information flow of the framework was 
to extract a prover’s secret from the file hash then construct a proof that would 
enable the verifier to confirm the authenticity of the secret without getting to 
know it. The time taken to construct and validate these proofs, as well as the 
rate of successful validation, were the main measures of the protocol’s 
efficiency. Moreover, the protocol was combined with a homomorphic 
encryption to keep the data private while generating and verifying the proof; 
thus, the data is not disclosed at any stage of the process. 
Deduplication: Deduplication was carried out to reduce file duplication which 
was seen to take a lot of space in storage systems. This was done by calculating 
a SHA-256 hash for each file as this provides a unique value of the contents of 
the file. The system kept a record of hashes as the record of all the files that the 
system had processed before. When a new file is created, the hash of the new 
file was calculated and compared to the hash log. If a matching hash was found 
then the file was recognized as a duplicate and this prevented duplication of 
files. Scatter storage method is effective in such a way that it only stores the 
files once yet the file’s content is shared in many places hence reduces the 
storage space and improves the efficiency of the system. 

3.4 Data Analysis 

The data collected during the experiments was analyzed to assess the performance, scalability, 
and security of the SDZ-LTFHE framework. 

• Performance Metrics: The efficiency of the framework was measured based on the 
encryption and decryption time, proof generation and verification time, and 
deduplication factor that were recorded for different file sizes and for different data 
loads. From this analysis, it was possible to gain understanding on how efficient the 
framework was and some of the variations in performance that could be expected. 

• Statistical Techniques: Basic statistical analysis, such as calculating averages and 
variances, was used to assess the consistency and reliability of the framework’s 
performance across different scenarios. 

• Comparison and Validation: Performance data collected from the use of cloud 
deployment was then compared to the benchmark achieved from the local system 
environment. Through this comparison, it was evident that the framework was scalable 
and would be useful even if taken from a locally controlled environment to a cloud 
environment. The comparison confirmed that all the elements of the solution stayed 
top-notch and safeguarded in the stress test of a real-life cloud environment. Design 
Specification. 

4 Design Specification 
 
The Design Specification part provides an architectural plan of the work that is proposed and 
the techniques that are applied in aspects of Secure Deduplication Framework with Lightweight 
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Fully Homomorphic Encryption (SDZ-LTFHE). This section describes a) how design, 
elements and flow work together to support the functionality of the system for the achievement 
of the goals of the framework which is secure storage and deduplication. 

4.1 System Architecture 
The framework is built on a modular architecture, comprising three core components: 
The SDZ-LTFHE framework is expected to run on the cloud and therefore, offers an efficient 
solution to data storage. The system architecture integrates several key components: 

1. Web Interface: The front-end of the system is created with the assistance of the Flask 
web framework. It is useful and gives a path to the file upload, status check, and results. 

2. Encryption Module: This module is specifically used for encryption and decryption 
of data using the Lightweight Fully Homomorphic Encryption (LTFHE). This module 
makes use of Microsoft SEAL that guarantees the data is encrypted and its privacy kept 
safe even in computation. The module effectively manages generation of keys, 
encryption of data and decryption of data which makes it suitable for large data 
management. 

3. Zero-Knowledge Proof (ZKP) Module: The ZKP module guarantees the data’s 
authenticity without exposing its content to the respective parties. With the help of 
Schnorr protocol, the system can provide cryptographic proofs that can confirm the 
integrity of the data and provide the additional level of security. 

 Figure 1 below shows the working mechanism of ZKP. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: ZKP working mechanism 
 

4. Deduplication Module: This component optimizes the storage space by removing files 
that are similar to one another. The module calculates SHA-256 hash for each file and 
checks this hash against hashes of files stored in deduplication log. In case of duplicate 
files, the system deletes one of the copies which makes the use of disk space more 
efficient and minimizes the amount of data processing. 

Figure 2 below illustrates the architecture of the framework. 
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Figure 2: Architecture of the Framework 

4.2 Workflow of the Framework 
The workflow of the LTFHE framework is structured to verify each component functions 
correctly: 
Below flowchart describes the workflow if the framework. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: Workflow flowchart of the Framework 
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1. File Upload: Files are submitted through the web interface, and they are sent to the 
deduplication module for the first check. 

