
Improving the scalability of Node.js
applications in the cloud by integrating
parallel processing and multi-threading,

followed by a performance assessment across
AWS, GCP cloud platforms.

MSc Research Project

MSc in Cloud Computing

Rohith Addula
Student ID: x22192867

School of Computing

National College of Ireland

Supervisor: Shreyas Setlur Arun



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Rohith Addula

Student ID: X22192867

Programme: MSc in Cloud computing

Year: 2024

Module: MSc Research Project

Supervisor: Shreyas Setlur Arun

Submission Due Date: 07/11/2024

Project Title: Improving the scalability of Node.js applications in the cloud
by integrating parallel processing and multi-threading, fol-
lowed by a performance assessment across AWS, GCP cloud
platforms.

Word Count: XXX

Page Count: 34

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 2nd December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

1



Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

2



Improving the scalability of Node.js applications in
the cloud by integrating parallel processing and multi-

threading, followed by a performance assessment
across AWS, GCP cloud platforms.

Rohith Addula
x22192867

Abstract

The single-threaded, non-blocking asynchronous architecture of Node.js applic-
ations made it more suitable for handling I/O operations and concurrent requests
efficiently. However, this architecture constraints the Node.js apps by limiting the
scalability in handling CPU-intensive workloads. This research aims to address
this with a custom load-balancing algorithm designed to handle the task distribu-
tion across the available resources by prioritising the tasks based on the resource
availability. This approach ensures efficient resource utilisation and workload distri-
bution by optimising the performance and scalability. The proposed load-balancing
algorithm is integrated into a micro-service Node.js application with different end-
points enabled to perform the experiments with different workloads.

The application was deployed across Amazon Web Services (AWS) and Google
Cloud Platform (GCP) as containerised and non-containerised applications to eval-
uate the proposed solution. The performance metrics such as CPU utilisation,
memory usage and throughput are collected after every experiment with different
workloads. The experimental results shows that custom load-balancing algorithm
optimised scalability by 35% on average when compared with default load-balancing
mechanism in Node.js application. The results shows that in containerised instances
AWS outperformed GCP by 18% in handling CPU-intensive tasks showing that
AWS is more suitable to handle such tasks. This research also identifies optimal
deployment strategies for high performance applications in the cloud environments.
This research also demonstrates the capabilities of Node.js applications in high per-
formance computing (HPC)

1 Introduction

Cloud computing provides an extensive collection of resources that are instantly available
when needed. To optimize performance, reduce costs, and save energy, it’s important to
use resources efficiently. Resources are critical. Cloud-based applications are rapidly
expanding and enabling real-time corporate growth. Cloud apps typically experience sig-
nificant user activity and concurrent requests. Single-threaded systems may struggle to
handle massive requests, leading to bottlenecks and poor application performance.
Parallel computing addresses these issues by splitting up the work and completing it sim-
ultaneously across numerous processors. This distribution optimizes CPU utilization for

1



better application performance, allowing for more simultaneous requests and a smoother
user experience.
JavaScript has rapidly gained popularity in areas such as Over-The-Top (OTT) plat-
forms, social media, and e-commerce, driven by the rise of cloud computing. Cloud apps
must manage a high volume of queries while maintaining performance. JavaScript runs
in a single thread, is non-blocking, and asynchronous.. Its essential feature, the Event
loop, enables it to handle asynchronous tasks efficiently. However, there are restrictions
with cloud platforms. Node.js relies on the event loop to handle asynchronous activities
efficiently. When asynchronous processes are carried out concurrently, such as network
requests and database communications, event loops are effective in managing I/O oper-
ations. This allows programs to execute further requests without waiting for previous
processes to complete. An event loop initiates a callback function to complete remaining
operations after the first ones. The event loop’s single-threaded nature makes it diffi-
cult to finish CPU-intensive processes. Large data processing and intricate computations
may cause the thread to stop until the tasks are finished. Until the current operation is
completed, the other operations will be put in line. The application’s performance will
be impacted by this. Optimizing Node.js applications’ speed in cloud environments is es-
sential for managing growing user requests and computationally demanding tasks. Some
popular techniques to improve the scalability of a Node.js application include spinning
up instances quickly through containerization or deploying multiple instances. However,
even though these techniques can scale the application, they still have an impact on
performance when a computation-intensive task is running. These techniques increase
the application’s horizontal scalability by adding more instances, but they don’t enhance
performance for CPU-intensive operations.

This issue can be resolved by allocating the task to the processors and threads. By
putting parallel processing and multi-threading into practice,the Node.js program optim-
izes performance by offloading work from the main thread, allowing for more requests
per unit of time. In a single instance, this method can maximize resource utilization.
Analyzing the performance of the Node.js application across several cloud platforms once
parallel processing and multi threading have been implemented can yield useful inform-
ation for application performance optimization. Applications can be hosted on a variety
of cloud providers’ resources; assessing how well an application performs in various envir-
onments will assist in selecting the best environment for the needs of the business. The
purpose of this research is to build multi threading and parallel processing in Node.js
applications and assess how well they run across various cloud platforms.

The necessity to optimize resource utilization and enhance application performance by
offloading CPU-intensive tasks via parallel processing and multi-threading served as the
impetus for this study. Optimizing Node.js applications’ performance and scalability in
a cloud setting is the aim. With an emphasis on Node.js microservices, this study seeks
to determine load-balancing techniques and parallel processing algorithms as well as to
create effective and optimized algorithms for allocating jobs and incoming requests while
making efficient use of available resources. In addition to performance optimization, this
work focuses on creating algorithms that use less energy.

2



2 Background and Motivation

The main idea of this research is to enhance and measure the Node.js application per-
formance in cloud platforms like AWS and GCP. Even though Node.js is highly efficient
in handling I/O requests like 1000 requests per second it fails to demonstrate high per-
formance in handling CPU-intensive tasks by blocking the main thread. In this research,
a custom load-balancing logic is designed and equipped with the Node.js application to
enhance the performance and analyse the performance in the cloud platforms.

3 Research Question

How can parallel processing and multi-threading techniques can help to optimize the
scalability and performance of Node.js applications in handling CPU bound task and
I/O operations together.
As part of this research, this study will also address the following sub-questions.
Trade-offs and Challenges:

• What are the trade-offs and challenges associated with parallel processing and multi-
threading in Node.js applications, particularly within cloud environments?
Cloud Platform Variations:

• What is the impact on performance of Node.js applications after implementing
parallel processing and multi-threading techniques and how does the application performs
in multiple cloud environments like GCP and AWS as containerised and non-containerised
applications.

4 Related Work

To improve the scalability of Node.js apps, we critically examined earlier methods and
evaluated how they might further this study.
In their study ”Performance Comparison and Evaluation of Web Development Techno-
logies in PHP, Python, and Node.js,” K. Lei and Tan (2014) used systematic bench-
mark and scenario tests examine the speed of PHP, Python, and Node.js in handling
high concurrent requests and large volumes of data. According to the research findings,
Node.js’s non-blocking design allows it to handle I/O activities more effectively than
PHP and Python. Node.js works well, nevertheless, for apps that don’t need sophist-
icated backend processing. In a study titled ”Comparison of Node.js and Spring Boot
in Web Development,” et al. (2023) used Apache JMeter to test the performance of
Node.js and Spring Boot applications. They found that Node.js is not suitable for ap-
plications which involve multithreading and CPU-intensive tasks Node.js presents issues
in managing computation-intensive operations due to its single-threaded, asynchronous,
and non-blocking architecture. M. Patrou and Dawson (2020)conducted a study on the
software evaluation methodology of Node.js parallelism under ”Variabilities in Scalable
Systems,” which describes how Node.js provides modules that enable the creation of new
instances (either threads or processes) to manage work in parallel without interfering
with the main event loop. The research looks at several Node.js modules that facilitate
multithreading and parallel processing to increase the scalability and speed of Node.js
applications to conduct compute-intensive activities. This can be done by using worker
threads and child process modules.

