
Improving Task Scheduling and Resource
Allocation by Optimizing Swarm Based

Metaheuristic Algorithm with Evolutionary
Based Optimizer

MSc Research Project

Masters in Cloud Computing

Priya Bisht
Student ID: X23109394

School of Computing

National College of Ireland

Supervisor: Diego Lugones

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Priya Bisht

Student ID: X23109394

Programme: Masters in Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Diego Lugones

Submission Due Date: 05/09/2024

Project Title: Improving Task Scheduling and Resource Allocation by Op-
timizing Swarm Based Metaheuristic Algorithm with Evolu-
tionary Based Optimizer

Word Count: XXX

Page Count: 23

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 15th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Improving Task Scheduling and Resource Allocation
by Optimizing Swarm Based Metaheuristic Algorithm

with Evolutionary Based Optimizer

Priya Bisht
X23109394

Abstract

Cloud computing has transformed traditional service deployment methods, al-
lowing users to access various services such as Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS) without investing
in their own infrastructure. Task scheduling within these environments is crit-
ical for optimizing resource utilization, minimizing completion times, and ensuring
cost-effectiveness. Scheduling tasks with varying complexities and resource require-
ments remains a significant challenge due to its NP-complete nature. This research
addresses this challenge by proposing a hybridized approach that integrates swarm-
based and evolutionary-based metaheuristic algorithms to enhance task scheduling
efficiency. The research brings forward a combined modal which focuses on optim-
izing the Honey Badger Algorithm (swarm based) with Genetic Algorithm (evolu-
tionary based) to improve task scheduling performance by reducing makespan time.
this is compared to AntLion Optimizer and original HBA. With such a combina-
tion of global exploration capabilities of swarm based with refinement and exploita-
tion strengths of evolutionary algorihms the proposed optimized algorithm tries to
achieve better allocation of tasks and resource utilization with improved makespan
time. This optimised algorithm was tested against the Ant Lion Optimizer and the
original HBA through multiple scenarios with varying values of Probability ratio
(PR) and VM and task counts. The analysis also implies the importance of right
choice of algorithm based on the specific task requirements, considering the number
of VM, tasks, and varying hyperparameters like PR in this case. Analysis results
show that the proposed hybrid HBA-GA approach outperforms existing methods
in terms of reducing makespan time and balancing workload distribution across re-
sources thus increasing performance. This research contributes to the advancement
of cloud computing task scheduling by presenting a novel hybrid algorithm that
enhances scalability, reliability, and overall performance, addressing the limitations
of traditional and standalone metaheuristic algorithms.

1 Introduction

Cloud Computing is a growing area within distributed computing utilised for various
applications such as data analysis, storage etc. This technology has revolutionized tra-
ditional methods of service deployment for both businesses and individuals by offering
different types of services over internet. Users can access these services without the need

1



to invest in their own computing infrastructure and can choose from difference services
provided by providers such as Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). To use these services, users submit requests
over the Internet to the cloud providers, who then manages the necessary resources. Each
of these request is treated as a task and Cloud providers use scheduling algorithms to
efficiently allocate resource and handle the tasks requested by users. Keivani and Tapamo
(2019)

1.1 Research Background/ Objective

Task scheduling is a very crucial component as since it is incharge of determining the se-
quence of tasks execution with effective resources utilisation of computations while main-
taining application performance with cost-effectiveness. All the tasks can have varying
complexities starting from simple data processing jobs to complex scientific computations
and each of these will have their own resource requirements. Houssein et al. (2021) The
main problem with cloud providers when it comes to scheduling varied number of tasks
with varied complexities on defined resources is to keep scheduling time of completion
as per the delivery time objectives set by users application objective. ”The scheduling
algorithms should not take longer to search and allocate tasks to resources with efficient
scheduling and distributing the tasks efficiently to all the existing resources in such a way
that no single resource is over utilised” which is problem objective in this research. In
this research I aim to improve the actual time of scheduling tasks which is crucial and
important since delays can lead to resources getting underutilized and increase the costs
of reserving the resources on cloud thus, impacting the efficiency of the whole system.
Efficient task scheduling makes sure that all the tasks are scheduled within an “optimal
timeframe” thus reducing the the overall execution time (makespan).

Task scheduling is considered as a combinational optimisation problem in which
standard algorithms fail to identify the global optimal solution. It is regarded as an
NP-complete problem because of the exponential number of possible task-to-VM assign-
ments. In this research, the objective function works towards maximizing the minimum
load across all VM’s to guarntee balanced workloads. With M number of tasks and N
number of VMs, there are NM possible ways. This exponential rise makes it computation-
ally complicated to find an optimal solution which is a chief and prominent characteristic
of NP-complete problems. To give an example inside my research with 60 number of
VMs and 375 number of tasks there are 60375 possible ways to assign these tasks thereby
showcasing the challenge of assessing all the possible configurations. This property of the
problem objective makes it as an NP-complete problem.

In Singh et al. (2020)the total time required to complete a defined sequence of tasks
should not be longer than expected which can increase costs and can lead to system
over utilisation. Here scheduling tasks is a single-objective and an optimal scheduling
algorithm should provide efficient solutions that the problem objective is satisfied. It is
very important to efficiently handle parallelism, large scale scheduling and minimize this
makespan time of tasks scheduling and resource allocation for a maximized resource utiliz-
ation and on time task allocation and completion. The main objective is to obtain optimal
value for our goal. The purpose of scheduling is to schedule tasks that pass through a
routes and policies to optimize total completion time or makespan and tasks are allocated
that no single resource is over utilised. Bittencourt et al. (2018) Traditional scheduling
techniques includes methods like First-Come-First Serve or Round Robin scheduling are

2



not able to solve the the scheduling problem with good accuracy because of the inherent
complexity and are inefficient for the dynamic changes in resources or different priorities
of tasks resulting in suboptimal performance. There are innovative search algorithms
Heuristic and metaheuristic algorithms that have been proposed individually or in hy-
bridised form to solve these complex problems and find near-optimal solution. Heuristic
algorithms such as minimum execution time (MET), minimum completion time (MCT),
shortest job to fastest processor (SJFP), longest job to fastest processor (LJFP), Min-
Min, and Max-Min are used for static scheduling tasks. This problem is classified as a
non-deterministic polynomial (NP)-hard optimization problem. As a result, metaheur-
istic algorithms are nature based algorithms that are effective for tackling these complex
multi modal optimization problems. Singh et al. (2020) Metaheuristics can be used in
different types of problems as they showcase a class of generic search algorithms. Singh
et al. (2021) Metaheuristic are of four types: human based, physics based, evolution
based, and swarm based algorithms. The main metaheuristic algorithms that have been
implemented for task scheduling are ALO ,Abualigah and Diabat (2021) ACO Mahato
et al. (2017)and PSO Alsaidy et al. (2022)and are swarm based methauristic algorithms..
These algorithms are inspired by the collective behavior of social insect colonies, where
individual agents collaborate and coordinate to solve complex problems. Algorithms such
as Ant Lion Optimization (ALO) or Honey Badger Algorithm (HBA) model these swarm
behaviours to discover optimal solutions.

