
Configuration manual:

Programming Language:
Node.js v18.x, JavaScript

Frameworks and Libraries:
• Express.js: Used to develop the REST APIs.
• Cluster Module & Worker Threads: Utilized to develop the custom load-balancing library

(r-loadBalancer.js).

Containerisation:
• Docker: Used to containerize the application by creating containerized images.
• Kubernetes: Employed for deploying the containerized application and managing services.

Cloud Platforms:
AWS:

• Deployed the non-containerized application on AWS EC2.

• Deployed the containerized application using AWS EKS (Elastic Kubernetes Service)

GCP:
• Deployed the non-containerized application on GCP App Engine.

• Deployed the containerized application using GCP Kubernetes Engine.

Performance Monitoring:
• AWS CloudWatch: Used to monitor the performance of the application on AWS and collect

key performance metrics and system health metrics.

• GCP Cloud Monitoring: Used to monitor the performance of the application on GCP and

collect system and performance metrics.

Code configuration:

1. Node.js app:

(a) Requirements:

• Node.js V18.x or grater version

• VS code ide

• Git for local

• Postman for API testing

• Artillery for load testing

Github URL: https://github.com/Rohith-A/thesis-experiment.git

Steps to run the app run the following commands

(1) git clone https://github.com/Rohith-A/thesis-experiment.git - clone the repository

(2) npm install - install dependencies

(3) npm start - run the application

(4) http://localhost:3000/health open this URL in browser

(5) Go to app.js to find the API endpoints

(6) Readme file has all the instructions related to endpoints

2. Cloud deployment:

https://github.com/Rohith-A/thesis-experiment.git
https://github.com/Rohith-A/thesis-experiment.git
http://localhost:3000/health

(a) Create EC2 instance in AWS with t3.xlarge instance and perform git clone and npm
commands

(b) Create a ECR registry and EKS cluster with 8 core CPU and 32GB RAM and use
deployment.yml file in kube folder in the application to deploy app to Kubernetes cluster

(c) Before deploying app to Kubernetes cluster build a docker image a DOCKERFILE is
available in the application install docker locally and run docker build command to build
docker image

(d) Create an application in GCP App engine with 4core CPU and 8GB RAM and use app.yaml
file in the application to deploy the app to GCP app engine

(e) Use gcp-deployment file in kube folder by logging in to the gcp console and run the kubectl
commands to deploy the image to Kubernetes engine which is a 8core CPU 32GB
enivironment

3. r-loadBalancer.js:

This is the custom load balancing library build to enhance the performance of the node.js
application.

URL: https://www.npmjs.com/package/r-load-balancer.js

Steps to install

• npm i r-load-balancer.js

You can install this library in any node.js application and sample use is available in readme file of
this library.

Cloud Deployment:
• Install Docker (for containerized deployment).
• Install AWS CLI and configure with credentials.
• Install GCP CLI and configure with credentials.
• Have a GitHub repository or a local directory containing the Node.js application.

Section 1: Deployment on AWS
(A) Non-Containerized Deployment:

(1) Provision an EC2 Instance:

• Log in to the AWS Management Console.
• Navigate to EC2 → Launch an Instance.
• Choose an AMI:

• Amazon Linux 2 or Ubuntu Server.
• Select an instance type (e.g., t2.medium for moderate workloads).
• Configure security groups to allow HTTP (port 80), HTTPS (port 443), and SSH

(port 22).

(2) ssh -i your-key.pem ec2-user@<EC2-Public-IP>

https://www.npmjs.com/package/r-load-balancer.js

(3) Install Node.js and Dependencies:

(4) Run the application: node app.js

(B) Containerized Deployment:

(1) Create a Dockerfile

(2) Build and Run the Docker Image:

(3) Push the Image to Amazon Elastic Container Registry

Section 2: Deployment on GCP
(A) Non-Containerized Deployment

(1) Provision a Compute Engine Instance:
• Log in to the GCP Console.
• Navigate to Compute Engine → VM instances.
• Click "Create Instance" and configure:
• Machine Type: e2-medium or higher.
• Firewall: Allow HTTP and HTTPS traffic.
• From the GCP Console, click SSH on the instance.

sudo yum update -y

curl -fsSL https://rpm.nodesource.com/setup_18.x |
sudo bash -

sudo yum install -y nodejs git

cd <app-directory> npm install

FROM node:18

WORKDIR /usr/src/app

COPY package*.json ./

RUN npm install

COPY . .

EXPOSE 3000

CMD ["node", "app.js"]

docker build -t my-node-app .

docker run -d -p 3000:3000 my-node-app

aws ecr get-login-password --region <your-region> | docker login --username AWS --
password-stdin <your-account-id>.dkr.ecr.<your-region>.amazonaws.com

docker tag my-node-app:latest <your-ecr-repo-url>:latest

docker push <your-ecr-repo-url>:latest

(2) Install Node.js and Dependencies:

(3) Clone and Run the Application:

(D) Containerized Deployment:

Creating and building docker image is same as AWS

(1) Push the Image to Google Container Registry (GCR):

(2) Deploy with Google Kubernetes Engine (GKE):

This manual provides all necessary steps to deploy the Node.js application in containerized and
non-containerized forms on AWS and GCP. Adapt configurations as per your application’s specific
needs.

sudo apt update

sudo apt install -y curl git

curl -fsSL https://deb.nodesource.com/
setup_18.x | sudo -E bash -

sudo apt install -y nodejs

git clone https://github.com/Rohith-A/thesis-
experiment.git

cd <app-directory>

npm install

node app.js

gcloud auth configure-docker

docker tag my-node-app:latest gcr.io/<your-project-id>/my-node-app:latest

docker push gcr.io/<your-project-id>/my-node-app:latest

gcloud container clusters create my-cluster --num-nodes=3

kubectl create deployment my-node-app —image=gcr.io/<your-project-id>/my-
node-app:latest

kubectl expose deployment my-node-app --type=LoadBalancer --port=80 --
target-port=3000

https://github.com/Rohith-A/thesis-experiment.git
https://github.com/Rohith-A/thesis-experiment.git
https://github.com/Rohith-A/thesis-experiment.git