3



In a research conducted by Tanadechopon and Kasemsontitum (2023) to compare and
evaluate the performance of API services developed in PHP, Python, Node.js and Golang.
This study focuses on metrics such as response time, CPU utilisation, throughput by
conducting experiments with different workloads. The results shows that Node.js demon-
strated competitive performance in handling concurrent requests and Golang outper-
formed Node.js in handling CPU-intensive tasks. This study highlights the efficiency of
different programming languages.
A study conducted by Putu Agus Eka Pratama et al.’s Pratama and Raharja (2023)com-
pares the performance of different Node.js frameworks like Fastify, Express and Hapi
across different virtualization environments like Docker, VirtualBox and Podman. This
research evaluates the request latency, throughput by using Node-Bench tool. The res-
ults shows that Fastify frame works delivered good performance when integrated with
Sequelize ORM in Docker and Podman. This study also suggests that developers should
consider Fastify framework to improve performance of the Node.js applications.
Various modules for Node’s parallel processing. The architectures of JS are contrasted
in both performance and functionality. By examining how these modules manage com-
putationally demanding activities, communicate, and share memory, the analysis sheds
light on their scalability. Regarding the capabilities and performance variations of several
Node.js modules designed for parallelism, the study provides insightful information. It
suggests that no single module is capable of outperforming every other module in every
scenario. The application’s performance may differ based on the particular requirement.
The concept for future research on assessing Node.js modules in distributed and more
computationally demanding settings comes from this study. The performance metrics
and evaluation techniques for Node.js parallelism modules may be significantly improved
with the aid of this next work.
M. Patrou and Dawson (2019) study, ”Scaling Parallelism Under CPU-Intensive Loads
in Node.js,” evaluates the effectiveness of various parallelization strategies in Node.js ap-
plications by executing CPU-intensive loads. It evaluates Node.js’s multi-process and
multi-thread methods as well as its scalability across different contexts. The goal of the
study is to identify performance trends and provide deployment recommendations using
a complex methodology that includes, among other things, Docker containers for distinct
modules, separate apps for each Node.js module, and use of Node.js and WebWorker.
-Threads, Cluster, and Child Process modules for parallelizing a compute-intensive op-
eration. Along with measuring performance parameters like execution time, CPU con-
sumption, speedup, and cache misses, it also performs statistical analysis using p-values
to identify performance parallels and discrepancies. The study’s findings indicate that
multi-threaded approaches typically outperform multiprocessor approaches, particularly
in CPU-intensive jobs where WebWorker-Threads has demonstrated the best performance
to date. As workloads grow or more instances are produced, the performance differences
between multi-threading and multiprocessor approaches become increasingly noticeable.
The impact that operating environments have on the effectiveness of parallelization tech-
niques is also examined in this research.
JavaScript’s Web-workers made parallel processing possible by enabling asynchronous
communication across worker threads. This method has various drawbacks when it comes
to employing shared memory, which necessitates more work for data distribution.
In their 2016 study ”GEMs: Shared-Memory Parallel Programming for Node.js,”I. Chaniotis
and Tselikas (2015). investigated how to use parallel programming in Node.js, where
shared-memory parallel processing is accomplished in Node.js applications using the Gen-

4



eric Messages technique. By fusing shared memory usage with message passing strategies,
the GEMs increase the potential of parallel computation. This study covers various GEM
kinds, including read-only, owned, portioned, atomic-LK, and atomic-STM. Web-workers
can access shared memory in a controlled manner due to GEMs’ internal functionality.
Using shared memory improves parallel processing performance and expands Node.js ap-
plication possibilities. In order to assess the potential of Generic 6 Messages in enhancing
the parallel processing capabilities of Node.js applications, experiments are conducted on
an Ubuntu 14.04 server. The results demonstrate that the GEMs approach performs
better than the conventional Node.js parallel processing.
In their study on ”Supervisory Event Loop-based Autoscaling of Node.js Deployments,”
et al. (2022)introduced an additional method for scaling Node.js applications: event loop-
based auto-scaling. Because typical measurements like CPU use don’t adequately capture
system stresses, this study emphasizes the difficulty of doing so. As a metric for auto-
scaling the program, This paper addresses several sorts of GEMs, such as atomic-LK,
atomic-STM, read-only, owned, and portioned. Thanks to the internal functioning of the
GEMs, the Web workers are able to access the shared memory in a controlled manner.
Incorporating shared memory into Node.js apps will increase their possibilities and im-
prove parallel processing performance. Prometheus is used to monitor the application and
gather event loop lag measurements, whereas Kubernetes is used for container orchestra-
tion. The investigation yielded findings demonstrating that the event loop lag method
may successfully scale the program with an increasing workload when performance was
evaluated against traditional resource usage scaling. Nevertheless, as these analyses are
conducted in Kubernetes, the outcomes may differ when conducted on other cloud plat-
forms.
According to a 2015 study by A. Maatouki and Streit (2015) on ”A Horizontally-Scalable
Multiprocessing Platform Based on Node.js,” Node Scala has become more well-known
for its effectiveness at allocating and processing requests concurrently. Node Scala is
utilized in this study to horizontally extend the application, optimizing resource utiliz-
ation by splitting and requesting in parallel based on a predetermined use case. When
handling huge data sets, this method showed a 74% boost in performance. As demand
rises, Node Scala expands horizontally by adding more worker nodes, which improves
the system’s ability to process requests efficiently. This method was evaluated using a
real-time application to visualize climatic data.
Applications that are effective at processing requests in parallel must be designed and
developed using parallel design patterns. Organized parallel programming approaches are
thoroughly examined in a study on ”Algorithmic Skeletons and Parallel Design Patterns
in Mainstream Parallel Programming” by Horacio González–Ve lez et al. (2020). This
study emphasizes the effects of parallel programming approaches on various sectors. It
investigates several parallel design patterns and algorithmic skeletons. Some of the fre-
quent issues in parallel programming can be solved using the templates provided by the
parallel design patterns. Task level parallelism, data level parallelism, and instruction
level parallelism are all covered in this study.
In a research looking at ways to automate code execution and sharing between distributed
systems, Oleh Chaplia et al. (2023)examine the Node.js framework for automated code
scaling and execution on multiple distributed workstations. Enhancing microservices ap-
plications’ scalability is the main goal of this research. The goal of this strategy is to
make microservices-based applications more scalable and less complicated. For effective
resource use, this framework runs shared code in a distributed environment.

5



Identifying the application’s problems and enhancing its scalability require a performance
evaluation. An innovative method known as Internal Transparent Tracing and Context
Reconstruction (ITTCR) is presented in the study ”Vnode: Low-Overhead Transparent
Tracing of Node.js-Based Microservice Architectures” by Herve M. Kabamba et al.et al.
(2023) (2024). This method allows for performance analysis of microservices applications
and minimal system overhead tracing created in Node.js. This method concentrates on
decreasing the amount of manual labor and resources needed to gather telemetry data
in order to boost the debugging process’ effectiveness. The scalability, availability, and
resource efficiency of microservice designs are highlighted in this paper, along with the
difficulties associated with debugging them.
As a result, when creating an application, it is crucial to adhere to green computing
principles and take sustainability into account in every way. Maria Patrou et al.’sM. Pat-
rou and Dawson (2022) investigation from 2022 on the article ”Optimising the Energy
Efficiency of Node.js Applications with CPU DVFS Awareness” offers a method for dy-
namically modifying CPU frequencies in response to request properties. This method,
which made advantage of Node.js and user-specified frequency selection priority, signific-
antly improved energy efficiency when compared to conventional Linux scaling governors.
This method makes use of Frequency Scaling (DVFS) and CPU Dynamic Voltage on the
application level, which enables the Node.js application to modify the CPU frequency in
response to request demand, hence optimizing energy consumption. In order to help dy-
namically modify the CPU frequency, this new policy categorizes web requests according
to their patterns of CPU utilization.Zhu et al. (2018)
Tilkov and Vinoski (2010) Tilkov et al.’s conducted a research by integrating the Rust
programming language with JavaScript in Node.js for web applications development to
enhance the performance. In this research C++ was replaced by Rust to avoid memory-
related issues and avoid race conditions. Stress tests showed Rust outperforming JavaS-
cript by up to 115 times and Node.js’s concurrency model by 14.5 times without optimiz-
ation. In browsers, Rust-based WebAssembly implementations surpassed pure JavaScript
by 2-4 times in performance.