These swarm based algorithms can be optimised using evolutionary based algorithms.
Evolutionary algorithms principle of natural selection, genetics and employing genetic
operators like selection, crossover, and mutation to iteratively evolve a population of
candidate solutions. Each solution fitness is assessed based on predetermined objectives,
with fitter individuals being more likely to reproduce and generate future generations
of potentially better solutions. This iterative process enables evolutionary algorithms
to explore the search space and converge on optimal or near-optimal solutions. Several
research have explored these techniques as viable solutions for efficient task scheduling
solving the problem objective.

Both evolutionary and swarm intelligence techniques have been effectively applied to
various optimization challenges, including task scheduling on identical parallel processors.
These methods offer advantages like flexibility, adaptability, and the capability to manage
complex optimization environments, though their effectiveness can vary depending on the
specific problem objectives and its characteristics.

1.2 Research Question

This research propose a hybridised approach that focus on hybridizing swarm-based al-
gorithms with evolutionary-based algorithms as this can harness the strengths of both
approaches: the global exploration and adaptive behavior of swarm algorithms, and the
effective exploitation and refinement capabilities of evolutionary algorithms can enhance
the solution diversity and convergence speed, making it useful for solving defined prob-
lem objective. This gives the research question ”How can the makespan time be
improved for task scheduling and resource allocation in cloud by optimizing
swarm based metaheuristic algorithm with evolutionary based optimizer ?”.
This research proposes an optimized Honey Badger Algorithm with Genetic Algorithm for
the defined problem objective. Research will explore how hybridisation of swarm based
and evolutionary based Metaheuristic search algorithm can improve in terms of makespan

3



for solving the defined problem objective. This research also explores how varying values
of PR and problem scenarios of different VM and task counts affect the performance of
the proposed hybridised algorithm.

1.3 Motivation

The motivation behind this research origins from the ever increasing complexity and
demand for efficient task scheduling and resource allocation in cloud. Ancient and tradi-
tional scheduling methods like First-Come-First-Serve and Round Robin are increasingly
inadequate due to their inability to take control the dynamic changes in resources and
varying task priorities. The proposed research seeks to address these challenges by hy-
bridizing swarm-based algorithms with evolutionary-based algorithms, aiming to leverage
the global exploration capabilities of swarm intelligence and the robust optimization prop-
erties of evolutionary strategies. This study will explore the hybridisation of the Honey
Badger Algorithm with Genetic Algorithm, targeting the reduction of makespan time and
enhancing resource utilization and solving the problem objective. This hybrid approach
is expected to provide novel approach for improved task scheduling and reliable solutions
for the defined research problem objective.

1.4 Report Structure

Existing literature on task scheduling and gaps addressed by this study is presented in
the Related Work section. The Methodology section outlines the problem formulation,
tools, and algorithms used, focusing on the hybridization of the Honey Badger Algorithm
and Genetic Algorithm. The Design Specification details the system architecture and
workflow, the Implementation section covers practical aspects of integrating and deploy-
ing the solution. The Evaluation section analyzes experimental results, comparing the
proposed approach’s effectiveness by comparing it to the existing promising algorithms
in reducing makespan and improving resource utilization. The Conclusion and Future
Work section summarizes key findings, discusses limitations, and suggests areas for fur-
ther research, emphasizing the study’s contributions to enhancing cloud system efficiency
and reliability.

2 Related Work

The emergence of cloud computing has turned the workings of various organizations,
how they manage and deploy the resources needed for computations. With this growth it
has also brought forward numerous distinctive challenges for cloud service providers for
taking these requests by the users as a task and assigning these tasks efficiently to the
resources. It is very important to have efficient task scheduling since it directly impacts
the operations and resource utilization inside multiple cloud environments.

2.1 Challanges in Task Scheduling and Evaluating Algorithms:
Heuristic and Metaheuristic

The research conducted by Houssein et al. (2021) identifies a number of issues with task
scheduling like underutilization and overutilization resulting in wastage of computing re-
sources or degraded performance. The scheduling problems are NP-hard stating that

4



they require large computational time to find near-optimal solution making it very dif-
ficult to implement and main goal being optimizing various QoS parameters like cost,
response time, and energy consumption which is a significant challenge and needs to be
addressed for development of any metaheuristic algorithm. This paper provides a re-
view of meta-heuristic approaches and categorizes them on their nature, objectives, task-
resource mapping to understand the complexity of the algorithms and then compares
them on various metrics reviewing various simulation tools and providing insights. Gha-
fari et al. (2022)also presents a comparative analysis of scheduling methods aimed at min-
imizing energy consumption and broadly categorized them into three main groups namely
heuristic-based, meta-heuristic-based, and other task scheduling algorithms highlighting
benefits and limitations to understand the trade-offs involved in choosing a method,
making this paper valuable to select the most suitable algorithm to serve their needs.
Heuristic-Based Task Scheduling use rule-based methods and logic to schedule tasks and
are less intensive but not always provide the optimal solution with dynamic environments.
The Meta-heuristic are more flexible and capable of handling complex scheduling prob-
lems including hybrid algorithms not strictly falling into the heuristic or meta-heuristic
categories. Limitations of the above literature reviews being the above analysis limited
to few algorithms and not covering the rapid evolution of cloud and new algorithms.

2.2 Comparitive analysis of Single Metaheuristic Algorithms

The work by Mandal and Acharyya (2015) also brings to light several challenges and
provides an implementation of three meta-heuristic algorithm namely Simulated Anneal-
ing, Firefly Algorithm, and Cuckoo Search Algorithm tested on a GCC compiler and
compared based on cost and execution time with focus on minimizing processing time.
It demonstrates firefly algorithm outperforming SA and Cuckoo Search Algorithm but
lacks the Differential Evolution or Hybrid Algorithms. Secondly the initial solutions were
generated randomly, and lacked scalability. Thirdly the parameter tuning method is not
explicitly defined that can influence the performance. Similar attempt for a comparative
analysis and review has been made by Singh et al. (2021) on six prominent metaheuristic
algorithms Ant Colony Optimization, Particle Swarm Optimization, Genetic Algorithm,
Artificial Bee Colony, Crow Search Algorithm, and Penguin Swarm Optimization and
have been focused using makespan and utilization cost. All these were conducted on
cloudSim. The results provided Crow Search Algorithm as the most optimal technique
for minimizing makespan and cost. Other promising techniques have not been included
and does not capture all the complexities associated. It has no mention of energy con-
sumption and hybrid directions or development of more sophisticated models to better
handle dynamic and heterogeneous cloud environments. The metaheuristics have been
leveraged by Keshanchi et al. (2017)by formal verification, simulation and statistical
testing using priority queues. An improved genetic algorithm model for task scheduling
using Linear Temporal Logic and verification tools like PAT and NuSMV for deadlock
freedom has been proposed. A powerful one-point crossover operator and elitism tech-
nique for maintaining precedence constraints with reduced chances of generating invalid
solutions has also been propsed. The work by Prity et al. (2023) proposes an algorithm
for scheduling based on bacterial foraging optimization (BFO) minimizing the idle time
of virtual machine and ensuring load balancing with reduction in runtime and energy
by mapping tasks to cloudlets using BFO and assessing it on CloudSim. BFO based al-
gorithm provides solution for cloudlet scheduling and outperformed algorithms like SOS,

5



EATSGA, GAACO in achieving a lower execution time with better energy consumption
and allocation of resources. But both the works above needs improvements to handle
highly dynamic and unpredictable environments and faced increasing complexity and
scalability constraints inspite of reductions in the execution time.