2. Deduplication Check: This module calculates the hash of the file and then checks the 
records to find the presence of the same. If such a duplicate is found, the file is rejected. 
Otherwise, it moves to the next step, which is encryption. 

3. Encryption: LTFHE scheme is used to encrypt the file. Encryption is performed to be 
able to accommodate large amounts of data without compromising on the data’s 
confidentiality. 

4. ZKP Generation and Verification: Zero-Knowledge Proof is created for the 
encrypted file to prove its authenticity. The proof is then checked to confirm that the 
content of the file has not been altered. 

5. Homomorphic Computation: Homomorphic operation such as dot product that are 
homomorphic to the encryption scheme can be computed on the encrypted data. This 
step is very important for those applications which involve the processing of data that 
should not be exposed. 

6. Storage: The encrypted and verified data is then stored in the cloud storage system as 
shown in the following figure. 

4.3 Design Considerations 
Several design considerations were considered during the development of the SDZ-LTFHE 
framework: 

• Scalability: The framework is intended to be scalable in proportion to the size of the 
data being worked on. Such sub-components as the encryption module and 
homomorphic computation engine are designed to perform efficiently irrespective of 
data volume. 

• Security: Privacy and confidentiality is very important and this is achieved through the 
use of encryption, zero-knowledge proof, and deduplication. Every layer is designed to 
work autonomously with the idea that if one layer is penetrated, the others will still hold 
up the security of the whole system. 

• Efficiency: he framework is kept simple to avoid much computation especially during 
the encryption and decryption phases. The level of encryption used is light to enable 
the system to run in environments that may have limited resources. 

 
5 Implementation 

The implementation section of the proposed solution aims at providing security measures and 
fast data processing of large data sets in the cloud. The system incorporates several advanced 
cryptographic techniques, and the design of the system is to ensure that it takes minimal space 
while ensuring that the data stored is secure. This section describes the elements and phases of 
the implementation process, the technologies applied, and the problems faced. 

5.1 Encryption Process 

The encryption process was designed to ensure data security at every stage: 
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• Parameter Setup: The polynomial modulus degree and coefficient modulus were set 
to meet the security requirements and achieve high performance. These parameters are 
important for determining the parameters of the encryption strength and effectiveness. 

• Key Generation: The system then produced a group of keys such as the public and 
secret keys, the relinearization keys, the Galois keys and others. These keys are required 
to encrypt the data, to perform the homomorphic operations on the encrypted data and 
then decrypt the data. 

• Data Preparation and Encryption: To handle this issue, the input data was divided 
into smaller segments, and batch encoding was applied. These chunks were then 
encrypted in parallel, this is because of multi-threading which is used to increase the 
efficiency. 

The encryption process helps to keep data safe from unauthorized access even during the 
data processing stage and through the use of homomorphic encryption that enables 
computations on encrypted data. 

 
Pseudocode:  HomomorphicEncryptionSystem 
 
Function IntegratedEncryptionSystem(input_path, encrypted_folder, 
decrypted_path): 
    Initialize results dictionary 
 
    // Setup encryption parameters and context 
    Set parameters for SEAL context (e.g., polynomial modulus, 
coefficient modulus, plain modulus) 
    Initialize SEAL context 
     
    // Key Generation 
    Generate public, secret, relinearization, and Galois keys 
    Initialize encryptor, evaluator, decryptor, and encoder 
     
    // Read and process input file 
    Read input text file and convert to integer array 
     
    // Encrypt Data in Chunks 
    Encrypt data chunks using parallel processing 
    Store encrypted chunks 
     
    // Save Encrypted Data 
    Save encrypted chunks to specified folder 
     
    // Homomorphic Dot Product 
    Perform homomorphic dot product on encrypted chunks 
    Store result of dot product 

 

 

5.2 Decryption Process 

The decryption process mirrors the encryption process but focuses on quickly and accurately 
restoring the original data: 

• Parallel Decryption: Similar to the encryption, the decryption of data chunks was done 
in parallel to save much time that would have been used in processing large data. 