Table 1: Summary of Related Works
Reference Focus Methodology Key Findings

Lei et al.
(2014) K. Lei
and Tan
(2014)

Comparison of PHP,
Python, and Node.js in
handling high concur-
rent requests

Systematic
benchmark and
scenario tests

Node.js performs better
for I/O-bound tasks but
struggles with complex
backend processing

et al. (2023) Comparison of Node.js
and Spring Boot

Performance test-
ing with Apache
JMeter

Node.js is less efficient
for CPU-intensive, mul-
tithreaded applications

I. Chaniotis
and Tselikas
(2015)

Evaluation of Node.js
for modern web applic-
ations

Performance eval-
uation study

Node.js is viable for
real-time, low-latency
applications

6



Table 2: Summary of Related Works
Reference Focus Methodology Key Findings

M. Patrou and
Dawson (2019)

Parallelism in Node.js
under CPU-intensive
loads

Evaluation of
threads, cluster,
and child pro-
cesses

Multithreading is more
efficient for CPU-heavy
workloads

Bhandariet al.
(2022)

Autoscaling Node.js de-
ployments using event
loop lag

Kubernetes or-
chestration and
Prometheus mon-
itoring

Event loop lag can be
an effective autoscaling
metric

PatrouM. Pat-
rou and
Dawson (2020)

Evaluation of Node.js
parallelism under vari-
able workloads

Docker-based
experimentation
with multithread-
ing modules

WebWorker threads
provide best perform-
ance for parallel tasks

Pratama and
Raharja (2023)
Pratama and
Raharja (2023)

Benchmarking Node.js
frameworks in virtualiz-
ation environments

Node-Bench tool
for latency and
throughput meas-
urement

Fastify performs best
with Sequelize ORM in
Docker and Podman

Tanadechopon
and Kasem-
sontitum
(2023) Tana-
dechopon
and Kasem-
sontitum
(2023)

Comparison of API ser-
vices built with PHP,
Python, Node.js, and
Golang

Experimentation
on response time,
CPU usage, and
throughput

Node.js is competitive
but Golang excels in
CPU-intensive scen-
arios

Tilkov and
Vinoski (2010)
Tilkov and
Vinoski (2010)

Using Node.js for high-
performance network
applications

Functional pro-
gramming with
JavaScript

Node.js’s asynchronous
design enhances real-
time performance

Maatouki et
al. (2015)
A. Maatouki
and Streit
(2015)

Horizontally scalable
multiprocessing in
Node.js

Use of Node
Scala for parallel
request handling

Achieved 74% perform-
ance boost with hori-
zontal scaling

Sunarto et
al. (2023)
J.W.Sunarto
and Widianto
(2023)

Performance compar-
ison of WebAssembly
and JavaScript

Systematic review
of benchmarks
and implementa-
tions

WebAssembly signi-
ficantly outperforms
JavaScript in compute-
intensive tasks

7



5 Methodology

The Research methodology involves several steps such as understanding the gaps in the
previous research, designing an algorithm to efficiently distribute tasks and dynamic-
ally manage resources and allocation while performing each task, and developing a mi-
croservice app to integrate a load balancer library to perform CPU-intensive tasks. Cal-
culating theoretical speedup using Amdahl’s law. Deploying the NodeJs app in AWS
and GCP cloud as containerised and non-containerised apps. Conduct experiments with
different workloads and measure the performance. Monitor the CPU usage and memory
usage through cloud monitoring tools. Collected the data of performance metrics. Ana-
lyse the data to identify the performance of each cloud through different experiments.
Cost analysis based on the resources chosen in each cloud platform.

Figure 1: Methodology flow diagram

5.1 Identifying gaps from previous research

After examining previous works on improving the scalability of Node.js applications cer-
tain gaps were found and this research aims to fill the gaps by performing experiments on
cloud platforms and building a custom load-balancer logic as a separate library which can
dynamically allocate resources based on the load. In the earlier research libuv and napa.js
are used to enable the parallel execution capabilities in a Node.js app however custom
load balancer library solves the problem of dynamic resource management and in the pre-
vious research the experiments were not conducted with limited resources in this research
the experiments are conducted considering the real-time scenarios of a microservice-based
Node.js application in cloud platforms by deploying the applications in different services
and analyze the performance.

8



5.2 Design Algorithm for Task Distribution (r-loadbalancer.js)

After analysing the libuv and Napa.js libraries the custom load-balancing algorithm is
designed to address the issues like dynamic resource allocation like memory management
and CPU allocation which enables the parallel processing and multi-threading in Node.js
app to perform the operations by blocking new requests and also performing the existing
CPU intensive task at the same time this algorithm is designed to boost the performance
and also equip Node.js applications with parallel processing capabilities. The limitation
of libuv is that it is not designed to perform parallel processing of CPU-intensive tasks the
main thread in the event loop will be blocked while performing CPU-bound tasks using
libuv it is ideal for I/O operations which can handle thousands of requests simultaneously.
On the other hand, Napa.js has limitations of managing and sharing data between workers
Napa.js provides a simple API to perform parallel processing in Node.js applications. The
custom r-loadBalancer.js is designed to optimise the CPU-intensive task execution while it
dynamically manages the resources. This custom library continuously monitors resources
and efficiently allocates tasks to each core and it efficiently handles the load between
CPU-intensive tasks and I/O operations without blocking any operations. An efficient
custom task queuing mechanism is implemented to handle the workloads. This library
has been published in the npm registry and can be installed in any node app using the
npm install r-loadBalancer.js command.

5.3 Develop microservice Node.js App

To test the custom load balancer library a Node.js application was developed using a
microservice architecture with multiple endpoints to perform the experiments with dif-
ferent scenarios by integrating the custom load balancer library. This app is designed
and developed to perform CPU-intensive tasks such as processing large files performing
complex calculations like RSA Fibonacci calculation and performing I/O operations like
calling an external API. This app is designed in such a way that all the scenarios are run
through API endpoints while monitoring the CPU usage continuously each CPU-bound
tasks are divided equally to all the cores using workers and a custom load balancer lib-
rary is integrated to perform the parallel processing and dynamic resource allocation.
The CPU-bound tasks designed to analyse performance are running normal Fibonacci
calculations and RSA Fibonacci calculations to find factors of a large number like 2000000
which is a good amount of load to do a performance analysis and single-threaded oper-
ations are also included to run in parallel to analyse the thread blockage. Along with
these another operation is performed to generate 1000000 records using worker threads.
A health API is designed to return the system metrics as a response which can used to
monitor the CPU and memory usage. In one experiment all the endpoints are run at
the same time to analyse if CPU-bound tasks are blocking other operations. This app
is deployed in AWS and GCP as containerised and non-containerised apps to perform
experiments with different configurations.

5.4 Calculate Theoretical Speedup

After designing and implementing the application and load balancing algorithm an ana-
lysis is performed to calculate the theoretical speed up by the amount of code that is
parallelised and the number of cores that are used to run the application. Using Am-
dahl’s law the theoretical speed-up is calculated by using the below formula. It is essential

9



to do this analysis which will give an idea of performance improvement that can achieved
by integrating parallel processing. However, the value may change in real-time scenarios
depending on the system resource usage.

1/(1− P ) + (P/N)

where P represents the amount of parallelized portion of the code, and N is the number
of processing units.

5.5 Cloud configuration and deployment

To perform all the experiments the developed application is deployed in multiple cloud
platforms. The application is deployed as containerised and non-containerised applica-
tions in AWS and GCP using different services. In AWS the non-containerised application
is deployed in EC2 with Amazon Linux which has 4 core CPUs with 8GB memory and
AWS Elastic Kubernetes Service is used to deploy containerised application which is con-
figured with 8 core CPU and 32GB memory. The GCP app engine is used to deploy a
non-containerised application which has 4 core CPUs and 8GB memory and the GCP
Kubernetes engine is used to deploy a containerised app with 8 core CPUs and 32GB
memory. Monitoring tools are enabled to collect the data metrics of CPU usage and
memory usage according to the experiments performed.