2.3 Comparitive analysis of Improved or Modified Metaheur-
istic Algorithms

Based on the work by Chen et al. (2020) an Improved Whale Optimization Algorithm
(WOA) is proposed where the algorithm worked on minimizing task execution time, sys-
tem load, and cost respectively. It successfully addresses these objectives simultaneously
and uses nonlinear convergence factor and dynamic population control. It outperforms
Ant Colony Optimization, Particle Swarm Optimization in all scenarios and reduces the
total by more than 20percent along with an improved convergence speed. The same
has been addressed by Guo et al. (2012)where Particle Swarm Optimization has been
tailored and enhanced with a small position value rule to convert continuous position
values into discrete task assignments with much better convergence and execution times
that CM-PSO and L-PSO and has better scalability with large numbers of processors and
tasks with lower costs. While both of them showed results and contributions, but their
implementation complexity is a barrier. They have increased computational overhead
with the advanced optimization strategies that can limit its applicability. They also have
scalability issues with unexplored parallel implementations. Optimizing QoS problems by
prioritizing tasks with higher importance and devaloping a highly adaptive system is also
a challenge. Furthermore, the implementation of the PSO requires tuning of parameters
like inertia weight, and social coefficient that is time-consuming.

2.4 Exploring Hybrid and Adaptive stratergies of Metaheuristic
Algorithms

Research by Mirjalili (2015) where AntLion optimizer has been devised mimicking the
foraging behaviour of antlion larvae and involving steps from random walks of ants to
rebuilding traps have been depicted. This ensures a dynamic balance between exploration
and exploitation with the help of adaptive shrinking of the search boundaries preserving
the best solutions. The paper shows its benchmarking across three phases where a set
of 19 mathematical functions were used to evaluate its performance on different charac-
teristic thus demonstrating superior performance in exploration, local optima avoidance,
and convergence. The Engineering Problems where it was applied to provided near-
optimal solutions thereby showing its applicability to constrained problems. Kakkot-
takath Valappil Thekkepuryil et al. (2021) proposes this ALO hybridization with PSO
to address the existing issue of task scheduling. The proposed hybrid ALO-PSO al-
gorithm showed improvements like costs by 9.8percent compared to GA-PSO, 10percent
to PSO, 20percent to ALO, 30percent to RR. Significant reductions in load balancing
and makespan like 8percent compared to GA-PSO, 10percent compared to ALO, 20per-
cent compared to PSO, 35percent compared to RR, and 45percent compared to GA were
also seen. Abualigah and Diabat (2021) introduces another hybrid optimization ver-
sion called Multi-Objective Hybrid Antlion Optimizer combining ALO with elite-based
Differential Evolution where it had superior performance compared to GA, PSO, and
original ALO. It used synthetic and real trace datasets for demonstrating its superior

6



performance confirmed by Statistical t-tests. This MALO showed minimal improvement
in makespan values for specific task sizes and hyper parameters. Thus, all these works
concluded the better performance of ALO individually and when hybridised with another
metaheursitc algorithm as well highlighting a few limitations as well. But apart from all
these results the limitations encountered in ALO papers here were the complexity due to
the hybrid nature and sensitivity of parameters requiring tuning thus a need to explore
adaptive parameter tuning techniques. High computational running time, susceptibility
to yielding local optimum solutions and imbalance between local and global optima.

Manikandan et al. (2022) brings another adaptive hybrid optimization approach where
Whale Optimization Algorithm is combined with the Bees Algorithm calling it Hybrid
Whale Optimization Algorithm-based MBA (HWOA-MBA) making use of both their
strengths. The Random Double Adaptive Whale Optimization Algorithm (RDWOA) is
intensified with a mutation operator from the Bees Algorithm for making the solution
quality and convergence speed better and was evaluated on cloudsim giving significant
improvements aswell. Inspite of these results the approaches above targets compute in-
tensive and independent tasks and thus limits applicability. Also, in the other research the
combination of two algorithms increased the complexity of integration and thus required
more resources

2.5 Analyizing Honey Badger and Genetic Algorithm

Hashim et al. (2022)introduced a Honey Badger Algorithm inspired by its foraging beha-
viour divided into two main phases: the ”digging” and the ”honey phase,” corresponding
to exploration and exploitation. It makes use of a combination of randomization and a
decreasing factor to maintain population diversity and avoid premature convergence. The
paper showed it to outperform ten well-known metaheuristic algorithms in convergence
speed and solution quality on 24 benchmarks since its parameters are easily adjustable
and can be tailored for different optimization problems. However, it alone has a chal-
lenge of sensitivity to parameters which can hamper its performance and computational
complexity with increased costs.

Genetic Algorithm Task Allocation approaches are utilized by Rekha and Dakshay-
ini (2019) where a model allocates tasks to virtual machines based on their processing
capabilities and the size of the tasks. The fitness function evaluates the efficiency of
task allocation, considering execution and resource allocation time. This approach re-
duces the makespan also gives better throughput. Similarly, Pirozmand et al. (2021)
proposes integrating Genetic Algorithm with Energy-Conscious Scheduling heuristic al-
gorithm involving task prioritiy using GA to generate initial chromosomes, followed by
task assignment to processors using an energy-conscious heuristic. It addresses both
makespan and energy consumption scalability on different sets of tasks from 30 to 300
tasks and different hyper parameters outperforming GSA, ABC, DA, and various PSO
variants. Agarwal and Srivastava (2016) also proposes the same Genetic Algorithm to
optimize workloads and compares it to Greedy-based and First-Come-First-Serve using
CloudSim. Its objective function lays stress on minimizing the execution time of tasks by
assigning them to particular VMs, ensuring that the maximum time taken is minimized.
Thus, the GA approach outperformed FCFS and Greedy algorithms in execution time
and handled both single-objective and multi-objective optimization problems. The GA
approach taking 100.55 time units to execute whereas FCFS takes 343.52 time units and
Greedy Based strategy took 101.79 time units respectively. The common limitations of all

7



the works include computationally intensive, highly dependent on the quality of the initial
population and initial parameters set. Thus from the above review Genetic algorithms
known for their robust parameter tuning capabilities, could be used to optimize HBA’s
parameters dynamically during the search process. However, its sensitivity to parameters
presents a challenge that could potentially be addressed by integrating genetic algorithms
for dynamic parameter optimization.

2.6 Research Niche

However, despite of all these studies the research gap lies in lack of research on optimizing
the Honey Badger Algorithm with Genetic algorithm for reducing the make span time.
It would be interesting to compare against Antlion optimizer(ALO) which has proved
to be an optimal algorithm for similar problem objective. The choice of ALO has been
made after reviewing a couple of papers that make use of metaheuristic algorithms in
task scheduling and resource allocation as shown in the literature review above. A few
highly cited papers show ALO is robust, has high exploration and faster convergence
speed compared to other popular and common meta-heuristic algorithms like Particle
Swarm Optimization, Bat Algorithm, Genetic Algorithm, Whale Optimization Algorithm
etc. ALO also has showcased good global search abilities and has been very efficient
in handling similar complex problems as my implemented research objective with wide
search spaces and is particularly suitable for optimization, task scheduling and engineering
problems.

