
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

AI-Driven Test Case Generation and 
Optimization 

 
 
 
 
 

MSc Research Project  
Cloud Computing 

 
 
 

Mohammad Saif  
Student ID: 22248218 

 
 
 

School of Computing  
National College of Ireland 

 
 
 
 
 
 
 
 
 
 
 

Supervisor: Aqeel Kazmi 



 
 
 

 

 
National College of Ireland 

 
MSc Project Submission Sheet 

 
School of Computing 

 
Student 
Name: 

 
……. Mohammad Saif ……………………………………………………………………………… 

 
Student ID: 

 
…….22248218…………………………………………………………………………………………… 

 
Programme: 

 
…MSc in Cloud Computing…………………… 

 
Year: 

 
………2024……………….. 

 
Module: 

 
………MSc Research Project……………………………………………………………….……… 

 
Supervisor: 

 
…………. Aqeel Kazmi………………………………………………………………………….……… 

Submission 
Due Date: 

 
……16th September 2024………………………………………………………………….……… 

 
Project Title: 

 
…AI-Driven Testcase generation and Optimization………………………….……… 

Word Count: 
 
……………7099………………… Page Count ………21….………………………….…….. 

 
I hereby certify that the information contained in this (my submission) is information 
pertaining to research I conducted for this project.  All information other than my own 
contribution will be fully referenced and listed in the relevant bibliography section at the 
rear of the project. 
ALL internet material must be referenced in the bibliography section.  Students are 
required to use the Referencing Standard specified in the report template. To use other 
author's written or electronic work is illegal (plagiarism) and may result in disciplinary 
action. 
 
Signature: 

 
……………………………………………………………………………………………………………… 

 
Date: 

 
………16th September 2024………………………………………………………………… 

 
PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST 
 
Attach a completed copy of this sheet to each project (including multiple 
copies) 

□ 

Attach a Moodle submission receipt of the online project 
submission, to each project (including multiple copies). 

□ 

You must ensure that you retain a HARD COPY of the project, 
both for your own reference and in case a project is lost or mislaid.  It is 
not sufficient to keep a copy on computer.   

□ 

 
Assignments that are submitted to the Programme Coordinator Office must be placed 
into the assignment box located outside the office. 
 
Office Use Only 
Signature:  
Date:  
Penalty Applied (if applicable):  



 
 
 

1 
 

 

AI-Driven Testcase Generation and Optimization 
 

Mohammad Saif  
22248218  

 
 

Abstract 
The aim of this research is to develop an AI-Driven model to enhance efficiency and 

effectiveness of software testing by generating and ordering testcases using Natural 
language Processing (NLP) and Reinforcement Learning (RL) techniques. The traditional 
software testing methods are time-consuming and require significant manual effort, which 
often leads to inefficiency and missing test coverage. This study utilizes NLP to 
automatically extract test cases from software requirements documents and applies RL to 
order test execution sequence. The integration of these technologies aims to maximize test 
coverage, improve testing efficiency and saving time. Through automated test case 
generation and optimization, this research aims to reduce test execution time and enhance 
test coverage, thereby supporting more reliable and efficient software development 
practices. The findings from this study highlight the potential impact of combining NLP 
and RL in automating software testing process, promising substantial improvements in 
software quality assurance and development workflows. 

 
Keywords— AI, ML, NLP, RL, Test cases, DQN, A2C, SRS 
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1 Introduction 
 

1.1 Background 
The rapid digitization and increase in complexity of software systems have led to the 
emergence of more complex testing methodologies. Tradition manual test case generation 
methods are often time-consuming and error-prone, leading to inefficiencies and increased 
costs. With software systems becoming more complex, the demand for rigorous testing that 
ensures reliability and performance has never been more critical. The evolution of Artificial 
Intelligence (AI) presents an opportunity to revolutionize this domain by automating and 
optimizing test case generation. AI technologies can enhance software testing by reducing 
manual effort, improving accuracy and eliminating human errors therefore addressing the 
current inefficiencies in software testing processes. 
 

1.2 Motivation 
The importance of this research lies in utilizing the potential of AI technologies to transform 
software testing practices. By leveraging AI, specifically Natural Language Processing (NLP) 
and Reinforcement Learning (RL), this research aims to create an accurate, streamlined, and 
time-effective solution for test case generation. This approach is particularly important in Agile 
software development environments, where requirements keep on changing frequently 
therefore making it challenging to maintain up-to-date test cases. Traditional methods often 
struggle to adapt swiftly, leading to gaps and increased risk of defects in product. Using the 
AI-driven approach will help with substantial cost and time savings leave sufficient time to 
Verify the generated test cases, improving overall software quality and reliability. 
 

1.3 Research Question 
This study aims to address the following research question: 
How can AI-Driven techniques AI-driven techniques such and NLP and RL, be 
integrated to automate and optimize test case generation and execution, thereby 
improving the efficiency and effectiveness of software testing process? 
 

1.4 Research Objectives 
To address the research question, the following research objectives are proposed. 
 

• Investigate state of art AI-driven test case generation techniques 
• Design a framework that utilizes NLP to parse and understand software requirements 

document for extracting relevant test cases. 
• Develop RL algorithms to optimize sequence of test case execution, aiming to enhance 

test coverage and reduce execution time. 
• Evaluate the effectiveness and accuracy of the proposed framework in improving 

software testing process. 
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1.5 Ethics Consideration 
 
This study includes human subjects for evaluation of test cases generated by the model. 
 