• Data Reconstruction: The decrypted chunks were then put together in order to 
reconstruct the original file and it was confirmed that no data was lost or altered. 
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• Efficiency Considerations: The decryption process was made to be faster than the 
encryption process since this is useful for applications that need data to be retrieved 
quickly. 

This decryption process was optimized to achieve the middle ground between the time 
efficiency and the correctness of the system to make it functional. 

5.3 Deduplication Process 
To optimize storage space, a deduplication mechanism was integrated:To optimize storage space, a 
deduplication mechanism was integrated: 

• SHA-256 Hashing: Every file submitted to the system was hashed through SHA-256 
which generated a string that could represent the file’s contents. 

• Duplicate Detection: The system then checked the hash of the new file with the hashes 
kept in the deduplication log. If a match was found it then flagged the file as a duplicate 
to the user. 

• Storage Optimization: The identified duplicates were eliminated from the system 
which helped save space and enhance the system’s productivity. 

This deduplication process is especially useful when dealing with large data in the cloud so as 
not to waste storage space. 

Psuedocode: Deduplication 
Function compute_hash(file_path): 

 

Initialize hasher as SHA-256 
 

Open file at file_path in binary mode 
 

While reading chunks from the file: 
 

    Update hasher with the chunk 
 

Return the computed hash as a hexadecimal string 
 

 

Function is_duplicate(file_path, log_path): 
 

new_hash = compute_hash(file_path) 
 

 

If log file does not exist at log_path: 
 

    Create an empty log file 
 

 

Open log file at log_path 
 

Read all recorded hashes from the log 
 

 

If new_hash exists in the log: 
 

    Return True, new_hash # File is a duplicate 
 

 

Append new_hash to the log 
 

Return False, new_hash # File is not a duplicate 
 

 

5.4 Zero-Knowledge Proof (ZKP) Generation and Verification 

The ZKP mechanism was implemented to enhance data integrity verification: 

• Schnorr Protocol: The system used Schnorr protocol that generated zero knowledge 
proofs which are proofs that the data is valid without revealing the data. 
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• Proof Generation: For each file, a proof was created with the different parts of the 
argument such as the commitment (t), the challenge (c), and the response (s). These 
elements are obtained from the hash of the file and the keys that are used in the 
cryptography process. 

• Proof Verification: The verifier then verifies the proof by repeating calculation of 
some of the values that were inputted by the prover. If the value is correct, the proof is 
added to check if data is correct or not in order to confirm the data integrity. 

The ZKP process involves an extra step of adding more security to the data while at the 
same time making it possible to check the data’s authenticity.  

Psuedocode: Deduplication 
Initialize p, g 
 
Function hash_function(data): 
    Return SHA-256 hash of data as integer 
 
Function generate_proof(secret): 
    Compute h = g^secret mod p 
    Choose random r, compute t = g^r mod p 
    Compute c = hash_function(g, h, t) mod p 
    Compute s = (r + c * secret) mod (p-1) 
    Return t, c, s, h 
 
Function verify_proof(g, h, p, t, c, s): 
    Compute t' = (g^s * h^-c) mod p 
    Return t' == t 
 
Function hash_large_file(file_path): 
    Return SHA-256 hash of file as integer 
 
Function generate_file_proof(file_path): 
    Compute file_hash, use as secret 
    Generate and return ZKP 
 
Function verify_file_proof(file_path, file_hash, proof): 
    Recompute file hash 
    If hash matches, verify proof, return result 
    Else, return False 

 

6 Evaluation 

The evaluation of the Lightweight Fully Homomorphic Encryption (LTFHE) framework 
involved several experiments designed to assess its performance and scalability in various 
scenarios. This section presents the results from these experiments, comparing encryption and 
decryption performance between a local machine and a cloud environment, examining the 
effectiveness of the deduplication process, and evaluating the efficiency of the Zero-
Knowledge Proof (ZKP) implementation. 