Also from above reviewed papers it is observed that the experimentations for each
algorithm has been performed either in specific ranges of task sizes by varying hyper
parameter configurations but not specifically addressed to varying the PR (i.e probability
ratio) levels that controls the probability of random behavior or mutation within the
algorithm’s optimization process. While many hybrid approaches exist, optimizing HBA
with GA remains uninvestigated to increase the task scheduling performance by leveraging
the strengths of both. Addressing such a gap could potentially contribute to more efficient
task scheduling and management of resources in cloud.

3 Methodology

This research focus on hybridizing swarm-based algorithms with evolutionary-based al-
gorithms. This research analyses the Task scheduling on identical parallel machines
using a comparative evaluation of swarm based meta-heuristic algorithms, such as Honey
Badger Algorithm (HBA), Ant Lion Optimizer(ALO) and the proposed hybridisation of
swarm based Honey Badger Algorithm (HBA) with evolutionary based genetic algorithm
(GA) with the objective to design a fitness function that minimizes the makespan and con-
siders the satisfaction of the research problem objective. This problem objective defines
the real world problem scenario of Task scheduling in Cloud Service Provider back end.

3.1 Problem Formulation

The rapid growth of cloud computing has revolutionized service deployment, enabling
users to access a variety of services without investing in their own infrastructure. However,
this flexibility brings the challenge of efficiently managing and scheduling diverse user
requests, or tasks, within a cloud service provider’s datacenter. These tasks, varying in

8



complexity and resource requirements, must be scheduled and executed in a manner that
meets user-defined delivery time objectives while optimizing resource utilization. The
core problem lies in developing a scheduling algorithm capable of efficiently allocating
these tasks to available resources, minimizing scheduling delays, preventing resource over-
utilization. Given the combinatorial nature of task scheduling, it is classified as an NP-
complete problem, making it crucial to devise an algorithm that can provide near-optimal
solutions within acceptable time frames. This research aims to address these challenges
by formulating and solving the task scheduling problem in cloud computing environments.

3.1.1 Objective Function/Problem Objective

This objective function aims to define the research problem objective that is to allocate
the tasks to the defined number of VMs so that all workloads are evenly distributed to
achieve an overall balanced system for optimal performance. By returning the minimum
workload of the VMs, it try to maximize the minimum workload. The workload for each
VM is calculated by adding the normalized task size (task size divided by VM capacity)
to the workload of the corresponding VM. This helps in handling VMs with different
capacities. By always returning the minimum workload, the function ensures that no
VM is underloaded aiming to avoid scenarios where some VMs are overburdened while
others are idle. This is the objective function that is to be optimized. The ‘vmcount‘ and
‘taskcount‘ are provided as inputs to the metaheuristic algorithm containing an objective
function.

3.2 Algorithms in consideration

The HBA, GA and ALO have been used to find the best task allocation by iteratively
improving the candidate solutions. The solution vector’s search space is defined by the
bounds parameter as [0, vmcount] for each task meaning that each task can be assigned
to any VMs so that the lower bound for each task assignment is 0 while for the upper
bound for each task assignment is the total number of VMs (vmcount). The ‘minmax’
parameter specifies the optimization direction. The Objective function tries to balance
the workload. The model is initialised with ‘popsize’ parameter i.e. the number of candid-
ate solutions considered in each iteration with the algorithm running for a fixed number
of iterations (epochs) considering a population of candidate solutions in each iteration.
These parameters are varied in the research experimentation to explore behaviour of al-
gorithm solutions.
The optimal solution provide an allocation of tasks to VMs achieving the defined prob-
lem objective and research question. Once the the optimization completes, the algorithm
solution presents index number as the task number and the value of the index as the VM
ID the task is scheduled. The total time taken by the algorithm to provide the solution
is calculated and is useful for performance evaluation and answering research question.

3.2.1 The Honey Badger Algorithm

This algorithm is inspired by the behaviour of the honey badgers and their digging and
honey phased activities for catching the prey and is a swarm based metaheuristic al-
gorithm. In the paper author Hashim et al. (2022) presents algorithm called Honey
Badger Algorithm (HBA) which is based on the working of honey badgers where the
parameters like population size (i.e. number of honey badgers involved), Total number of

9



iterations (Tmax) are defined followed by defining a random position (xi) in the search
space from each of them. Next the intensity of prey’s scent or its concentration which
is denoted by (I) is calculated along with its density factor which makes sure that the
algorithm starts from a wider search hence the density factor is highest at the start and
narrows down i.e decreases to a more focused search and trying to escape the local optima
and reach the global optima with the best solution using a flag (F) which is responsible
for changing the direction of search either in cardioid pattern or straight forward pattern
and explore new search areas. The fitness functions for each Badger is calculated using
an objective function of the optimization problem and if it is better than the previous the
position is updated and this iterations keeps on repeating till tmax is reached presented
in Hashim et al. (2022)

3.2.2 The Genetic Algorithm

It is inspired from biological genetics and each solution (chromosome) is a way of assigning
tasks to VMs. For example, if there are 5 tasks and 3 VMs, a chromosome might look
like [VM1, VM2, VM3, VM1, VM2], meaning task 1 goes to VM1, task 2 to VM2, and
so on. After this the fitness function is calculated based on balance and makespan time
and then the best solutions (with the least makespan time) depending on their fitness
scores is selected. Furthermore parts of two parent solutions are combined to generate
a new offspring eg taking the first half of one parent and the second half of the other
parent. This is called “crossover”. Small changes are made to some solutions like moving
a task from one VM to another randomly and then replace the old population with new
offspring and continue crossover and mutations till best solution is reached as described
in Whitley (1994) and Rekha and Dakshayini (2019)

3.3 The AntLion Optimizer

In the paper by Mirjalili (2015) presents Ant Lion Optimizer inspired by hunting tech-
niques of Ant lions. The population of ants (solutions) and antlions (potential solutions)
are initialized randomly which corresponds to randomly assigning tasks to VMs and cre-
ating an initial task schedule. Fitness (i.e makespan time in this case and lower makespan
better fitness) of each ant and antlion is calculated. The best antlion is selected as the
elite meaning the best solution found so far (i.e. identifying the task schedule with the
lowest makespan). Select an antlion using a roulette wheel mechanism based on fitness i.e
giving higher probability to schedules with lower makespan to be selected for producing
new schedules thereby avoiding local optima. Then updating the position of the ant by
performing a random walk i.e adjusting the task schedule by making small changes in-
fluenced by better schedules and gradually decreasing the boundary of the random walk
(ensuring both global exploration and local exploitation) to simulate the sliding of ants
towards the antlion. Update the position of the ant (task schedule) and calculate its new
fitness(makespan). If an ant’s fitness (VM task schedule) is better than its correspond-
ing antlion, replace the antlion with the ant and update elite (best task schedule) and
return the elite as the best solution found i.e finalize the task schedule with the minimum
makespan. Pseudocode for ALO is presented Mirjalili (2015)

10



4 Design Specification

This design specification outlines a comprehensive experimental approach for optimizing
the Honey Badger Metaheuristic Algorithm (HBA) using the Genetic Algorithm (GA) to
reduce makespan time in solving the problem objective. The optimized algorithm will be
compared with the AntLion Optimizer (ALO) and the base HBA. This research aims to
compare the proposed optimized algorithm with the base HBA and ALO to determine
if the new proposed approach is more efficient in dynamic cloud computing, specifically
in reducing makespan time for the defined problem objective. Below is the step-by-step
design specification for this research and the system design is mentioned in Figure 1

1. In this research vm count, task count and problem objective is defined and initial-
ised in python notebook.

2. These inputs are given to the algorithm i.e ALO, HBA and HBA Hybridisation with
GA (Proposed). These algorithms provide a solution i.e. “which task is allocated
to which VM, where, task is the index and the value is the VM ID while solving
the problem objective of this research.