     

Table 1: Declaration of Ethics Consideration 
This project involves human participants Yes / No 
The project makes use of secondary dataset(s) created by the researcher Yes / No 
The project makes use of public secondary dataset(s) Yes / No 
The project makes use of non-public secondary dataset(s) Yes / No 
Approval letter from non-public secondary dataset(s) owner received Yes / No 

 

1.6 Paper Structure 
 
The paper is organized as follows: 
 

• Section 2: Related Work - This section reviews existing literature on AI-driven test 
case generation, focusing on methodologies that employ NLP and RL. 

• Section 3: Methodology - This section describes the integrated approach combining 
NLP and RL for test case generation and optimization. 

• Section 4: Design Specification - This section outlines the design specifications for the 
proposed system, including the architectural considerations and technical requirements. 

• Section 5: Implementation - This section describes the implementation for the proposed 
system, including the algorithms and ML libraries used. 

• Section 6: Evaluation - This section presents the preliminary results from applying the 
proposed methodology on sample datasets. 

• Section 8: Conclusion and Future work - This section summarizes the key contributions 
of the   research and outlines future work directions. 

 
 
2 Related Work 
 
The use of Artificial Intelligence (AI) in software testing has received significant attention in 
recent years. Traditional software testing methods are often labour-intensive and prone to 
human error.AI technologies, including machine learning and deep learning have been 
proposed to automate time-consuming and repetitive tasks such as writing testcases to reduce 
manual effort and improving testing accuracy and coverage. This section explains the related 
works from trustworthy sources which will help with important information to support this 
research. 
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2.1 AI and Machine Learning for Software testing  
 
Wei, C. et al. (2021) introduced a novel technique for test case prioritization in combinatorial 
testing using supervised machine learning. The goal was to improve failure detection rates and 
reduce testing time and cost by selecting and ordering a subset of test cases that can ensure a 
high failure detection rate. SVM as employed to learn form a small t-way array and predict the 
results of a larger t-way covering array. This SVM model prioritizes test cases that are more 
likely to detect failures. The proposed research significantly improves the failure detection rate 
compared to random ordering of test cases. However, the accuracy of SVM model depends 
heavily on the quality and representativeness of the training data. Implementing and tuning the 
SVM model for different testing scenarios can be complex and time consuming. 
 
Vedpal and Chauhan, N. (2021) explored the role of machine learning (ML) algorithms in 
designing software testing techniques. They focused on how ML can enhance the testing 
process by generating and prioritizing test cases. Supervised learning techniques, including 
classification and regression were utilized to predict output based on labelled data. 
Reinforcement learning (RL) was used to optimize the section and ordering of test cases based 
on feedback from test execution. Techniques such as Support vector Machines (SVM), K-
Nearest Neighbours (KNN), and neural networks were explored for their applicability in 
software testing. More extensive real-world testing may need to validate the applicability of 
ML techniques across various domains of software applications. 
 
Akila, V. et al. (2023) integrated machine learning (ML) algorithms in software testing to 
enhance efficiency, accuracy and reduce manual testing efforts. The study emphasizes test case 
generation and oracle testing, utilizing various ML techniques to automate these processes. 
Several ML algorithms including linear regression, decision tree, random forest, and their 
application in automaton test case generation and oracle testing was evaluated. Linear 
regression showed 82.38% accuracy, decision tree showed 81.24% accuracy and random forest 
showed 89.27 accuracy. This shows how ML can automate and enhance various software 
testing activities, leading to increased efficiency and accuracy. Nevertheless, the effectiveness 
of ML algorithms depends heavily on the quantity and quality of the training data which can 
be a limiting factor. 
 
Verma, I., Kumar, D. and Goel, R. (2023) investigated the implementation and compared 
various Artificial Intelligence (AI) techniques, including Machine learning (ML) and Deep 
Learning (DL), in software testing. The study proves that AI, particularly ML and DL 
techniques, can automate the generation of test cases, making the process faster and more 
accurate compared to manual methods. However, challenges such as computational cost, data 
dependency and the reusability must be addressed to fully realize the benefits of AI in software 
testing. 
 
Singh, A. (2023) studied the comprehensive taxonomy of machine learning (ML) used in 
testcase generation. The study conducted an extensive review of existing research on ML 
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techniques applied to test case generation. Study showed how ML can identify edge cases and 
unusual scenarios that may be missed by human testers leading to better test coverage and 
accuracy. The issue with ML models is that they can be difficult to interpret, making it 
challenging to understand their decision-making process. 
 
Worku, A. et al. (2023) addressed the challenges of generating test cases from quality attribute 
scenarios (QASs) by developing machine learning (ML) model that classifies QAS as testable 
or non-testable and generates test cases for the testable QASs. A dataset of 1967 QASs was 
collected form literature, textbooks and publicly available software specification documents. 
Different machine learning algorithms like Support Vector Machine (SVM), Multinomial 
Naïve Byes(MNB), and Decision Tree (DTree) were used for QAS classification and Random 
Forest(RF), AdaBoost, and Gradient Boost Machine (GBM) were used for test case generation. 
The DTree algorithm with TF-IDF achieved the highest prediction accuracy of 89% for 
classifying QAS as testable or non-testable. SVM and MND also performed well with 
accuracies of 88% and 82% respectively. Again, the performance of the ML models is highly 
dependent on quality and representativeness of the training data and implementing, tuning 
multiple algorithms and preprocessing can be complex and resource intensive. 
 