6.1 Encryption and Decryption Performance in Cloud Environment 

In this experiment on the LTFHE framework the effectiveness and the efficiency of the 
encryption and decryption method was tested under different sized of data files. In this section 
the encryption and decryption time will be tested to see if it is efficient for a cloud infrastructure 
for a deduplication process. 

Objective: 
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This experiment was performed with the objective of determining the scalability and the 
effectiveness of the developed LTFHE framework in a cloud environment. The main concern 
was to know the effectiveness of the encryption and decryption processes of the file based on 
the size of the file. 

Results: 
 
The below table illustrates performance of system for the encryption and decryption times 
cloud environment: 
 

Table 3: Performance matrix of Encryption and Decryption 
 

File Size Parameter Setup 
(s) Key Generation (s) Encryption (s) Decryption (s) 

1 MB 0.005 0.052 0.439 0.186 
10 MB 0.002 0.048 5.022 1.834 
20 MB 0.003 0.049 9.78 4.316 
50 MB 0.002 0.038 24.043 9.176 

100 MB 0.002 0.038 49.241 20.847 
200 MB 0.002 0.038 106.125 49.591 

 
The graph below presents the correlation between the size of the file to be encrypted decrypted 
and the time taken to perform the two processes. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Encryption and Decryption Times Across Different File Sizes 
 
Analysis 
 
The experiments prove that there is a direct, positive correlation between the size of the file 
and time required for encryption/decryption. With the increase in file size, both encryption and 
decryption time increase, mainly due to the nature of homomorphic encryption. Encryption as 
a process is usually slower than decryption but as the size of the file to be encrypted increases 
the time difference reduces.  
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 Nevertheless, the cloud environment seems to execute these operations effectively, and this 
indicates that it can effectively support large-scale applications with secure data processing 
requirements. The fact that LTFHE achieved virtually similar levels of security across the three 
file sizes suggests that the framework is scalable and would be appropriate for use in cloud-
based storage and processing. 

6.2 Cloud vs. Local Encryption and Decryption Performance Comparison 
 
Objective: 
This experiment was performed to analyze the effect of local computing machine and cloud 
computing on the efficiency of encryption and decryption of messages using LTFHE 
framework. 
Results: 
Figure 4 and 5 compares the encryption and decryption times between the cloud environment 
and the local machine for different file sizes. 
Encryption Performance: The first graph is a bar graph that shows the comparison of the 
encryption time taken in the two environments. 
Decryption Performance: The second graph shows decryption time for the two environments. 
 

 

 
 
 
 

Analysis: 
This comparison shows that the cloud environment has a faster processing time than the local 
machine in encrypting and decrypting the files especially for large files. As a result of the 
higher processing power of the cloud, the execution times of the homomorphic encryption are 
reduced considerably due to the intensive calculations involved. 
The only exception was made for the decryption time of the 200 MB file on the local machine 
where the decryption time was higher than the encryption time; this is contrary to the increase 
in the decryption time of the small files and in the cloud environment. This implies that the 
local machine resources could have been exhausted, thus causing the inefficiency during 
decryption. 

  

Figure 4: Encryption Time Comparison 
Cloud vs. local 

Figure 5: Decryption Time Comparison 
Cloud vs. Local 
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The result also supports the fact that the computational capacities have to be considered when 
deploying the homomorphic encryption frameworks. Local machines might be sufficient for 
the smaller tasks, but cloud environments give much more performance at the larger and more 
complex tasks. 

6.3 Experiment / Case Study 3: Zero-Knowledge Proof (ZKP) 
Implementation 

Objective: 
The objective of this experiment was to assess the efficiency and resilience of the LTFHE 
library’s ZKP based on the Schnorr protocol. The accent was made that the correctness of the 
proofs, generated and verified during the experiment, was to be checked without revealing the 
data on which the proof was based. 
Methodology: 
The ZKP protocol was then performed and the test was conducted with files of varying sizes. 
The process involved: 
 
The steps for generating and verifying a proof are as follows: 