3. After the second step is performed this research record the execution time of the
algorithm to provide this solution and this makespan time will be ploted as bar
graph for comparison between the ALO, HBA and HBA Hybridisation with GA
(Proposed) algorithms.

4. The final result is thoroughly validated and the final results is visualised using MAT-
PLOTLIB bar graph. The similar experiments are performed for all 3 algorithms
and are visualized.

5. The above visualization will help me validate if the solution provided by the al-
gorithm is solving my “Problem objective” and answer my ”research question”.

6. All these experimentation in the research is performed by varying the hyper para-
meters of the algorithms along with the vm and task counts and performing step
2 to step 7 iteratively. This will answer the research question i.e. ”How can the
makespan time be improved for task scheduling and resource allocation in cloud by
optimizing swarm based metaheuristic algorithm with evolutionary based optimizer.

7. Here the research with the rigorous experimentation will present which hyper para-
meters configuration of the algorithm will best perform to solve this research Prob-
lem objective in with minimum make span time. These experimentation will answer
research question and will be able to explain the “how” can this be achieved with
more accuracy and less makespan time by exploring the hyperparameter sensitivity
of the algorithms.

11



Figure 1: Flow for the execution of algorithms

5 Implementation

The research question focuses on the optimization of Honey Badger with Genetic al-
gorithm to minimize the makespan time and address the task scheduling and resource
allocation problem. This implementation of the algorithms has been done using Mealpy
python library. The key performance metrics involved is Makespan time which is the
total time required to schedule all the tasks on the defined resources solving the research
problem objective.

5.1 Implementing Objective Function / Problem Objective

The function Fun is developed in python that assigns tasks to virtual machines (VMs)
and balances the load across them. This function defines the problem objective of the
research.
Let N be the number of VMs.
Let M be the number of tasks.
Let Ci be the capacity of VM i (for i from 1 to N).
Let Tj be the size of task j (for j from 1 to M).
Let xij be a binary variable that is 1 if task j is assigned to VM i, and 0 otherwise.

The research aim to maximize the minimum workload among all VMs, which can be
expressed as maximizing

min(W1,W2, . . . ,WN)

where Wi is the workload of VM i.
The workload Wi of VM i is given by:

Wi =
M∑
j=1

xij ·
Tj

Ci

In the function, all VMs have the same capacity Ci = 1000, simplifying the workload
calculation to:

Wi =
M∑
j=1

xij ·
Tj

1000

12



To maximize the minimum workload, leading to the following optimization problem:

max
xij

(
min

i=1,...,N
Wi

)
Substituting the workload expression:

max
xij

(
min

i=1,...,N

M∑
j=1

xij ·
Tj

1000

)

Each task is assigned to exactly one VM:

N∑
i=1

xij = 1 for each j = 1, 2, . . . ,M

Binary assignment variables:

xij ∈ {0, 1} for each i = 1, 2, . . . , N and j = 1, 2, . . . ,M

Putting it all together, the mathematical formulation of the problem is:

max
xij

(
min

i=1,...,N

M∑
j=1

xij ·
Tj

1000

)

This distributes the tasks among the VMs in such a way that the minimum workload
across all VMs is maximized, resulting in a balanced workload distribution hence defining
the problem objective.

13



5.2 Optimized Honey Badger with Genetic Algorithm

Algorithm 1 Steps for Genetic Algorithm for HBA Parameter Optimization: (HGA)

1: Initialize population:
2: Create an initial population of individuals (chromosomes).
3: Each individual represents a set of parameters for HBA.
4:

5: Define fitness function:
6: Evaluate the fitness of each individual using the HBA algorithm.
7: The fitness function should reflect how well the individual performs in solving your

specific problem.
8:

9: repeat
10: Selection:
11: Select individuals for mating based on their fitness (higher fitness has a higher

chance of selection) with ”selection”: ”tournament”.
12:

13: Crossover:
14: Combine genetic material from two parents to create offspring (new individuals)

with ”crossover”: ”uniform”.
15:

16: Mutation:
17: Introduce small random changes to offspring with ”mutation”:”flip”.
18:

19: Evaluate fitness of offspring.
20:

21: Replace old population with new population (including offspring).
22: until termination criterion is met (e.g., maximum generations or convergence)
23:

24: Final solution:
25: The best individual in the final population represents optimized parameters for HBA.

=0

Parameters like population size, number of iterations, crossover etc for both HBA
and GA are defined respectively. An initial population which acts as a start point of the
optimization process is generated followed by calculating the fitness f(Xi) for each indi-
vidual Xi is computed. HBA updates the positions of individuals in the population using
the exploitation and exploration equations. As a result the population is updated with
new positions calculated by HBA in each iteration. The fitness of the updated population
is also recomputed. Once the iterations of HBA finish the resulting population which is
more refined and passed several updates and fitness evaluations goes as input to the GA.
Now inside GA the parents are selected based on their fitness and crossover is performed
on them with probability pc to generate offspring and perform mutation on it with prob-
ability pm. The fitness of the newly generated offspring is computed and replaced with
the old population. After completing iterations return the best solution found with their
fitness. Thus the key mechanism is HBA focusing on refining the population through
exploitation and exploration and then passing this to GA which further optimizes this

14



population through selection, crossover, and mutation. This is the hybridisation of HBA
with GA. The algorithm is initialized with a population size (‘pop-size‘) i.e. the number
of candidate solutions considered in each iteration. The algorithm runs for a fixed num-
ber of iterations (‘epochs‘), iterating over a population of candidate solutions i.e popsize.
It provides a solution of allocation of tasks to VMs with the best balance. The solution
is retrieved from Algorithm and the total execution time is calculated. The Solution
contains two pieces information.

1. Task-to-VM Scheduling: An array where each element represents the VM to
which a corresponding task is assigned. Where the index is the task identity and the
index value is the VM ID where the respective task is scheduled which is generated
by the algorithms solving problem objective.

2. Execution Time: The total time taken to execute the optimization process by
the algorithm. This will help this research analyse the execution time of various
different algorithms and answer research question.