5.6 Conduct experiments with different workloads

To evaluate the implementation of this research experiments were conducted with dif-
ferent workloads to observe the performance of the application after the integration of
parallel processing techniques. The workloads were designed to simulate the real-time
use cases where applications can face a huge load of requests and CPU-intensive tasks
either separately or at the same time. To perform the experiments the exposed endpoints
were used like processing large datasets, executing CPU-bound computations like RSA
Fibonacci calculations, and handling high volumes of API requests.

The application was deployed in containerised and non-containerised instances in AWS
and GCP cloud platforms with the same configurations of respective instances in both
cloud platforms. Experiments were conducted in each instance with the same amount of
workload to analyse the speed up and performance. Each experiment is monitored with
native cloud monitoring tools to collect the key metrics.

5.7 Performance metrics data collection and analysis

It is essential to closely monitor and collect the key performance metrics in order to eval-
uate performance improvement with multi-threading and parallel processing integration
and analyse the performance difference in each cloud platform. This research will provide
insights into the performance of both containerised and non-containerised applications.
Key metrics like CPU usage, memory usage, response time are recorded to further analyse
the overall performance collectively to draw conclusions. After the performance analysis
cost analysis is also made in each cloud platform.

10



6 Design Specification

In this section we will discuss in detail about the techniques used, architecture, frame-
works used and requirements to build and perform the experiments. The application is
designed and developed to perform CPU intensive tasks and also handle I/O operations
in parallel without blocking any operations. The backbone of this experiments is the
custom load balancer library which is specifically designed to conduct this research that
can optimise the resource usage and also dynamically allocate the resources based on the
workload.

6.1 Techniques and Architecture

This research focuses on efficient resources utilisation and parallel processing by integrat-
ing crucial techniques. The Node.js applications usually runs on a single threaded event
loop there are high chances that when a CPU intensive task is being performed all the
other requests are queued and the main thread is blocked until the high computational
task is completed. Worker threads and cluster modules are the inbuilt libraries of node.js
which can be used to extend the capabilities of the node.js with parallel processing and
multi-threading. Which will improve the performance of the application. It is essential
to efficiently utilise the available resources in cloud.

The cluster module can fork multiple node instances which can run individually and
communicate with the master thread back and forth via IPC. Each instance will have
a node runtime and dedicated memory. Cluster will be used when process isolation is
required. In this research the cluster module is used to fork child process when there is
high workload incoming the forked child processes will handle all the I/O requests while
the other processes handle the other computational intensive tasks

The worker threads on other hand is slightly different, worker threads are usually used
to off load the computational intensive tasks from main thread and distribute the task
to available cores preventing the blockage of main thread event loop. In this research
worker threads are used to distribute the CPU intensive tasks efficiently to the available
resources. Worker threads can share the same memory it can be used while the process
isolation is not required.

6.2 Dynamic load balancing

After examining the existing libraries in node.js like libuv and Napa.js a custom dynamic
load balancing algorithm is designed to efficiently distribute the tasks between the CPU
cores and manage the memory. The custom library is named as r-loadBalancer.js and
deployed in npm registry. This library plays a key role in this research experiments. This
library is capable of distributing tasks across CPUs cleverly. This library is designed
with dynamic load-balancing algorithm which can adapt to the workload by continuously
monitoring the memory and CPU usage.

The adaptive task scheduling mechanism of the load balancing library determines
which cores are available based on the threshold value of 10% of the time. If CPU core is
idle for more than 10% of the time it will automatically allocate the task to that particular
core. This adaptive mechanism can dynamic scale up and scale down the number of active
workers based on the workload making sure the configured resources are utilized properly.

11



6.3 Memory and resource management

The algorithm includes mechanism to monitor the memory usage to ensure that tasks are
allocated only when sufficient memory is available to prevent from system crashes and
degradation in the performance. This will ensure that available memory is utilised effi-
ciently. The getMemoryUsage function in the library keep track of the memory available
and the dynamic load balancer will utilise this function to perform task allocation and
execution with in the available resources. When the memory is low the system prioritise
the I/O operations as they take milliseconds or seconds to finish the operation most of the
time or reduce the task execution rate until the required amount of memory is available
once the memory is available the task execution will speed up.

6.4 Cloud optimised design

The architecture of this system is designed to optimise the deployment for multiple cloud
platforms. This architecture enables the horizontal auto scaling mechanism by adding
more workers and processes and by adding an instance according the workload. As the
resources are utilised efficiently the new instances are created only when the CPU usage
is 80% and above which makes this design cost efficient.

The design includes containerisation and non-containerisation deployment strategies.
The containerised app can be built once and deployed to any cloud platform using docker
and Kubernetes service. This allows the engineer to customise the resources and manage
them efficiently within the container. The non containerised application can be deployed
to any cloud platform with predefined node environment set up available in the cloud
while the resource configuration should be done before deploying the non-containerised
application.

6.5 Frameworks and Libraries

Node.js: A javascript framework and primary component of this research as this research
aims to improve the scalability of node.js application enhancing it’s non-blocking, event
driven architecture with parallel processing

Express.js: A web framework used to develop the micro-services and enable the
REST API endpoints. Express.js is simple to use and implement the micro-service archi-
tecture in the node ecosystem and efficient in handling I/O requests.

r-load-balancer.js: This is the custom load balancer library designed specifically
for this research and deployed in npm registry. This library can be utilised by other node
applications to improve the performance and enable parallel processing capabilities.

big-integer Library: This library is used to handle large number computations, such
as those required for RSA-based Fibonacci calculations. It provides reliable methods for
performing arithmetic operations on numbers that exceed JavaScript’s standard integer
size.

Docker: Docker is used to containerise the application and build a docker image
which can then be deployed to any cloud platform with Kubernetes service. Docker is
efficient in building the images that can support multiple chip set architectures.

12



Figure 2: Methodology flow diagram

6.6 Algorithm Description

The foundation of this research is the algorithm developed for a custom load balancing
library that can dynamically distribute workloads and manage resources efficiently. Let
us discuss the key features of this custom load balancing algorithm in detail. The above
figure 2 represents the flow and decision-making process designed in the custom load-
balancing algorithm.

1. Start: When the application is initialised the process begins to detect the availab-
ility of the system resources, especially CPU and memory availability.

2. Check task queue: Once the resource checks are done system will start to analyse
the task queue to check if there are any pending tasks in the queue. If there are no
tasks present system will wait for the tasks to be added to the queue.

3. Check for idle cores: If there are tasks present in the queue system will start
to identify idle cores the logic is designed in such a way that if any core is idle
for more than 10% of the time the system will consider that core to allocate the
pending task. If there are no idle cores system will hold the tasks in queue until
idle cores are available

4. Check for memory availability: If idle cores are detected the system will ana-
lyse for memory availability. Here’s where the dynamic decision-making design is
integrated to throttle the CPU-bound tasks and prioritise the lightweight tasks until
the resources are released from CPU-bound tasks.

13



5. Allocate Resources: If there are idle cores and enough memory available the
system will start to allocate the required amount of memory and CPU to the tasks
waiting in the queue.

6. Execute and monitor: Once the tasks are assigned the execution starts and the
performance of the system is monitored continuously to ensure efficient resource
utilisation.

7. End: The process then exits once the execution of the assigned task is completed.
The system will continue to look for the next task and adjust the resources based
on the workload.

This strategy helps to efficiently utilise the resources available and ensures that the sys-
tem doesn’t get overwhelmed with the workloads. The key features of the algorithm
are resource monitoring, task scheduling, adaptive load balancing and memory manage-
ment. This algorithm continuously monitors the system CPU and memory usage. Node.js
built-in os module is used to collect the system health metrics. By continuously monit-
oring the resources they are efficiently utilised without leaving the cores idle for a very
long time. All the incoming tasks are scheduled in a queue the algorithm identifies the
available resources and assigns the tasks to the worker threads once the idle cores are
detected. If there are no idle cores then the tasks continue to wait in the queue. The
adaptive load-balancing mechanism dynamically adjusts the resource availability based
on the workload. As the workload increases the number of workers will also increase.
The algorithm efficiently handles the memory usage by dispatching the tasks from queue
only when enough memory is available preventing the system crashes.