 

2.2 Natural language Processing in Software Testing  
 
Gupta, A. and Rajendra Prasad Mahapatra (2023) focused on automating the generation of test 
cases form natural language requirements and encoding historical test data into numerical 
Values for optimization purposes. It addressed slow and error-prone manual process if 
generating test cases and proposed an NLP-oriented solution like RAKE and NER that 
successfully translates free-format user requirements into detailed test cases using syntactic 
analysis and keyword extraction. The study effectively leverages NLP techniques to automate 
test case generation and optimize them using historical data. However, the process involves 
multiple stages of text processing with require significant computing resources and expertise. 
Also, the effectiveness is highly dependent on quality and clarity of user requirements and 
historical test data provided. 
 
Lim, J.W. et al. (2024) proposed another NLP based approach to automate the extraction of 
test case information (actors, conditions, steps, system response) from both positive and 
negative software requirements written in natural language. The study leveraged unified 
boilerplate approach that combines Rupp’s and EARS boilerplates to reduce ambiguity and 
increase efficiency. Correctness rates for the extracted information were 50% for Mdot. 61.7% 
for Pointis and 10% for the Npac with higher correctness for positive test cases compared to 
negative ones. This model could be improved for more correctness in extracting negative 
testcases. 
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2.3 Reinforcement Learning for Test Optimization 
 
Abo-eleneen, A., Palliyali, A. and Catal, C. (2023) performed a Systematic Literature Review 
(SLR) to explore the use of Reinforcement Learning (RL) in software testing. The aim is to 
understand how RL is applied, identify commonly used RL algorithms, discuss challenges and 
compare RL’s performance to traditional software testing techniques. The most used RL 
algorithms are Q-learning, Deep Q-Network (DQN) and other advanced algorithms like Deep 
Deterministic Policy Gradient (DDPG) and Proximal Policy Optimization (PPO). RL can 
automate the exploration process, can adopt to the changes and scales with the complexity of 
application. The inability to reuse trained RL models across different applications limit 
generalizability of the findings. Designing and correct environment is complex and training RL 
agents can be time-consuming. 
 

2.4 Comparative Analysis of Related works 
 
Table 1: Comparison of Related Works 

Author(s) Tools and 
Technology 
Used 

Objective and Methodology Advantages Limitations 

Wei, C. et al. 
(2021) 

 
Support Vector 
Machine (SVM) 

Prioritization of test cases in 
combinatorial testing using supervised 
ML; SVM used to learn from small t-
way arrays and predict larger t-way 
covering arrays. 

Improved 
failure 
detection 
rates; 
Reduced 
testing time 
and cost. 

Accuracy 
depends on 
training data 
quality; 
Complex 
implementation 
and tuning. 

Vedpal and 
Chauhan, N. 
(2021) 

SVM, K-
Nearest 
Neighbors 
(KNN), Neural 
Networks 

Use of ML algorithms for generating 
and prioritizing test cases; Supervised 
learning for prediction and 
reinforcement learning for 
optimization. 

Enhanced 
testing 
process; 
Automates 
test case 
generation 
and 
prioritization. 

Need for 
extensive real-
world 
validation; ML 
models can be 
complex 

Akila, V. et 
al. (2023) 

Linear 
Regression, 
Decision Tree, 
Random Forest 

Evaluation of ML algorithms for 
automating test case generation and 
oracle testing; Accuracy assessment of 
various models. 

High 
accuracy in 
test case 
generation; 
Reduced 
manual 
effort. 

Depends on 
data quality; 
Limited real-
world 
application 
examples. 
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Verma, I., 
Kumar, D., 
and Goel, R. 
(2023) 

Machine 
Learning (ML) 
and Deep 
Learning (DL) 
Techniques 

Comparative study of AI techniques in 
software testing; Focus on automation 
of test case generation. 

Faster and 
more 
accurate than 
manual 
methods 

Computational 
cost; Data 
dependency; 
Reusability 
challenges. 

Singh, A. 
(2023) 

Various ML 
Models 

Taxonomy and review of ML 
techniques for test case generation; 
Analysis of edge cases and unusual 
scenarios. 

Better test 
coverage and 
accuracy; 
Identifies 
scenarios 
missed by 
human 
testers. 

Difficulty in 
interpreting ML 
models; 
Decision-
making process 
not transparent. 

Worku, A. et 
al. (2023) 

SVM, 
Multinomial 
Naïve Bayes 
(MNB), 
Decision Tree 
(DTree), 
Random Forest, 
AdaBoost, 
Gradient Boost 
Machine 
(GBM) 

ML model for classifying and 
generating test cases from quality 
attribute scenarios (QASs); Dataset of 
1967 QASs used. 

High 
prediction 
accuracy for 
QAS 
classification; 
Automates 
test case 
generation. 

Complex 
implementation 
and tuning; 
Resource-
intensive 
preprocessing. 

Gupta, A. 
and 
Rajendra 
Prasad 
Mahapatra 
(2023) 

RAKE, Named 
Entity 
Recognition 
(NER) 

NLP techniques for automating test 
case generation from natural language 
requirements; Syntactic analysis and 
keyword extraction. 

Automates 
test case 
generation; 
Optimizes 
with 
historical 
data. 

High 
computational 
resources 
required; 
Dependent on 
quality of user 
requirements. 

Lim, J.W. et 
al. (2024) 

Unified 
Boilerplate 
Approach 

NLP-based extraction of test case 
information from software 
requirements; Use of Rupp’s and 
EARS boilerplates. 

Reduces 
ambiguity; 
Increases 
efficiency in 
test case 
extraction. 

Low 
correctness 
rates for 
negative test 
cases; Requires 
improvement 
for better 
accuracy. 

Abo-
eleneen, A., 
Palliyali, A., 
and Catal, 
C. (2023) 

Q-learning, 
Deep Q-
Network 
(DQN), Deep 
Deterministic 
Policy Gradient 
(DDPG), 
Proximal Policy 
Optimization 
(PPO 

Systematic Literature Review on 
Reinforcement Learning in software 
testing; Analysis of RL algorithms and 
applications. 