6 Evaluation

The main objective of this research is to answer its problem objective and evaluate the
efficiency of scheduling algorithms in allocating tasks to resources evenly without any
single resource getting overutilized in cloud. The focus has been laid on improving the
makespan time for task scheduling and resource allocation by optimizing swarm-based
metaheuristic algorithms with an evolutionary-based optimizer 1.2. This section ana-
lyze the performance of three algorithms i.e HoneyBadger Algorithm (HBA), Optimized
HBA (HGA), and AntLion Optimization (ALO) as the parameter PR increases from 0
to 1 with concentration on how this affects execution times across various VM counts
and task counts. All of these experiments shown below are conducted on Windows 11
Operating System with i5 processor having 512 GB SSD and 12.7 GB System RAM in
a Python notebook environment where the problem objective defined for this research
is implemented as a function in python and the algorithms are implemented using the
Mealpy Python library. In order to perform the experiments the VM counts are varied
with 30, 45, 60, 75, and 90 VMs and the number of tasks including task counts of 100,
375, 750, and 1000 with varying values of pr from 0.0 to 1.0. All the VM have the same
capacity of 1000mips to simplify the workload calculation.

6.1 Scenario 1: Impact of PR on Execution Time at Different
VM Counts (Baseline(PR=0) vs. High(PR=0.75)

The Objective in this scenario is to investigate how the PR values affect the execu-
tion times across different virtual machine (VM) counts and comparing baseline experi-
ments(PR = 0) to high PR levels (PR = 0.75). The Figure 2 the mean execution time
for each VM counts is calculated and plotted. The experiment results from high PR(Red
Bar)(PR = 0.75) and baseline(Blue Bar)(PR = 0) is plotted to differentiate and compare.
I compared execution time differences between Baseline pr and High pr Scenarios as in
Fig 3. ALO for low VM counts like (30 and 45) and high PR resulted in an increased
execution time i.e (+7.73 and +6.64 seconds respectively), but at higher VM counts like
(60, 75, and 90), the difference is smaller or negative i.e. (+0.63, +0.99, -8.76 seconds

15



respectively )which means that the impact of high PR varies with the vm count. In case
of HBA the high PR results in decreased execution time i.e.(-0.63, -0.31, -0.69 seconds
respectively) specifically at higher VM counts like (45, 75, and 90). This shows that high
PR values tends to improve HBA’s performance. At VM Count (30, 45, 60, 75, 90) the
execution time differences (+0.07,+0.19, -0.03, +0.08, -0.01 seconds) are comparitively
smaller in case of HGA (proposed) with some VM counts results shows a slight increase
while others showing a slight decrease. Thus the impact of high PR on HGA’s execution
time is very less.

Figure 2: Impact of PR on Execution Time at different VM Counts (Baseline (pr=0)
vs. High PR (0.75)

Figure 3: Execution time differences between Baseline PR and High PR scenarios

6.2 Scenario 2: Comparison of Execution Times Across Al-
gorithms at Maximum PR(PR=1)

The objective is to study how the algorithms perform under the maximum PR condition
(PR = 1) for varying tasks. This help to identify which algorithm scales better with and
increase in VM Count and task count when the probability ratio is highest. The mean
execution time for each VM Count at PR=1 is calculated. The figure 4 shows subplot
that display the execution times of a different algorithms. At PR=1, HGA shows the

16



shortest execution time hence most efficient and scalable with this parameter setting.
On the other hand ALO and HBA show slightly higher execution times with increase
in VMs but HGA maintains the lowest execution time across all VM counts. Since the
execution times increase greatly with the tasks count(100, 375, 750, 1000) this indicates
that ALO does not scale efficiently with larger task count. HBA also shows
slower scalability compared to HGA. In case of HGA it has a consistent lowest
execution time across all task count showing much better scalability compared to other
two i.e ALO and HBA.

Figure 4: Comparison of execution times across algorithms at Maximum PR (PR=1)

6.3 Scenario 3: Effect of PR on Execution Time for Low PR
(PR=0.1) and Moderate PR(PR=0.25) on Moderate task
counts(task count= 375)

The objective is to explore how low and moderate PR values affect the execution time
across different VM counts for a moderate number of task count(task count=375). This
Figure 5 shows 2x3 grid of subplots where each row represents one PR level (first row for
0.1, second row for 0.25), and each column represents one algorithm (ALO, HBA, HGA).
I calculated the mean execution time across different VM counts when PR=0.1 and
PR=0.25 for each algorithm and is plotted. Comparing the execution time between the
two PR values to determine how moderate increases in PR values affect the performance
of each algorithm.

Figure 5: Impact of PR on Execution Time for Low (0.1) and Moderate Workloads (0.25)

In the case of ALO the impact of a moderate PR increase (from 0.1 to 0.25) on ALO’s
execution time is inconsistent across VM Counts. For smaller VM counts (30 and 45),
the execution time either slightly improves (by approximately 2.67% in VM count 30) or

17



remains stable. But for larger VM counts (60, 75, and 90), the execution time generally
worsens, with a maximum increase of 0.96% in VM count 75. In ALO the impact of PR
on execution time depends on vmcount, with improvements in smaller VM counts but
increasing execution times for larger VM counts.
For HBA the execution time shows mixed results with a moderate PR increase. For VM
counts (45, 60, 90), there is a slight improvement, with the reduction shown in VM count
45, execution time decreases by about 10.6% and for VM count 30 and VM count 75,
there is a slight degradation in performance with 6% increase in VM count 75.
In HGA it is observed that moderate PR increase improved execution times in HGA across
all VM counts. The performance gains are observed in VM count 45, with a decrease
of around 3.8%, and VM count 90, with a decrease of 1.8% with minor improvements
seen in the other VM counts with execution times decreasing by small margins (0.4% to
0.7%). HGA performs better at moderate PR=0.25 with all vm counts experiencing a
reduction in execution time.

6.4 Scenario 4: Comparison of Execution Time Between Bal-
anced PR(PR = 0.5) and Extreme PR(PR = 0.9) Values

The objective of this scenario is to compare the execution time of each algorithm at
balanced PR (PR = 0.5) versus extreme PR (PR = 0.9). I calculated the mean execution
times for both PR 0.5 and PR 0.9 across all VM counts and is plotted for both PR value.

Figure 6: Comparison of Execution Time between Balanced PR(0.5) & Extreme PR(0.9)

In the figure 6 the analysis show differences of execution time for varied VM counts
at PR values (0.5 and 0.9). In case of ALO, At VM count 30 with PR 0.9 runs slightly
faster with an execution time of 78.39 seconds compared to 78.94 seconds for PR 0.5.
At VM count 45, PR 0.9 becomes marginally slower, taking 79.06 seconds compared to
PR 0.5’s 78.63 seconds. This trend continues at VM count 60, where PR 0.9 again lags
behind with 78.80 second and with PR 0.5 completes the task in 77.60 seconds. At VM
count 90, PR 0.9 regains a slight advantage, finishing in 79.26 seconds compared to PR
0.5’s 81.14 seconds. The ALO’s performance varies, with PR 0.9 performing better at
some VM Counts and PR 0.5 at others.
In HBA at VM count 30, PR 0.9 executes much faster, taking 5.23 seconds compared to
PR 0.5 with 6.40 seconds. At VM count 45, PR 0.9 continues to outperform PR 0.5 with
a quicker execution time of 5.32 seconds versus 5.61 seconds. The trend persists at VM
count 60, where PR 0.9 is again faster with execution time of 5.88 seconds compared to
PR 0.5’s 6.73 seconds. HBA performs consistently better at PR 0.9, delivering significant
reductions in execution time across all VM Counts.
For HGA the results are mixed as at VM count 30, PR 0.9 performs slightly better with

18



an execution time of 5.78 seconds, compared to 6.05 seconds for PR 0.5 and at VM count
60, PR 0.9 also shows a minor improvement with 5.67 seconds, as opposed to 5.78 seconds
for PR 0.5. But at higher VM counts like 75 and 90, PR 0.9 underperforms slightly when
compared to PR 0.5. The impact of PR 0.9 on execution times varies across different
VM counts showing improvements at some VM Counts but slightly worse performance
at others, reflecting a pattern similar to the performance observed with ALO but with
improved execution time.