Algorithm for RSA-Based Fibonacci Calculation: To simulate CPU-intensive
tasks an RSA-Based Fibonacci calculation is designed. The algorithm for this compu-
tation task is as follows. The big-integer library is used to compute larger Fibonacci
numbers efficiently while the node.js int can not handle large numbers. Once the Fibon-
acci number is computed, it is used as a base in a modular exponentiation operation.
This step is crucial for RSA-like computations where modular arithmetic is necessary.
Once the Fibonacci number is calculated the same number is used as a base in a modular
exponential operation which is a crucial step where the modular arithmetic is necessary.
In this computational problem, the base is the Fibonacci number and the modulus is
another large Fibonacci number.

6.7 Requirements

1. Hardware Requirements: The application is designed to run efficiently on ma-
chines with multiple CPU cores and a substantial amount of RAM. To conduct the
experiments a 4-core CPU with 8GB RAM and an 8-core CPU with 32 GB RAM
has been selected in AWS and GCP.

2. Cloud Platform Requirements:

• The app can be deployed on AWS and GCP. It requires configurations for both
containerised (using Docker) and non-containerised deployments.

14



• It utilises cloud monitoring tools, such as AWS CloudWatch and GCP Monit-
oring, to track performance metrics like CPU and memory usage.

3. Software Dependencies:

• Node.js (version 18.x or higher)

• Express.js (To build the micro-service application for the experiments)

• big-integer Library (to handle large numbers during the experiments)

• r-loadbalancer.js Library (for dynamic task distribution and resource manage-
ment)

7 Implementation

Figure 3: Architecture diagram

The implementation phase is crucial for translating theoretical analysis into prac-
tical execution in order to evaluate the hypothesis. The Implementation can be divided
into multiple phases from development to deployment. The r-loadBalancer.js develop-
ment phase a custom library with dynamic resource allocation and task distribution
algorithm, a scalable Node.js application with microservice architecture development in-
tegrating the r-loadBalancer.js library. Deploying the application as containerised and
non-containerised application in AWS and GCP cloud platforms. This implementation
is aimed at evaluating the idea of optimising the node.js application performance by
enabling the parallel processing and multi-threading techniques which will boost the per-
formance of node.js applications. The above figure 3s illustrates the architecture of the
experiment setup and evaluation. Let us discuss in detail about each phase.

15



7.1 Library and app development

The primary goal is to design and develop a library that enables parallel processing and
multi-threading in node.js applications and develop a micro-service architecture-based
node.js application to integrate the load balancer library and write REST API which will
be used to perform all the experiments with different workloads.

The library is designed after carefully analysing the existing node.js libraries for par-
allel processing like libuv and Napa.js. The r-loadBalancer.js library aims to fill the gaps
like dynamic resource allocations and dynamic task prioritization which is not available
in both the libraries.

Core Functionality: The core functionality of the implementation lies in the custom
load balancer library. This library is developed using cluster module and worker threads
which are inbuilt modules of node.js that provides to enable parallel processing and
multi-threading. The cluster module creates child processes (worker processes) that can
run simultaneously along with other child processes sharing the same port this module
leverages taking the advantage of a multi-core system and by forking child processes which
can handle tasks individually. This helps the applications to handle more workload and
process more requests at a time. The master process is responsible for forking the child
processes using cluster.fork() method and this is a master and worker design.Node.js
Foundation (2024a).

Each forked worker process will have its own node.js instance event loop which will
process the tasks individually. The master process will distribute the tasks to the worker
process and handle the incoming requests to the system. If any worker crashes or dies
the master process can spawn a new worker and process the task maintaining the system
stability.Node.js Foundation (2024b). Let us discuss in detail about the r-loadBalancer.js
library.
r-loadBalancer.js: This library is built using cluster module and worker threads to
manage CPU-intensive tasks and I/O operations efficiently. The main idea behind the
design is to handle the workloads and I/O operations efficiently without blocking any
process. In this section will discuss about each function written in this library and their
functionality.

1. getMemoryUsage(): This function retrieves the memory usage of the system es-
pecially the heap memory that is utilised by using the process an inbuilt module
in the node.js process.memoryUsage() function is used to retrieve the memory us-
age information. This function is used to monitor the memory usage for dynamic
resource allocation.

2. runWorkerTask(workerTaskCode, workerData): The runWorkerTask func-
tion creates a new worker thread to run CPU bound tasks. This function has 2
parameters the task code and relevant data. This function is also responsible for
listening to the workers for completion which is a message from the worker. The
function returns results on sucessful completion of the task and rejects when there
is an error or worker fails to execute the task. The main purpose of this function is
to offload the tasks to worker threads preventing main thread from getting blocked
with CPU intensive tasks.

3. detectIdleCores(threshold = 0.1): The detectIdleCores function is responsible
for detecting the cores that are idle if it’s idle time exceeds the threshold time

16



which is 0.1 ideal for cloud platforms as the resources are configured to perform only
certain tasks and it is important to utilise the resources efficiently. This function
returns the count of idle cores which helps to allocate tasks based on the available
cores.

4. dynamicResourceAllocator(): The dynamicResourceAllocator function runs every
500ms and this time interval is configurable. This function performs the core logic
of the library. It detects idle cores using detectIdleCores(). Continuously checks
the task queue and check the memory availability by calling respective functions
and makes a decision based on the available resources and the tasks waiting in the
queue and also throttles the CPU intensive task when the memory usage is more
and no enough memory is availble to perform the tasks. This function also logs the
resource allocations.

5. startLoadBalancer(app, port): The startLoadBalancer functions initialises the
cluster management and spawn worker processes by forking the number of worker
threads based on available CPU cores and reserved cores for I/O tasks. In the next
step dynamicResourceAllocator function is called for ongoing tasks management.
This function make sure that if a worker dies a new one is spawned to maintain
system availability. This is like a main function which start the application the app
parameter is the node.js app where the r-loadBalancer.js library is integrated. And
port is customisable and user can run app on any port.

6. manageCpuBoundTasks(taskQueue): The manageCpuBoundTasks function is
responsible for handling CPU intensive tasks by analysing the available resources.
Adds tasks to taskQueue if no cores or memory are available, for processing later.
Resolves or rejects tasks based on whether resources were available at the time of
execution.

7. getHealthMetrics(): The getHealthMetrics returns the system metrics, including
CPU load averages, uptime, total and available memory, and task queue details.
All the metrics are returned as a JSON object with CPU core data, memory usage,
task information fields. This function basically provides a snapshot of the system
health.

All these functions collectively make r-loadBalancer.js library a powerful algorithm
that can enhance node.js performance in cloud as cloud platforms provide extensive re-
sources this library will ensure the resources are utilised efficiently by dynamic load
balancing and task distribution. This can be integrated with any node.js application. In
the below section we will discuss in detail on how to integrate this library in application.

Application development: As part of the research, a node.js application is designed
and developed using micro-service design architecture. REST APIs are written to perform
multiple operations like CPU-intensive operations and I/O operations. This application
is key to evaluating the performance of the node.js application after integrating the r-
loadBalancer.js library. This application is designed to perform CPU-intensive tasks like
RSA-Fibonnaci calculation, normal Fibonacci calculations, I/O operations to call an ex-
ternal API and create 1e7 records which is also an CPU bound task and a Fibonacci
calculation that runs only on a single thread. The key concept of this application design
is to prove the hypothesis of enhancing the capabilities of node.js applications which can

17



perform CPU-intensive tasks efficiently while handling other tasks without blocking the
main thread and also maintaining the event loop nature of node.js.

Express Server Setup:
The application is built using the Express framework, the app will start listening on port
3000 and handle HTTP requests.

Load Balancing and Resource Management:

• The application leverages the custom r-load-balancer.js library which is designed as
part of this research and the core of this research’s evaluation which dynamically
manages CPU resources for efficient performance. This library can dynamically
distribute task across multiple worker threads and offload the main thread.

• The getIdleCores function identifies the idle CPU cores based on the threshold of
10% if the CPU is idle for more than that threshold it will consider that as idle core,
which are further used to allocate resources depending on the current workload.