1. Hash the file: In this case, compute the SHA-256 of the file. 
2. Generates Prover Secret (𝒙): Extract the secret from the file hash. 
3. Compute Commitment (𝒉): Compute ℎ = 𝑔!	𝑚𝑜𝑑	𝑝 
4. Choose Random Number (𝒓): Choose a random number 𝑟 and compute 

 𝑡 = 𝑔" 	𝑚𝑜𝑑	𝑝 
5. Compute Challenge (𝒄): Use the hash function to calculate the challenge c. 
6. Compute Response (𝒔): Compute the response 𝑠 = (𝑟 + 𝑐 ⋅ 𝑥)𝑚𝑜𝑑(𝑝 − 1) 
7. Verify Proof: Compute 𝑡# =	 (𝑔$. ℎ%&)	𝑚𝑜𝑑	𝑝 and check if 𝑡# = 𝑡. 

 
These ZKP tests were conducted using the same instance of EC2. Different file sizes were 
used in the test, these were 1MB, 10MB, 20MB, 50MB, 100MB and 200MB respectively. 
 
Results 

• Proof Generation: During the generation of the proof for each file, the steps involved 
hashing of the file, determination of the prover’s secret, calculation of the commitment, 
generation of a random number, generation of the challenge, and calculation of the 
response. 

• Proof Verification: Verification was done by the recomputation of 𝑡#and and 
comparing it with 𝑡. the outcome of the verification process was a match between the 
two. 

Analysis 
The evaluations of the (ZKP) methodology reveal that the timeliness of proof creation 
and validation, which takes only a few milliseconds for small and medium-sized files. 
This rapid execution time makes it possible for real-time applications that frequently 
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call data integrity check. This protocols operation is simple and computational 
requirements are low making and easily to adapt. The operation of the protocols is 
simple, and the computational requirement are low making it easily adaptable to 
existing system. The possibility to check the data and its authenticity and 
simultaneously guarantee the confidentiality of the information is another advantage. 
All in all, it can be concluded that due to the efficiency of the ZKP protocol along with 
the reliability of the solution it offers, it can be used in applications that require secure 
cloud storage and other data-driven techniques. 

6.4 Deduplication verification 
Objective: 
The aim of this experiment was to observe the effectiveness of the deduplication process in a 
cloud storage to reduce the number of used storages by identifying similar files. 
Methodology 
The deduplication process involved several key steps designed to identify and eliminate 
redundant files effectively: 

1. Compute File Hash: Get the SHA-256 of each file so as to have a hash value that will 
represent the content of the file. This step ensures that if the file names are different but 
the contents of the files are the same, the hash generated will be the same also and thus; 
help in identifying the duplicates 

2. Check for Duplicates: Compare the hash of the new file with the hashes available in 
the deduplication log. This log preserves files that have been uploaded before and 
their hash. 

3. Remove Duplicates: If a match is found (i. e. the hash just obtained matches with one 
of the hashes stored in the log), the new file is deleted to avoid duplication. This step 
is very crucial in order to eliminate the tendency of creating copies of files which are 
very essential in space preservation. 

Results 
The deduplication process proved useful as it helps in eliminating the occurrence of duplicate 
files which results to increase in storage space. It is evident that the time required to conduct 
deduplication checks was minimal regardless of the size of the file, which proves the 
efficiency of the mechanism. 
Experiment Example: Example of deduplication check for a 1 MB file is as follows: 

• File: uploads/1MiB.txt 
• Computed Hash: 

a642e41b6e2b54248f900c6a46ab0ba8186bc15c7f467ad67f4f1ce5f1cfcde2 
• Log Check: Duplicate found (hash match with existing file) 
• Action: File removed; deduplication successful. 

This experiment illustrates the process by which duplicate files are detected and eliminated, 
highlighting the efficiency of the deduplication mechanism in maintaining storage integrity and 
optimizing space usage. 
Analysis 
This process of deduplication is very fast, a check on most files taking less than one second. 
The drastic reduction in storage space is an indication of the deduplication mechanism in 
dealing with repetitive data. Therefore, the procedure for such exclusion ensures the efficient 
usage of storage resources, the absence of redundancy, and the optimisation of system 
outcomes. 
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Therefore, the outcomes reveal that the deduplication process can be efficient in big datasets 
without much impact on the time needed for the process. This efficiency is important in cloud 
storage systems since the storage space is always increasing while the available space is always 
a constraint. 