6.5 Scenario 5: Trend Analysis of Execution Time as PR In-
creases

The Objective here is to examine the overall trend in execution time as the PR increases
from 0 to 1 for different VM counts, task counts and algorithms. For each VM Count
within the current task Count and algorithm, the subset of result is selected and plotted
as bars. The Figure 7 show multiple bars for each PR value, with each bar representing
a different VM Counts.

Figure 7: Trend Analysis of Execution Time as PR Increases

The analysis shows that for task count 100, the ALO algorithm shows a mixed trend
which is to say that the execution time slightly increases with PR at VM counts (30, 45),
but remains stable or decreases at higher VM Counts (60, 75, 90). The HBA algorithm
on the other hand performs better with higher PR values, with execution times gradually
dropping from 9.14s to 5.23s at PR = 0.9 across 30 VM count, and from 15.34s to 15.36s
for 375 tasks. The HGA algorithm shows minor variation in execution time thereby
maintaining a stable performance of around 5.75s at PR = 1.0 and task count = 100
thus fluctuating slightly for larger task count. As task count increases to 750 and 1000,
ALO’s execution time shows a slight decrease or stability with increasing PR, while HBA
continues to show improvements in reducing execution time from 27.37s to 27.22s for
task count 750 and from 35.43s to 35.49s for task count 1000 at PR = 0.9. The HBA
shows superior efficiency with higher PR values but ALO and HGA shows more varied
responses depending on task count and VM Count.

19



6.6 Scenario 6: Performance of the ALO, HBA, and HGA al-
gorithms in terms of execution time across various PR levels

In figure8 for each unique ‘PR‘, the average execution times is calculated for three different
algorithms: ALO, HBA, and HGA. These average execution times are stored in separate
lists and are plotted. The results show that the ALO execution time is stable with
slight fluctuations as the PR varies. The execution time decreases from 83.02 seconds
to 78.39 seconds at PR = 0 and at PR = 0.9 before rising again to 78.60 seconds at
a maximum pr(pr=1) . The HBA algorithm shows a more distinct variation with the
execution time decreasing from 9.14 seconds at PR = 0 to 5.23 seconds at PR = 0.9, and
slightly increases further to 6.47 seconds at the maximum ratio of PR. This indicates that
HBA is more sensitive to changes in PR compared to ALO. The HGA shows the least
variation in execution time across different PR, with values fluctuating between 5.75 and
6.05 seconds. This implies that HGA is the most consistent across varying probability
ratios. While all algorithms show some variation with changes in PR, HBA performance
is most affected and HGA’s performance remains consistent and stable across different
scenarios.

Figure 8: Performance of the ALO, HBA, and HGA algorithms in terms of execution
time across various PR levels

7 Discussion

This research focus on examining how each algorithm (HoneyBadger Algorithm (HBA),
the Optimized HoneyBadger Algorithm (HGA), and AntLion Optimization (ALO)) ex-
ecution time responds to changes in PR, considering the impact of VM count and task
size in the solving the Problem Objective, emphasizing the need for improved algorithms
due to the limitations of traditional methods. The problem objective provided to the
algorithm is to make sure that tasks are allocated to resources without overutilizing
a single resource with improvements in the makespan time with the help of optimized
swarm-based metaheuristic algorithms enhanced by an evolutionary-based optimizer.The
research proposes HBA-GA for which the effects of different probability ratio (PR) val-
ues on execution time across varying VM counts and task count are experimented and
evaluated and the analysis is structured around several scenarios with specific aspects of

20



performance, trends, and efficiency as discussed in evaluation section of this research and
the result validates the proposed hybrid approach (HGA) effectively meets the objectives
outlined in 1.2 and solving problem Objective. In Scenario 6.1 ALO’s execution time
increases at low VM counts with high PR, while HBA reduces execution time at higher
VM counts. Thus HGA showing superior performance at high PR levels. In Scenario 6.2
HGA’s consistent efficiency under maximum PR values is demonstarted which outper-
forms ALO by 26.5% and HBA by 34.8% at VM count = 90 proving it the most effective
for handling larger tasks and higher PR. In Scenario 6.3 also at low and moderate PR,
HGA shows consistent reduction in execution times at 45 VM count with PR=0.25, HGA
outperforms ALO by 3.8% and HBA by 14.2%. In the next scenario 6.4 the HGA shows
improvement over ALO by 1.5% and by 7.5% at 60 VM count with PR=0.9 over HBA.
HBA shows positives most from extreme PR values, with significant reductions in exe-
cution time. Scenario 6.5 also shows HGA’s stability, with 5.7% improvement over ALO
and 29.4% improvement over HBA at 1000 task count and PR=0.9. In the last Scenario
6.6 HGA is identified as the most consistent across all PR values demonstrating minimal
fluctuations. HBA also shows significant improvements at higher PR values. But ALO
is less optimal specifically for larger tasks and higher VM counts. HGA is the most
efficient across various scenarios specifically at higher PR levels, suitable for effeciently
solving ”problem objective” with the help of GA optimizing makespan time and resource
allocation, and addressing the research question and validating the problem objectives.

8 Conclusion and Future Work

This research demonstrates that the optimized Honey Badger Algorithm (HBA) com-
bined with Genetic Algorithm (GA) effectively addresses the problem of task scheduling
in cloud computing, significantly reducing makespan times across varying parameters
such as VM counts, Task Count, and PR values. The findings shows that the proposed
HBA-GA(HGA) hybrid performs consistently well, especially under high PR values, de-
livering notable improvements in execution time compared to the base HBA and Antlion
Optimizer (ALO). The HGA achieved up to a 25% reduction in makespan time over ALO
and a 15% improvement compared to HBA across the tested VM counts and task sizes.
ALO, while generally stable, showed less efficiency, particularly at higher task counts and
VM counts, where its performance declined by up to 18% compared to HGA. The base
HBA also performed well but was less competitive in scenarios involving large task counts
and higher PR values, reflecting its less optimal performance in these cases. It is also
observed that HBA is a strong candidate as it is also sensitive to PR changes and shows
superior performance at higher PR values. ALO although is stable but is less optimal as
it gives very large makespan time in all scenarios particularly at larger task counts and
higher VM counts. Seeing the experimentation results of the execution times for each of
the algorithms from the results tables attached inside the configuration manual of this
report, A few more test cases like testing the performance of algorithms with uneven
VM’s can be examined. In such additional testcases also it is clearly evident from the
results table that HGA handles uneven distribution better and continues to maintain low
execution time compared to HBA despite of such uneveness in the tasks to the VM’s.
Whereas ALO suffers with this uneveness and shows very high execution times. The
future works can include enhancing the HBA-GA hybrid by exploring different configur-
ations of its parameters. Testing with varied epoch values, population sizes, and different

21



genetic operators of Genetic Algorthm like one-point, multi-point, and arithmetic cros-
sover, as well as roulette and random selection methods, could get more performance
gains. Also experimenting with alternative mutation strategies, such as swap mutations,
could also be beneficial. Hybridizing of HBA-GA with other algorithms can be explored
to determine if any improvements can be achieved, contributing more to optimizing task
scheduling and resource allocation in cloud environments.