Helper Functions:

• The FibonacciBigInt function is used in the application by /rsa-fibonacci and
/rsa-fibonacci-multithreaded endpoints to perform complex calculations like RSA
Fibonacci computation. This function used a big-integer library which is efficient
in handling large values as the native node.js int has no capacity to hold such
large values. This function calls modExp function which supports RSA calculations
by modular exponentiation method that mostly used in performing cryptographic
tasks.

• File Chunking: The getFileChunks function is used to split the large files into
smaller chunks based on the available cores, which is further processed in parallel
by worker threads.

API Endpoints: The application enables API endpoints to conduct the experiments
using those API’s

• /rsa-fibonacci: Computes Fibonacci sequences with modular exponentiation for
encryption-like computations in a single-threaded manner.

• /rsa-fibonacci-multithreaded: Utilizes idle cores and distributed tasks to per-
form RSA-Fibonacci calculations in parallel.

• Fibonacci Calculation Single & Multi-threaded: This endpoint is used for
performing calculation of Fibonacci numbers both in single-threaded /fibonacci-
single perform single threaded and /fibonacci performs multi-threaded modes, use-
ful for performance comparisons.

• /fetch-photos: This endpoint calls an external API using axios used to demon-
strate the I/O operations while the CPU bound tasks are on going

• /health: This endpoint returns a JSON with all the health metrics of the system
like memory available, idle cores, busy cores, memory used, uptime etc.

18



• /process-large-file: This endpoint is a POST method which is used to process
large files this endpoint uses workers to process the files. It is tested using a file
which is 1GB.

Each endpoint that performs multi-threading operations has a worker file where the
task splitting and and assigning takes place based on the available cores. the worker file
will have the business logic to perform the calculations. The app server starts with start-
LoadBalancer function from r-loadBalancer.js library which manages the load balancing
logic and resources as the requests come to the server.

7.2 Deployment

The application is desgined in such a way that it can be deployed in any cloud platform
either as a containerised application or non-containerised application. As part of this
research the application is deployed in AWS and GCP cloud platforms.

• AWS EC2: To deploy non-containerised application in AWS a EC2 instance has
been used. The EC2 instance was created with Amazon linux and 4 core CPU with
8GB RAM the instance type is t3.xlarge the application is cloned using github
and ran the application on EC2 instance by exposing the required port which can
be accessable as a public endpoint.

• AWS EKS: The containerised applilcation is converted into a docker image that
can run on any chipset. The converted image is further pushed to AWS ECR
(Elastic Container Registry). This registry will have all the latest images everytime
a new image is built an pushed. The steps and procedure to push the image is
mentioned in detail in config manual. The AWS EKS(Elastic Kubernetes Service)
cluster is created with a t3.2xlarge instance type which is a 8 core CPU with 32
GB RAM. everytime the deployment.yml file is run by the Kubernetes the latest
image will be deployed to cluster and a new pod will be created with latest image.
The VPC and firewall configurations are made to expose the port and enable the
public ip access.

• GCP App Engine: The non-containerised application is deployed in GCP app
engine to do this an app.yaml file is required with all the resource configurations
and target port details. Apart from this simple change there are no other changes
required to deploy the app in GCP App engine. Same amount of resources are
selected in GCP as AWS EC2 this will help to analyse the performance of cloud
platforms when this application is run and tested with different workloads. In GCP
App engine 4 core CPU with 8GB RAM is configured

• GCP Kubernetes Engine: The application is already converted to docker im-
age how ever the image should be pushed to GCP container registry by executing
kubectl commands. Cluster has to be created with all the required system configur-
ations and ports to be exposed and memory required. in GCP Kubernetes Engine
a cluster with 8 core CPU and 32 GB RAM is created and the image is pushed and
deployed to the engine through gcp ssh commands.

19



7.3 Outputs Produced

• Codebase: A micro-service-based node.js application was developed and the r-
loadBalancer.js library which is the core of the implementation was developed and
published to the npm registry.

• Performance Metrics: The output includes detailed key performance metrics that
includes execution time, CPU and memory usage, and API response time. These
metrics are collected by integrating the native cloud monitoring tools. These metrics
are used to evaluate the performance of the implementation.

• Deployment: The application has been containerised and converted to a docker
image using docker which can be deployed to any cloud platform using Kubernetes
services. Both containerised and non-containerised applications are deployed in
AWS and GCP and tested with different workloads.

7.4 Tools and Technologies Used

Programming Language:
The main objective of this research revolves around the enhancement of Node.js cap-

abilities. The Node.js v18.x has been chosen to develop the micro-services and custom
load-balancing library.
Frameworks and libraries:

• Express.js: Used to develop the REST APIs

• Cluster module & Worker threads: Used to develop the custom load balancing
library (r-loadBalancer.js)

Containerisation:

• Docker: Docker is used to convert the application to a containerised image

• Kubernetes: Kubernetes services are used to deploy the containerised application

Cloud platform:

• AWS: Deployed non-containerised application in EC2 and containerised app in
AWS EKS(Elastic Kubernetes Service)

• GCP: Deployed non-containerised application in GCP App engine and container-
ised app in GCP Kubernetes engine.

Performance Monitoring:

• AWS Cloud watch & GCP cloud monitoring: Used to monitor the per-
formance of the application and collect key performance metrics and system health
metrics

20



8 Evaluation

After conducting a series of experiment with different scenarios key metrics data are
collected to analyse the performance of node.js application. The experimentation was
conduction in the following order first calculating the theoretical speed up using Amdahl’s
law with different number of cores. Then executing the CPU bound task and a simple
API call without parallelizing the application, Performing experiments on AWS EC2 with
non-containerised app with 4 core CPU configuration, Experimenting with containerised
app in AWS EKS with a 8 core CPU configuration and repeating the same in GCP App
engine for non-containerised app and GCP Kubernetes engine for containerised app with
same CPU configurations as AWS. The evaluation aims to analyse the data collect and
first compare the performance of node.js after integrating parallel processing and multi-
threading with a node app that runs on single thread then compare the performance
between containerised and non-containerised app in AWS then compare the performance
between containerised and non-containerised app in GCP and then compare the results
between both the cloud platforms this evalution aim to draw the conclusions based on
analysis. This experiments was conducted to perform high computational task which is
RSA Fibonacci calculation by gradually increasing the N value. The other tasks like I/O
operation of a simple API call to return health metrics, record gen(1M) is to generate
1 million records using worker threads, API call is trigerring an external API call using
axios are also performed in parallel while the CPU intensive task was on going.

8.1 Experiment / Case Study 1: Calculating theoretical speed
up using Amdahl’s law:

There will be no speedup if the code is not parallelized even if there are more than one
core if the code can not perform parallel processing then the speedup will always be 0.
The formula to calculate theoretical speedup Amdahl (1967)

1/(1− P ) + (P/N)

where P represents the amount of parallelized portion of the code, and N is the number
of processing units.

After integrating parallel processing and multi-threading in the application 75% (can
be written as 0.80) of the code is now parallelized. Let us calculate the speedup that can
be achieved with 4 cores and 8 cores CPU respectively.

Theoretical speedup with 4 core CPU:

1/(1− 0.80) + (0.80/4) = 1/0.4375 = 2.2857143

Theoretical speedup with 8 core CPU:

1/(1− 0.75) + (0.75/8) = 1/0.34375 = 2.909091

21



Figure 4: Theoretical speedup using Amdahl’s law

As per the calculation the speedup is linear and there will be a notable speed up when
using the 8 core CPU. However, in cloud platforms when we choose a 8 core or 4 core
CPU we will not be able to utilize all the core as some CPU is reserved to perform system
operations and this speed up estimation will vary.