6.5 Discussion 
The discussion critically analyzes the results of the experiments performed in this research, 
especially concerning the performance, scalability, and reliability of the LTFHE framework 
with ZKP and deduplication mechanisms. The analysis also looks at possible enhancements 
and sets the findings in the context of the prior studies. 
Critical Analysis of Experimental Findings: 

• Encryption and Decryption Performance: The experiments show that the LTFHE 
framework is able to scale with increase in file sizes, especially if the computational 
resources are in the cloud. Nevertheless, the findings show that encryption is always 
slower than decryption, except in the case of the file of 200 MB on the local machine 
where decryption time was longer than encryption. This anomaly pointed to possible 
local bottlenecks that may be related to memory or CPU when dealing with large files, 
a problem that is less existent in the cloud. 

• One aspect that could enhance the framework is the incorporation of GPU acceleration 
which could prove useful for large scale applications. The parallel processing capability 
of the GPU makes it a perfect fit for performing the high computational complexity 
normally encountered in homomorphic encryption and decryption processes. 
Subsequent studies should expand on the integration of GPU in an attempt to enhance 
the framework and possibly cut down the time taken to encrypt and decrypt files in the 
greatest file size. 

• Zero-Knowledge Proof (ZKP) Efficiency: The adoption of Schnorr protocol in the 
ZKP approach was done, and it was observed that it has a negligible effect on the time 
taken to process transactions while keeping the system very secure. This efficiency is 
very important for real-time application where data integrity is checked frequently 
without the need to slow down the application. Nonetheless, the integration of ZKP 
may raise some issues such as the trade-off between security and performance when 
the system grows larger. 
To improve the speed of the ZKP in the framework, other protocols or a combination 
of the protocols that provide similar security as the chosen ones but with less 
computational cost could be investigated. Furthermore, one can argue that the 
optimization of ZKP in terms of scalability should be investigated further, especially 
when it comes to the application of this technology in large-scale cloud environments 
that require frequent data integrity checks 

• Deduplication Mechanism: It was observed that deduplication was a very efficient 
process in the reduction of storage space as it removed duplicate data. The process that 
utilized SHA-256 hashing did not display any collisions in the current experiments but 
this remains a threat as data volume rises. The effectiveness of deduplication is 
important in managing capacity as it is in the cloud where cost of storage is a major 
factor. 

Conclusion and Future Work 

6.1 Conclusion 
This research successfully managed to implement LTFHE, ZKP, and deduplication into a 
cloud storage system and achieve a good level of security with reasonable performance. The 
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results of the experiment proved that the time taken to encrypt and decrypt the files was cut 
down by half when using cloud resources than when using a local machine; for instance, the 
time taken to encrypt a 200MB file was 186 seconds on the local machine while the same 
was 106 seconds in the cloud. Also, the deduplication mechanism was found to be efficient in 
minimizing the storage demands as it was able to delete similar data file which was uploaded. 
The framework in general is scalable and efficient in the encryption and decryption; some of 
the issues are that the decryption of large files takes a lot of time in the local machines and 
this should be further optimized. Thus, the proposed framework is a significant step forward 
in the enhancement of the secure and efficient methods of storing data in cloud environments 
and can significantly contribute to the improvement of practical findings. 

6.2 Future Work 
The future work will concern the further improvement of the LTFHE framework, including the 
use of GPU for enhancing the speed of encryption and decryption of the big datasets. Besides, 
it is expected that more efficient ZKP protocols and improved deduplication methods, for 
instance, collision-resistant hashing, or machine learning will be investigated. The 
enhancements are aimed at making the framework more scalable and more suitable for 
processing different types of data and near real-time processing in the cloud systems. 
Additional research in these fields will help to develop new and, perhaps, still more efficient 
and reliable methods of cloud storage. 
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