Automates 
exploration 
processes; 
Adapts to 
changes; 
Scalable with 
complexity. 

Limited 
generalizability; 
Complex 
environment 
design; Time-
consuming 
training. 
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3 Research Methodology 
 
The methodology for this research is focused on integrating Natural Language Processing 
(NLP) and Reinforcement Learning to automate and optimize test case generation. The 
approach is structured in multiple phases: data preparation, NLP model development, RL agent 
development, integration of NLP and RL models, and evaluation of the integrated system. 
 

3.1 Data Preparation  
The first step involves collecting and pre-processing the requirement documents and test cases. 
Requirement documents are typically written in natural language and contain description of the 
expected functionality of the software. The following steps outline the data preparation process: 
 

1. Collection of Requirement Documents: The dataset was obtained from Zenodo by 
(Ferrari et al., 2022). The dataset is designed for NLP tasks within the field of requirements 
engineering. The documents in this dataset include domain-specific acronyms, a restricted 
vocabulary, and long sentences, which are representative of typical requirements 
documents. This dataset provides a solid basis for training and evaluating the NLP model 
used in this research.  

2. Text Cleaning: The test_preprocessing.py script was created to preprocess the raw textual 
date from the PURE dataset. This includes removing noise such as stop words, punctuation, 
and special characters, which is important for preparing the text for further NLP processing. 

3. Tokenization:  The text is tokenized into sentences and words using functions defined in 
nlp_processing.py script. With the given structure of the PURE dataset, this stem is 
essential for breaking down the text into manageable units for further NLP tasks. 

4. POS Tagging and Chunking: The nlp_processing.py script also performs part-of-speech 
(POS) tagging and chunking. POS tagging labelled each word with its grammatical role, 
while chunking word in groups into meaningful phrases. 

5. XML Document Handling: A subset of the documents in the PURE dataset was provided 
in XML format, which was manually ported by the dataset creators to help with the 
replication of NLP experiments. This XML format is used to ensure consistency in data 
structure to make integration of the dataset easier with research workflow. 

 

3.2 NLP Model Development 
The NLP model is developed to parse the requirement documents and extract relevant information 
for generating test cases. The PURE dataset’s characteristics, including its domain-specific 
language and document structure are particularly important for helping with the development of 
the NLP model. 
 

1. Feature Extraction: Using chunking and dependency parsing techniques implemented in 
the nlp_processing.py script, key features like conditions, actions, and expected results 
were extracted from the PURE dataset. The restricted vocabulary and specific jargon of 
dataset were considered during feature extraction to ensure accurate interpretation. 

2. Template Matching: The file handling.py script is used for template matching, where 
expected features are matched against predefined templates. This process ensures the 
systematic generation of test cases by populating the templates with features extracted from 
PURE dataset. 
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3. Test Case Generation: The cases are automatically generated using the populated 
templates. Each test case has a structure with an ID, objective, preconditions, steps, and 
expected results. The use of PURE dataset enabled the generation of test cases that are 
representative of real-world software requirements. 

 

3.3 Reinforcement Learning (RL) Agent Development 
 
The RL agent is developed to optimize the execution order of test cases generated from the PURE 
dataset. This phase involves several key steps: 
 

1. Environment Setup: The testing environment is defined based on the specific 
characteristics of the PURE dataset. This environment setup, including path to necessary 
tools and configurations, is managed through the config.txt file. 

2. Reward Function Design: A reward function is designed to make RL agent to maximize 
test coverage and minimize execution time by covering critical test cases first. 

3. Training the RL Agent: The RL agent is trained using the test cases generated from the 
PURE dataset and simulated testing scenarios. The training process involves running 
multiple simulations to allowing the agent to learn optimal test case execution strategies, 
focusing on efficiently handling the specific requirements of the software projects 
mentioned in the dataset. 

 

3.4 System Integration 
The NLP and RL are integrated to create a cohesive system for automated test case generation 
and optimization. 
 

1. Data Flow Integration: The utils.py script ensured seamless data flow between the 
NLP and the RL agent. This integration is particularly focused on managing the 
structured data extracted from the PURE dataset to ensure that the generated test cases 
are accurately executed by the RL agent. 

2. System Coordination: Coordinated operation of NLP and RL components is critical 
to ensure that the test cases generated from the PURE dataset are ordered efficiently by 
the RL agent. 

3. Cloud Deployment: The plan was to deploy the integrated NLP and RL models on 
AWS SageMaker for better scalability and performance. However, due to time 
constraints, this deployment has not been implemented yet. 

 

3.5 Evaluation of the Integrated System 
The evaluation of the system is focused on assessing the performance and accuracy of the 
integrated NLP and RL system. The following metrics are used: 
 

1. Correctness of the Test Case Generation: The accuracy of the generated test cases is 
evaluated by comparing them against a manually created set of testcases derived from 
the PURE dataset. This step ensured that the NLP model is correctly interpreting the 
domain-specific language and jargon present in the dataset. 

2. Optimization Performance: The effectiveness of RL agent in optimizing test case 
execution order is assessed using metrics such as test coverage. 
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3. Scalability and Robustness: The system’s scalability and robustness are evaluated by 
testing it on the full PURE dataset, which includes a wide range of software requirement 
specifications. This testing phase is important for determining the system’s ability to 
handle real-world scenarios and different levels of complexity. 