References

Abualigah, L. and Diabat, A. (2021). A novel hybrid antlion optimization algorithm
for multi-objective task scheduling problems in cloud computing environments, Cluster
Computing 24(1): 205–223.

Agarwal, M. and Srivastava, G. M. S. (2016). A genetic algorithm inspired task scheduling
in cloud computing, 2016 International Conference on Computing, Communication and
Automation (ICCCA), IEEE, pp. 364–367.

Alsaidy, S. A., Abbood, A. D. and Sahib, M. A. (2022). Heuristic initialization of pso task
scheduling algorithm in cloud computing, Journal of King Saud University-Computer
and Information Sciences 34(6): 2370–2382.

Bittencourt, L. F., Goldman, A., Madeira, E. R., da Fonseca, N. L. and Sakellariou, R.
(2018). Scheduling in distributed systems: A cloud computing perspective, Computer
science review 30: 31–54.

Chen, X., Cheng, L., Liu, C., Liu, Q., Liu, J., Mao, Y. and Murphy, J. (2020). A woa-
based optimization approach for task scheduling in cloud computing systems, IEEE
Systems journal 14(3): 3117–3128.

Ghafari, R., Kabutarkhani, F. H. and Mansouri, N. (2022). Task scheduling algorithms for
energy optimization in cloud environment: a comprehensive review, Cluster Computing
25(2): 1035–1093.

Guo, L., Zhao, S., Shen, S. and Jiang, C. (2012). Task scheduling optimization in cloud
computing based on heuristic algorithm, Journal of networks 7(3): 547.

Hashim, F. A., Houssein, E. H., Hussain, K., Mabrouk, M. S. and Al-Atabany, W.
(2022). Honey badger algorithm: New metaheuristic algorithm for solving optimization
problems, Mathematics and Computers in Simulation 192: 84–110.

Houssein, E. H., Gad, A. G., Wazery, Y. M. and Suganthan, P. N. (2021). Task scheduling
in cloud computing based on meta-heuristics: review, taxonomy, open challenges, and
future trends, Swarm and Evolutionary Computation 62: 100841.

Kakkottakath Valappil Thekkepuryil, J., Suseelan, D. P. and Keerikkattil, P. M. (2021).
An effective meta-heuristic based multi-objective hybrid optimization method for work-
flow scheduling in cloud computing environment, Cluster Computing 24(3): 2367–2384.

Keivani, A. and Tapamo, J.-R. (2019). Task scheduling in cloud computing: A review,
2019 International conference on advances in big data, computing and data communic-
ation systems (icABCD), IEEE, pp. 1–6.

22



Keshanchi, B., Souri, A. and Navimipour, N. J. (2017). An improved genetic algorithm for
task scheduling in the cloud environments using the priority queues: formal verification,
simulation, and statistical testing, Journal of Systems and Software 124: 1–21.

Mahato, D. P., Singh, R. S., Tripathi, A. K. and Maurya, A. K. (2017). On scheduling
transactions in a grid processing system considering load through ant colony optimiz-
ation, Applied Soft Computing 61: 875–891.

Mandal, T. and Acharyya, S. (2015). Optimal task scheduling in cloud computing en-
vironment: meta heuristic approaches, 2015 2nd International conference on electrical
information and communication technologies (EICT), IEEE, pp. 24–28.

Manikandan, N., Gobalakrishnan, N. and Pradeep, K. (2022). Bee optimization based
random double adaptive whale optimization model for task scheduling in cloud com-
puting environment, Computer Communications 187: 35–44.

Mirjalili, S. (2015). The ant lion optimizer, Advances in engineering software 83: 80–98.

Pirozmand, P., Hosseinabadi, A. A. R., Farrokhzad, M., Sadeghilalimi, M., Mirkamali,
S. and Slowik, A. (2021). Multi-objective hybrid genetic algorithm for task scheduling
problem in cloud computing, Neural computing and applications 33: 13075–13088.

Prity, F. S., Gazi, M. H. and Uddin, K. A. (2023). A review of task scheduling in
cloud computing based on nature-inspired optimization algorithm, Cluster computing
26(5): 3037–3067.

Rekha, P. and Dakshayini, M. (2019). Efficient task allocation approach using genetic
algorithm for cloud environment, Cluster Computing 22(4): 1241–1251.

Singh, H., Tyagi, S. and Kumar, P. (2020). Scheduling in cloud computing environ-
ment using metaheuristic techniques: a survey, Emerging technology in modelling and
graphics: proceedings of IEM graph 2018, Springer, pp. 753–763.

Singh, H., Tyagi, S., Kumar, P., Gill, S. S. and Buyya, R. (2021). Metaheuristics for
scheduling of heterogeneous tasks in cloud computing environments: Analysis, per-
formance evaluation, and future directions, Simulation Modelling Practice and Theory
111: 102353.

Whitley, D. (1994). A genetic algorithm tutorial, Statistics and computing 4: 65–85.

23


	Introduction
	Research Background/ Objective
	Research Question
	Motivation
	Report Structure

	Related Work
	Challanges in Task Scheduling and Evaluating Algorithms: Heuristic and Metaheuristic
	Comparitive analysis of Single Metaheuristic Algorithms
	Comparitive analysis of Improved or Modified Metaheuristic Algorithms
	Exploring Hybrid and Adaptive stratergies of Metaheuristic Algorithms
	Analyizing Honey Badger and Genetic Algorithm
	Research Niche

	Methodology
	Problem Formulation
	Objective Function/Problem Objective

	Algorithms in consideration
	The Honey Badger Algorithm
	The Genetic Algorithm

	The AntLion Optimizer

	Design Specification
	Implementation
	Implementing Objective Function / Problem Objective
	Optimized Honey Badger with Genetic Algorithm

	Evaluation
	Scenario 1: Impact of PR on Execution Time at Different VM Counts (Baseline(PR=0) vs. High(PR=0.75)
	Scenario 2: Comparison of Execution Times Across Algorithms at Maximum PR(PR=1)
	Scenario 3: Effect of PR on Execution Time for Low PR (PR=0.1) and Moderate PR(PR=0.25) on Moderate task counts(task count= 375)
	 Scenario 4: Comparison of Execution Time Between Balanced PR(PR = 0.5) and Extreme PR(PR = 0.9) Values
	Scenario 5: Trend Analysis of Execution Time as PR Increases
	Scenario 6: Performance of the ALO, HBA, and HGA algorithms in terms of execution time across various PR levels

	Discussion
	Conclusion and Future Work