8.2 Experiment / Case Study 2: Perform an experiment with
only single thread execution:

This experiment is conducted in local environment with mac m1 chipset. In this experi-
ment the code is not parallelised. The CPU intensive task which is Fibonacci calculation
and a simple API call that returns system health data.
Observation 1: Time taken by /health API when called without initiating CPU intens-
ive task was 6ms which is below 10ms.
Observation 2: Time taken by fibonacci calculation API for n=1000000 is 12.60 seconds
Observation 3: Time taken by /health API when called after triggering Fibonacci cal-
culation API for n=1000000 is 10.2 seconds while the CPU intensive task 12.60 seconds
Based on this analysis it is clear that the CPU intensive task is blocking the main thread
until the task is completed. when both the tasks are triggered at the same time the task
which took only 6ms to complete took 10.2 seconds when triggered along with the CPU
intensive task as the Fibonacci calculation took 12.60 seconds to complete and blocked
main thread completely till the computation is completed.

8.3 Experiment / Case Study 3: Performing experiments on
AWS EC2 with non-containerised app with 4 core CPU
configuration:

This experiment is conducted with non-containerised app deployed in AWS EC2 with
following configurations. Experiments were conducted to calculate Fibonacci for a large

22



number(3000000) along with other operations which runs in parallel

• Instance type: t3.xlarge

• CPU cores: 4

• Memory: 8Gib

Table 3: RSA AWS EC2 - 4 cores 8gb Ram — Amazon Linux (amzn2023.x86 64)

RSA - N time (sec) CPU I/O (s) Record Gen (1M) API call
10 175ms 1 Core 111ms 2s 610ms 346ms
100 236ms 1 Core 88ms 2s 740ms 258ms
1000 263ms 1 Core 102ms 2s 580ms 271ms
10000 330ms 2 Cores 121ms 2s 670ms 371ms
100000 428ms 3 Cores 104ms 2s 720ms 289ms
1000000 10s 120ms 8 Cores 91ms 4s 910ms 260ms
2000000 1m 24s 8 Cores 56ms 5s 380ms 342ms

Table 3 is the data collection of time taken to finish task all those tasks were per-
formed in parallel in the same system while the CPU intensive tasks were on going. It is
evident that even when the large number computation line 2000 is been processing the
other tasks were processed with minimum time. And as the workload increased the CPU
allocation as increased.

Another experiment was conducted to calculate the normal Fibonacci of a given number
along with other tasks running in parallel. In this experiment the Fibonacci calculation
was done in 2 different ways. one with only single thread and other with multi-threading.
Below are the results after the experiment.

Figure 5: Performance comparison single vs multi threaded in EC2

In the above table the metrics are recorded while performing similar operations with
single and multi-threaded. The results displays a different behavior where the multi-
threaded approach took longer time to perform Fibonacci calculations as the load in-
creased the multi-threaded approach was faster than the single-threaded event loop. The
above graph illustrates the response time difference between each task with a single and

23



Figure 6: Performance comparison in EC2 bar graph

multi-threaded approach in AWS EC2 in non-containerised application.

The last experiment conducted in AWS EC2 is by running all the tasks at the same
time with larger values in all the Fibonacci calculations. Please refer below table for the
response time taken by each task.

This experiment proves that the custom load balancer logic efficiently handles tasks
based on the workload and also dynamically handles resource allocations. The I/O API
call took only 91ms even while the CPU-bound tasks were processing which took 5m 18s
and 11m 48s respectively.

8.4 Experiment / Case Study 5: Performing experiments on
AWS EKS with the containerised app with 8-core CPU con-
figuration:

This experiment is conducted with the containerised app by building a docker image of
the application and deployed to AWS EKS with the following configurations. Exper-
iments were conducted to calculate Fibonacci for a large number(3000000) along with
other operations which run in parallel. This experiment mainly focuses on analysing the
performance of a containerised app.

• Instance type: t3.2xlarge

• CPU cores: 8 (only 6 cores were allowed to configure)

• Memory: 32Gib

24



Figure 7: AWS-EC2 CPU utilization throughout the experiments

Table 5: AWS EKS - 8 cores 32GB Ram — Amazon Linux (amzn2023.x86 64)
(N) time (sec) I/O time Record Gen (1M) API Call (10M/4000 req/s)
10 462ms 91ms 3s 350ms 438ms
100 444ms 86ms 3s 290ms 445ms
1000 568ms 93ms 3s 770ms
10000 485ms 102ms 3s 140ms 419ms
100000 641ms 91ms 2s 880ms 310ms
1000000 10s 640ms 97ms 5s 110ms 333ms
2000000 2m 18s 103ms 7s 60ms 1s 340ms

In this experiment there are some noticeable difference in the responce time of 1million
record generation and RSA Fibonacci calculation when compared to response time of
non-containerised application. The last 2 executions has 2sec and 1min difference in
RSA execution and 2sec in 1million record generation task.

Another experiment was conducted in containerised app to calculate the normal
Fibonacci of a given number along with other tasks running in parallel. In this ex-
periment the Fibonacci calculation was done in 2 different ways. one with only single
thread and other with multi-threading. Below are the results after the experiment. In
the above table the metrics are recorded while performing similar operations with single
and multi-threaded. The results display a different behavior where the multi-threaded
approach took longer time to perform Fibonacci calculations as the load increased the
multi-threaded approach was faster than the single-threaded event loop. The above graph
illustrates the response time difference between each task with a single and multi-threaded
approach in AWS EKS in containerised applications.

25



Figure 8: Performance comparison single vs multi-threaded in EKS

Figure 9: Performance comparison in EKS bar graph

The last experiment conducted in AWS EKS is by running all the tasks at the same
time with larger values in all the Fibonacci calculations. Please refer below table for the
response time taken by each task.

Table 6: AWS EKS - 8 cores 32 GB RAM — all tasks metrics
CPU Fibanocci-(N)-2M rsa(N)- 3M I/O time Rec gen (1M) API Call
6 2m 12s 10m 6s 110ms 7s 320ms 347ms

This experiment proves that the custom load balancer logic efficiently handles tasks
based on the workload and also dynamically handles resource allocations. The I/O API
call took only 110ms which is more compared to the EC2 environment even while the
CPU-bound tasks were processing which took 2m 18s and 10m 6s which is a huge differ-
ence compared with EC2 due to additional cores.

26



Figure 10: AWS EKS CPU utilisation through out the experiments

8.5 Experiment / Case Study 4: Performing experiments on
the GCP App engine with the non-containerised app with
4-core CPU configuration:

This experiment is conducted with a non-containerised app deployed in the GCP App
engine with the following configurations. Experiments were conducted to calculate Fibon-
acci for a large number(3000000) along with other operations which run in parallel

• Instance type: flex

• CPU cores: 4

• Memory: 8Gib

Table 7: GCP App engine - 4 cores 8 GB RAM
N time (sec) I/O (s) Record Gen (1M) API Call (10M/4000 req)
10 80ms 38ms 5s 510ms 270ms
100 250ms 23ms 5s 160ms 331ms
1000 90ms 32ms 3s 40ms 109ms
10000 100ms 27ms 3s 200ms 88ms
100000 230ms 31ms 4s 760ms 369ms
1000000 12s 280ms 28ms 6s 680ms 85ms
2000000 2m 17s 710ms 32ms 6s 230ms 275ms

Table ?? is the data collection of time taken to finish a task all those tasks were
performed in parallel in the same system of a non-containerised app in the GCP app
engine while the CPU-intensive tasks were ongoing. It is evident that even when a large

27



number of computations like 2000000 have been processed the other tasks were processed
with minimum time. And as the workload increased the CPU allocation increased.
Another experiment was conducted to calculate the normal Fibonacci of a given number
along with other tasks running in parallel. In this experiment the Fibonacci calculation
was done in 2 different ways. one with only single thread and other with multi-threading.
Below are the results after the experiment. In the above table the metrics are recorded

Figure 11: Performance comparison single vs multi-threaded in GCP app engine

while performing similar operations with single and multi-threaded. The results displays
a different behavior where the multi-threaded approach took longer time to perform
Fibonacci calculations as the load increased the multi-threaded approach was faster than
the single-threaded event loop. The above graph illustrates the response time difference

Figure 12: Performance Comparison: Single-thread vs Multi-thread (Bar Chart) GCP
App engine

between each task with a single and multi-threaded approach in the GCP app engine in

28



Figure 13: GCP app engine CPU usage through out the experiment

non-containerised applications.
The last experiment conducted in GCP app engine is by running all the tasks at the same
time with larger values in all the Fibonacci calculations. Please refer below table for the
response time taken by each task.