 
4 Design Specification 
 
Overview  
The design of the AI-Driven test case generation and optimization system is based on 
integration between Natural Language Processing (NLP) with Reinforcement Learning (RL) 
to automate and improve the efficiency of software testing. This system processes the Software 
requirement Specification (SRS) documents, generates test cases, and optimizes their execution 
order to maximize test coverage and efficiency. The system is designed to be modular, allowing 
for flexibility in handling different types of software project requirements. 
 
Architecture and Framework 
The architecture is divided into two main modules:  NLP and RL, each of them is supported 
by a different set of components. Figure 1 shows high-level architecture diagram of the 
proposed system. 
 

 
Figure 1: High Level Architecture 

4.1 Natural Language Processing (NLP) Module 
The NLP module’s primary role is to process Software Requirement Specifications (SRS) 
documents written in natural language and automatically generate structured testcases. This 
involves several stages of test processing, feature extraction, and test case generation. 
 
Main Components 
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Configuration Management: config.txt file manages the configuration settings, such as the 
path to the executable file, which is essential for handling document processing tasks on 
different operating systems (macOS, Windows). 
Data Preprocessing: text_preprocessing.py script handles the initial preprocessing of text 
from SRS documents. This cleans the text, removes noise (e.g., stop words, punctuation), and 
tokenizes it into sentences and words. 
NLP Processing: nlp_processing.py script is responsible for the core NLP tasks such as part-
of-speech tagging, chunking, and dependency parsing. These techniques are used to extract key 
features like conditions, actions, and expected results from the text. 
Feature Extraction and Test Case Generation: The extracted features are mapped with 
predefined templates to systematically generate test cases. These test cases include ID, 
objective, preconditions, steps and expected results. 
Utility Functions: utils.py provides utility functions that support various tasks within the NLP 
module, such as data transformation and compatibility checks. 
 
Output 
The output of the NLP module is a set of structured test cases derived from the natural language 
SRS requirements. These test cases will be then fed to RL module for prioritization. 
 

4.2 Reinforcement Learning (RL) Module 
The RL module prioritizes and optimizes the execution of test cases generated by the NLP module. 
It utilizes various RL strategies such as listwise, pairwise and pointwise methods, to maximize test 
coverage and efficiency. 
 
Main Components 
 
Data Transformation and Preprocessing: TestcaseExecutionDataLoader.py loads and prepares 
the test case execution data for training and testing the RL agents. 
 
Reinforcement Learning Environments:  
CIListWiseEnv.py and CIListWiseEnvMultiAction.py scripts define the environment used by 
Listwise RL approach. The environments simulate the software testing process and provide 
feedback to RL agents based on their actions. The feedback loop will help the agents to learn the 
optimal sequence of the test cases to maximize fault detection efficiency.  
PairWiseEnv.py and PairWiseEnvSelectionSort.py scripts are tailored for the Pairwise RL method, 
these environments will help in evaluation and comparison of test cases in pairs. The RL agents 
use these environments to learn which testcase are more critical and should be prioritized higher.  
TPPairWiseDQNAgent.py and TPPairwiseA2CAgent.py scripts implement the Pairwise RL agents 
suing Deep Q-Network (DQN) and Advantage Actor-Critic(A2C) algorithms. These agents learn 
to prioritize test cases by comparing them in pairs, optimizing the order of execution based on the 
relative importance of each test case. 
 
Tuning and Analysis Modules 
The script tuning.py is for tuning of RL model hyperparameters to ensure that the model performs 
optimally across different testing environments. This script will help in finding the best 
configuration for specific scenario. 
The anova_analysis.py script is used for statistical analysis, mainly for conducting Analysis of 
Variance (ANOVA) to compare the performance of different RL models. It provides insights into 
how different models perform relative to each other and will help in selecting most effective model. 
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The TPDRL_results_analysis.py analyses the results produced by the various RL agents with 
detailed examination of agent’s performance. 
 
Output 
The RL module will deliver the prioritized list of testcases, optimized based on the selected RL 
strategy. These test case order will ensure that the critical software issues are detected early in the 
testing process. 
 
5 Implementation 
The implementation of the system mainly composed of two components: Natural Language 
Processing (NLP) and Reinforcement Learning (RL) and integration of these two to create a 
framework for generation and optimization of test cases. The final stage of implementation 
involves development of scripts, models and analysis tools to evaluate the performance of the 
models. 
 

5.1 Tools and Languages Used 
Programming language: 
Python was chosen for its vast libraries supporting NLP and machine learning. 
 
Libraries for NLP: 
NLTK (Natural Language Toolkit) is used for text processing tasks such as tokenization and 
part-of-speech (POS) tagging. 
SpaCy is used for more advanced NLP tasks like dependency parsing and named entity 
recognition (NER). 
Libraries for Reinforcement Learning: 
Stable Baseline3 is used for implementing and training RL models like Deep Q-Network 
(DQN), Actor-Critic (A2C). This library primarily used PyTorch for the underlying deep 
learning models. 
Statistical Analysis Libraries: 
SciPy is used for statistical tests and analysis and Pandas is used for data manipulation and 
analysis. 
Development Environment: 
PyCharm is used for integrated development environment (IDE). It provides robust coding 
tools and has a great version control. 

5.2 Final Outputs 
After implementation, the following outputs were produced: 

5.2.1 NLP Module 
Processed Test Cases:  
The NLP model parses software requirements identifying key components like actors, 
conditions, steps, and system responses to generate structured test cases. 
Scripts: 
text_processing.py script handles the initial preprocessing of SRS documents which include 
cleaning, tokenization, and part-of-speech (POS) tagging. It prepares the text for further NLP 
processing. 
nlp_processing.py is core NLP script which employs feature extraction from SRS documents. 
It identifies key components like conditions, actions, and expected results using chunking and 
dependency parsing. It uses unified boilerplate approach using Rupp’s and EARS boilerplates, 
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like the method described by Lim, J.W. et al. (2024) with some modifications to cover negative 
requirements as well. 
utils.py script provides supporting functions that are used across the NLP module, such as for 
data transformation and compatibility checks. 
 
 
Key Processes: 
Text data from SRS documents is cleaned and tokenized and then important features are 
extracted using NLP techniques, after that structured test cases are generated from these 
features, ready for prioritization by the RL agents. 

5.2.2 Reinforcement Learning Module 
Prioritized test cases: 
Test cases generated by the NLP module are fed into the RL module, where they are prioritized 
according to different RL strategies (Listwise, Pairwise). The output is set of testcases ordered to 
maximize testing effectiveness. 
 
 
RL Agents: 
 
TPListWiseAgent.py: Implements the Listwise RL method which optimizes the sequence of test 
cases by considering entire sequences rather than individual cases. 
TPPairWiseDQNAgent.py: Implements the Pairwise RL method using DQN algorithm provided 
by python’s Stable Baselines3 library. This agent prioritizes test cases by comparing them in pairs 
and determining which should be executed first. 
TPPairWiseA2CAgent.py: This script also implements another Pairwise agent but using Actor-
Critic (A2C) algorithm which provides a different approach to pairwise prioritization. 
 
Environments: 
CIListwiseEnv.py and CIListwiseEnvMultiAction.py: These scripts simulate the environment 
for Listwise RL approach, providing the agent with feedback on its prioritization choices. 
PairWiseEnv.py and PairWiseEnvSelectionSort.py: These scripts are scripted for Pairwise RL 
approach, where test cases are evaluated in pairs within a simulated testing environment. 
 
Configuration: 
config.py manages the configuration parameters such as reward functions, state representations, 
and other environmental settings. This script ensures the correct configuration for RL 
environments. 
 
Key Processes: 
Test cases are ingested by RL environments, where agents interact with them. Agents learn to 
prioritize the test cases based on the feedback received, refining their strategies through repeated 
episodes. 

5.2.3 System Integration and Cloud Deployment  
The NLP and RL components are integrated for test case generation and optimization, with data 
flow managed via utility scripts. Although cloud deployment on AWS SageMaker was planned but 
not completed, it would have provided scalable model training and deployment, with easy model 
updates and the ability to handle large datasets. 
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5.2.4 Tuning and Analysis  
Tuning: 
tuning.py allows to tune RL model hyperparameters, such as learning rates, discount factors, and 
exploration strategies. The tuning process ensures that each RL agent is configured for optimal 
performance in the respective environment. 
 
Analysis: 
anova_analysis.py conducts statistical analysis on the results produced by different RL models. 
This script performs and Analysis of variance (ANOVA) to determine if there are any significant 
differences statistically between the performances or different RL strategies. 
TPDRL_results_analysis.py analyses the results from RL agents, providing detailed insights into 
their effectiveness. The analyses involve metrics like Average Percentage of Faults Detected 
(APFD) and execution time, allowing for a thorough evaluation of each agent’s performance. 
 
Key Processes: 
The tuning module is used to find best configuration for RL agents. The results from the RL 
agents are statistically analysed to determine their effectiveness and the insights form the 
analysis guide towards further refinements to the RL models.  
 

5.2.5 Other Supporting Modules  
NRPA_RankingLibs.py provides functions for ranking and evaluating test cases using the 
Non-Recursive Process Automation (NRPA) method. This module offers additional methos 
for comparison with the RL- based prioritization strategies. 
TPAgentUtil.py is a utility module that supports the RL agents by providing common functions 
used across different agents and environments. It includes helper functions for data processing, 
model loading and evaluation. 

5.2.6 Challenges Encountered  
During implementation one of the main challenges was ensuring compatibility between the 
outputs of the NLP and the inputs required by the RL agent. This required careful handling of 
data transformation to ensure smooth integration. Additionally tuning the hyperparameters of 
the RL models was time-consuming, as different datasets required specific adjustments to 
optimize the performance of the test case prioritization strategies. 

5.2.7 Future Adaptations 
Future adaptations could include expanding the range of RL strategies or using more advanced 
NLP techniques, such as BERT-based models to improve the accuracy of the test case 
generation from complex requirements. Additionally cloud deployment on AWS platforms like  
SageMaker could enable scalable model training and deployment, making system more 
efficient and capable of handling larger datadets. 
 
6 Evaluation 
 
This section contains detailed evaluation for both NLP and RL models and the advantages and 
disadvantages of each module. 
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6.1 NLP Model Evaluation 

6.1.1 Dataset description and setup 
The evaluation was conducted using a subset of requirement documents from PURE dataset, which 
was obtained from Zenodo (Ferrari et al., 2022)., including “CCNTS”, “Gamma J”, “Gemini and 
“Themas”. These documents represent a variety of real-world requirements, both positive and 
negative, covering different domains. The dataset was processed using the developed NLP model 
to extract key test case information such as actors, conditions, steps, and system responses. 
 

• Total Requirements Documents evaluated: 5 
• Total sentences: Varied across documents, with the average document containing 

approximately 100 sentences. 
• Requirement types: Both Positive and negative requirements were included to test the 

model’s efficiency. 
 

6.1.2 Evaluation Criteria 
The evaluation is based on various key criteria: 

• Actor Identification: Evaluation of the model if it accurately identified the actors involved 
in each requirement. 