Table 8: GCP App engine - 4 cores 8 GB RAM — all tasks metrics
CPU Fibanocci-(N)-2M rsa(N)- 3M I/O time Rec gen (1M) API Call
4 2m 36s 8m 44s 900ms 29ms 3s 880ms 92ms

8.6 Experiment / Case Study 6: Performing experiments on
GCP Kubernetes engine with the containerised app with
8-core CPU configuration:

This experiment is conducted with the containerised app by building a docker image of
the application and deployed to GCP Kubernetes engine with the following configura-
tions. Experiments were conducted to calculate Fibonacci for a large number(3000000)
along with other operations which run in parallel. This experiment mainly focuses on
analysing the performance of a containerised app.

• Instance type: t3.2xlarge

• CPU cores: 8 (only 6 cores were allowed to configure)

• Memory: 32Gib

In this experiment, there are some noticeable differences in the response time of 1
million record generation and RSA Fibonacci calculation when compared to the response
time of non-containerised applications. The last 2 executions 1000000 were a 3-second

29



GCP Kubernetes engine - 8 cores 32GB Ram
(N) time (sec) I/O time Record Gen (1M) API Call (10M/4000 req/s)
10 310ms 53ms 2s 240ms 115ms
100 190ms 63ms 2s 380ms 121ms
1000 210ms 43ms 2s 590ms 151ms
10000 240ms 53ms 2s 160ms 172ms
100000 420ms 75ms 2s 260ms 145ms
1000000 9s 250ms 28ms 4s 620ms 238ms
2000000 2m 24s 440ms 39ms 7s 240ms 233ms

faster than the app engine and 2000000 was 4 seconds slower than the app engine dif-
ference in RSA execution and 2sec in 1 million record generation task the last execution
was slower than the app engine while generating 1M records.

Another experiment was conducted in a containerised app to calculate the normal Fibon-
acci of a given number along with other tasks running in parallel. In this experiment,
the Fibonacci calculation was done in 2 different ways. one with only single thread and
the other with multi-threading in GCP Kubernetes cluster. Below are the results of the
experiment.

Figure 14: Performance comparison single vs multi-threaded in GCP Kubernetes engine

In the above table the metrics are recorded while performing similar operations with
single and multi-threaded. The results display a different behaviour where the multi-
threaded approach took a longer time to perform Fibonacci calculations as the load
increased the multi-threaded approach was faster than the single-threaded event loop in
GCP Kubernetes cluster.

30



Figure 15: Performance Comparison: Single-thread vs Multi-thread (Bar Chart) GCP
App engine

The last experiment conducted in GCP Kubernetes engine is by running all the tasks
at the same time with larger values in all the Fibonacci calculations. Please refer below
table for the response time taken by each task.

Table 9: GCP Kubernetes engine - 8 cores 32 GB RAM — all tasks metrics
CPU Fibanocci-(N)-2M rsa(N)- 3M I/O time Rec gen (1M) API Call
7 2m 11m 52s 440ms 49ms 5s 580ms 142ms

This experiment, shows that the GCP Kubernetes engine performed better in normal
Fibanocci calculation. However, when computing RSA-Fibonacci calculation the app
engine demonstrated better performance which is 2 min less than the Kubernetes engine
in real time this will make a huge difference.

Figure 16: GCP Kubernetes engine CPU usage throughout the experiments

31



8.7 Discussion

Based on the analysis from the results of the experiments it is evident that the non-
containerised applications demonstrated good performance compared to containerised
applications. There was a significant difference in the performance while handling the
CPU-intensive tasks, and I/O operations. The containerised application was a bit slower
compared to non-containerised apps due to the added layers provided to ease the de-
ployment and scaling configurations. In non-containerised environments, the user has
less control over the configurations compared to containerised environments. The no-
ticeable performance gap was identified when CPU-intensive tasks were performed where
substantial amounts of CPU and memory is required. The non-containerised app per-
formed better than the containerised environment. There’s always a tradeoff to be made
according to business requirements.

Figure 17: GCP Containerised vs non-containerised performance

Figure 18: AWS Containerised vs non-containerised performance

32



9 Conclusion and Future Work

In conclusion, the non-containerised app performed well in both the cloud platforms.
AWS showed slightly better performance compared to GCP due to its underlying infra-
structure. While the containerised application in GCP showed a significant performance
almost similar to AWS.

This research can further be carried out to enhance the custom load-balancing logic
and also improve the code parallelisation to achieve more speedup. Further analysis
can be performed to compare the performance in Azure cloud platform as well and cost
analysis with energy efficiency analysis can also be performed to understand the further
optimisations of the algorithm.

References

A. Maatouki, J. Meyer, M. S. and Streit, A. (2015). A horizontally-scalable multipro-
cessing platform based on node.js, IEEE Trustcom/BigDataSE/ISPA, Helsinki, Fin-
land, pp. 100–107.

Amdahl, G. M. (1967). Validity of the single processor approach to achieving large-scale
computing capabilities, Proceedings of the April 18-20, 1967, Spring Joint Computer
Conference, ACM, pp. 483–485.
URL: https://doi.org/10.1145/1465482.1465560

et al., O. C. N. (2023). Comparison of node.js and spring boot in web development, 15th
International Conference on Electronics, Computers and Artificial Intelligence (ECAI),
Bucharest, Romania, pp. 1–7.

et al., S. B. (2022). Supervisory event loop-based autoscaling of node.js deployments, In-
ternational Conference on High Performance Big Data and Intelligent Systems (HDIS),
Tianjin, China, pp. 1–7.

I. Chaniotis, K.-I. K. and Tselikas, N. (2015). Is node.js a viable option for building
modern web applications? a performance evaluation study, Computing 97(10): 1023–
1044.

J.W.Sunarto, A.Quincy, H.-T. and Widianto (2023). A systematic review of webassembly
vs javascript performance comparison, International Conference on Information Man-
agement and Technology (ICIMTech), Malang, Indonesia, pp. 241–246.

K. Lei, Y. M. and Tan, Z. (2014). Performance comparison and evaluation of web devel-
opment technologies in php, python, and node.js, IEEE 17th International Conference
on Computational Science and Engineering, Chengdu, China, pp. 661–668.

M. Patrou, J. M. Baird, K. B. K. and Dawson, M. (2020). Software evaluation method-
ology of node.js parallelism under variabilities in scalable systems, Proceedings of the
30th Annual International Conference on Computer Science and Software Engineering
(CASCON ’20), IBM Corp., USA, pp. 103–112.

M. Patrou, K. B. K. and Dawson, M. (2019). Scaling parallelism under cpu - intensive
loads in node.js, 27th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), Pavia, Italy, pp. 205–210.

33



M. Patrou, K. B. Kent, J. S. and Dawson, M. (2022). Optimizing energy efficiency
of node.js applications with cpu dvfs awareness, IEEE 13th International Green and
Sustainable Computing Conference (IGSC), Pittsburgh, PA, USA, pp. 1–8.

Node.js Foundation (2024a). Node.js documentation - cluster module. Accessed: 2024,
https://nodejs.org/api/cluster.html.

Node.js Foundation (2024b). Node.js documentation - workerthreads.Accessed : 2024, .

Pratama, P. A. E. and Raharja, M. S. (2023). Node.js performance benchmarking
and analysis at virtualbox, docker, and podman environment using node-bench method,
JOIV: International Journal on Informatics Visualization, Vol. 7.

Tanadechopon, T. and Kasemsontitum, B. (2023). Performance evaluation of program-
ming languages as api services for cloud environments: A comparative study of php,
python, node.js and golang, 2023 7th International Conference on Information Techno-
logy (InCIT), pp. 293–297.

Tilkov, S. and Vinoski, S. (2010). Node.js: Using javascript to build high-performance
network programs, IEEE Internet Computing 14(6): 80–83.

Zhu, J., Patros, P., Kent, K. B. and Dawson, M. (2018). Node.js scalability investiga-
tion in the cloud, Proceedings of the 28th Annual International Conference on Computer
Science and Software Engineering, CASCON ’18, IBM Corp., USA, p. 201–212.

34