• Conditions: Accuracy in identifying preconditions and post conditions. 
• Steps: Evaluation of the steps if they were correctly extracted and sequenced. 
• System Response: Focused on the correctness of the system response, mainly for negative 

requirements. 
Each criterion was scored based on the percentage of the correct identifications out of the total 
possible correct identifications in the dataset. 
 

6.1.3 Experiment Design 
The Evaluation process was designed to ensure a detailed assessment of the NLP model: 
 

• Evaluators: A team of experienced software engineers conducted the evaluation. 
• Evaluation Rounds:  

• First round: Initial extraction of test case information, followed by a review to 
identify areas needing improvement. 

• Second round: Adjustments were made based on the feedback form the first round, 
and a final evaluation was conducted. 

 
• Disagreement resolution: Any discrepancies in the evaluation were discussed among the 

evaluators to reach a conclusion. 
 

6.1.4 Correctness Metrics  
Correctness was calculated for each criterion using the following formula (Lim et al., 2024): 
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Correctness Summary: 
 

• Actor Identification: Averaged 85% across all documents 
• Conditions: Averaged 75%, with some challenges in identifying implicit conditions. 
• Steps: Averaged 80%, with higher accuracy in documents with well-structured 

requirements. 
• System Response: Averaged 70% with lower accuracy in handling negative requirements. 

 

6.1.5 Detailed Results Analysis 
Actor Identification:  
The model sometimes struggled with complex sentences where multiple actors were present which 
led to partial or incorrect actor attribution. For example, in the “Gamma J” document, the actor 
identification was correct in 90% of the sentences but struggled with sentences where actor was 
suggested rather than explicitly stated. 
 
 
Conditions: 
Implicit conditions or those not following standard formats were difficult for the model to Identify. 
For example, in “Inventory” document, the model identified explicit conditions with 85% accuracy 
but only 60% accuracy for implicit conditions. 
 
Steps: 
The model performed well in extracting steps but faced issues with optional or conditional actions. 
For example, in the “CCNTS” document, the steps were correctly identified and sequenced 88% 
of the time with errors in more complex conditional sequences. 
 
System Response: 
Negative requirements were particularly challenging as the model occasionally failed to identify 
negations correctly. For example, in the “Themas” document, the system response was accurately 
identified 65% of the time, with significant challenges in correctly interpreting negative conditions. 

6.2 RL Model Evaluation 
 
Evaluation of listwise and Pairwise RL Strategies:  A Case Study 
This study presents a detailed evaluation of to advanced Reinforcement Learning (RL) strategies – 
Listwise and Pairwise implemented using Advantage Actor-Critic (A2C) and Deep Q-Network (DQN) 
algorithms. The evaluation focuses on the performance of these algorithms in optimizing test case 
prioritization across four diverse datasets: codec, compress, imaging and IO. The goal is to evaluate the 
effectiveness, efficiency, and consistency of each approach, with a focus on their implications. 

6.2.1 Evaluation Criteria 
The evaluation is conducted based on the following criteria: 
 

• APFD (Average percentage of Fault detection): A key metric for determining how 
effectively the models prioritize test cases to maximize early fault detection. 

• Training Time: A measure of computational efficiency, reflecting the practicality of each 
strategy in real-world testing environments. 

• Consistency: The stability of model performance across different datasets, indicating 
generalizability and robustness of these strategies. 
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6.2.2 Results and Analysis 
 

A. Effectiveness in fault detection 
 
 

 
Figure 2: APFD Comparison Graph for A2C and DQN Algorithms. 

 
 
Table 2: comparative analysis between Listwise and Pairwise Strategies using A2C and DQN algorithms. 
Dataset Algorithm Listwise APFD Pairwise APFD Observations 
Codec A2C 0.746 0.743 Listwise slightly 

outperforms 
Pairwise in early 
fault detection. 

Compress A2C 0.721 0.726 Pairwise has a 
slight edge, 
indicating better 
performance for 
compress-like data. 

Imaging A2C 0.763 0.754 Listwise excels, 
likely due to the 
complexity of 
imaging data. 

IO A2C 0.734 0.733 Both approaches 
are nearly identical 
in performance. 

Codec DQN 0.746 0.741 Both strategies 
perform similarly, 
with Listwise 
slightly ahead. 
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Compress DQN 0.721 0.728 Pairwise slightly 
outperforms 
Listwise in this 
dataset. 

Imaging DQN 0.763 0.759 Listwise is slightly 
better, handling 
complex data 
effectively. 

IO DQN 0.735 0.732 Both models 
perform similarly, 
with minimal 
difference. 

 
This table summarizes the comparative effectiveness of Listwise and Pairwise strategies across different 
datasets, highlighting in difference their performance. 
 

B. Efficiency in Training time 
 

Listwise A2C vs. Pairwise A2C: While both approaches require significant training time because of the 
complexity of A2C algorithm, Pairwise A2C generally takes longer because if the additional computational 
effort involved in pairwise comparisons. However, this additional time is justified by the slight improvements 
in APFD observed in some datasets. 
Listwise DQN vs. Pairwise DQN: DQN models are generally more efficient, with shorter training times 
compared to A2C. Pairwise DQN consistently required less training time than Listwise, making it more 
practical choice in scenario where computational resources are limited.  

 
C. Consistency Across Datasets 
  
Listwise A2C: Demonstrated high consistency across all datasets, particularly excelling in complex 
datasets like imaging, where holistic test case prioritization is beneficial. 
Pairwise A2C: It also showed strong consistency but with slightly more variability in APFD values, 
mostly in datasets that are less suited to pairwise comparisons. 
Listwise DQN: Maintained a stable performance across all datasets, with strong consistency in the 
imaging dataset, suggesting robustness in environments with complex data structures. 
Pairwise DQN: Showed excellent consistency, particularly in the compress and IO datasets, where 
pairwise comparisons are more likely to provide prioritization insights. 

 

6.3 Discussion 
 
NLP Module 
 
The NLP module designed in this research has shown significant potential in automating the test case 
generation from natural language requirements. This capability addresses the challenges identified in 
the literature, particularly the time-taking and error prone nature of manual test case creation. 
 
Strengths: 
Automation: The module effectively automates the translation of requirements into test cases, reducing 
manual effort. This aligns with the goals stated in earlier research by Lim, J.W. et al. (2024), where the 
use of natural language processing was highlighted as solution for improving test case generation. 
Improvement: The proposed NLP model demonstrated a higher correctness percentage in identifying 
and extracting test cases from positive requirements, with accuracy rates exceeding those in similar 
studies. 
 
 
 



 
 
 

19 
 

 

Limitations: 
Despite higher correctness in extracting positive test cases handling negative and complex requirements 
remains a challenge, as with similar studies. Also, the accuracy and reliability of the NLP module are 
heavily dependent on the quality of the input requirements. Ambiguous and poorly structured 
requirements can lead to suboptimal test case generation. The multi-stage preprocessing, which includes 
syntactic analysis and keyword extraction, requires substantial computational resources. This can be a 
limitation in environments with limited computational power, potentially reducing modules 
accessibility for some users. 
 
Improvement Suggestions: 
Enhanced Preprocessing:  To mitigate the dependency on input structure quality, implementing more 
sophisticated preprocessing steps, such as ambiguity detection and resolution, could improve the 
module’s robustness. This enhancement would address one of the key limitations and align the module 
more closely with best practices mentioned in the literature. 
Optimization of Computational resources: Exploring more efficient algorithms that can reduce the 
computational overhead. Also, more optimized algorithms which can extract both negative and positive 
test cases alike with more correctness can be explored. 
 
 
RL Module 
The RL module, incorporating both Listwise and Pairwise strategies with A2C and DCN algorithms, 
has demonstrated strong performance in optimizing test case prioritization. The module’s performance 
across different datasets highlights the flexibility and potential of RL in software testing. 
 
Strengths: 
High APFD Values: The module consistently achieves high APFD values, indicating its effectiveness 
in prioritizing test cases for early fault detection. This effectiveness can be particularly noticeable in 
complex datasets where traditional methods may struggle. 
Adaptability: The module’s adaptability is a significant strength. Listwise strategies perform 
exceptionally well in complex environments, while Pairwise strategies are more effective in simpler 
datasets. This flexibility will allow tailored approaches depending on the nature of the data. 
 
Limitations: 
Training Time: While the DQN models are generally more efficient, the A2C models, particularly in 
the Pairwise strategy require significantly longer training times. This could be a drawback in time-
sensitive projects where quick iterations are required. 
Consistency Across Environments: Although the module performs well overall, there is some 
variability in effectiveness depending on the dataset. Thes suggests that while RL strategies are robust 
still, they require further tuning to achieve consistent results across all scenarios. 
 
Improvement Suggestions: 
Refinement of Training Process: Reducing training times, particularly for the A2C models, would 
improve the model’s practicality in real-world applications. This can be achieved through optimization 
techniques or by exploring alternative RL algorithms that balance efficiency with effectiveness. 
Enhanced Generalization: Further tuning and incorporating additional features like meta-learning, can 
improve the consistency of the module’s performance across diverse datasets. This would enhance 
module’s generalizability and make it more reliable in different testing environments. 
 
 
Overall, the design and implementation of both NLP and RL modules show significant promise, 
advancing the state of art in automated software testing. However, there are areas for improvement, 
particularly in enhancing the robustness and efficiency of these systems. The lessons learned from this 
research suggest that with further refinement of NLP model to include both positive and negative test 
cases with higher percentage of correctness and thorough tuning of RL for less training time and 
flexibility could provide even grater value. The findings show importance of continued research and 
development in this area, particularly addressing the remaining challenges identified in this discussion. 
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7 Conclusion and Future Work 
 
This research successfully utilizes the Natural language Processing (NLP) and Reinforcement 
Learning (RL) to automate and optimize software testing process. The NLP module generate test 
cases from natural language requirements, demonstrating huge potential. The RL module using 
Listwise and Pairwise strategies with A2C and DQN algorithms proves to be efficient for 
prioritizing test cases which results in high Average Percentage of Fault Detection (APFD) across 
multiple datasets. Overall, the research almost met its objectives of advancing the automation of 
the software testing and contributing to valuable insights in the field. 
Future work would include the focus on improving the NLP module’s ability to handle complex 
requirement with both positive and negative requirement with higher correctness by incorporating 
more advanced preprocessing and NLP techniques. Although the model is optimized to detect faults 
early by prioritizing test cases efficiently, its accuracy depends on the quality of the data it was 
trained on and the scenarios it was exposed to during training. Human testers bring domain 
expertise and intuition, which can sometimes lead to identification of subtle or unexpected issues 
that AI model might miss. The model may be not as efficient as handling these edge cases or highly 
complex, ambiguous scenarios where human expertise plays an important role. New techniques 
could be explored further to handle these types of scenarios. Also reducing training times for RL 
models and improving consistency across datasets, further tuning remains key areas of future 
research. Also expanding testing to include diverse datasets and real-world scenarios will help 
assess the scalability and generalization of the developed models. Finally, there is potential to 
develop a user-friendly tool with full integration of these modules for broader industry level 
application, deployed in cloud platforms like AWS SageMaker, utilizing its scalability and 
robustness. 
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