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1. System Requirements
RAM: 32GB

OS: Windows
Processor: Core i9, 13" Generation

GPU: 12 GB Nvidia, 3060 RTX

Platform: Online Google Colab Pro Plus

1.1 Yolov8
from google.colab import files

files.upload()

Figure 1: Google Colab staging
This code lets you upload files to Google Colab:
- Import: “files” module from “google.colab’.

- Upload: “files.upload()" opens a file picker for uploading files.

mkdir -p ~/.kaggle
mv kaggle.json ~/.kaggle/
chmod 600 ~/.kaggle/kaggle.json

Figure 2: Kaggle API set up

This code sets up Kaggle API credentials:

1. “Imkdir -p ~/.kaggle: Creates a ".kaggle" directory.

2. "Imv kaggle.json ~/.kaggle/": Moves “kaggle.json” to ".kaggle".

3. "Ichmod 600 ~/.kaggle/kaggle.json: Restricts file access for security.

kaggle datasets download -d shreydan/kitti-dataset-yolo-format -p /tmp




Figure 3: Kitti Datasets download
This code downloads a dataset from Kaggle:

- "Ikaggle datasets download -d shreydan/kitti-dataset-yolo-format™: Downloads the "Kitti-dataset-yolo-
format” dataset.

- "-p /tmp’: Saves the downloaded dataset to the “/tmp™ directory.

kaggle datasets download -d klemenko/kitti-dataset -p /tmp

unzip ftmp/weather-data.zip -d /tmp

Figure 4: Staging for some extra data
This code downloads and extracts a dataset from Kaggle:

1. “'kaggle datasets download -d klemenko/kitti-dataset -p /tmp™: Downloads the "kitti-dataset" to the
“Itmp” directory.

2. "lunzip tmp/weather-data.zip -d /tmp": Extracts ‘weather-data.zip™ contents into the “/tmp" directory.
(Note: Ensure the file name matches the downloaded file if you intended to unzip the downloaded
dataset.)

kaggle datasets download -d klemenko/kitti-dataset

Figure 5: Code for the dataset download
This command downloads a dataset from Kaggle:

- “Ikaggle datasets download -d klemenko/kitti-dataset : Downloads the "Kitti-dataset™ from Kaggle to
your current working directory.

zip file path =
extract to path =

with zipfile.zipFile(zip file path, 'r') as zip ref:
zip ref.extractall(extract to path)

os.listdir(extract to path)

Figure 6: List of the datasets downloaded

This code extracts kKitti-dataset.zip™ into “/content/dataset/” and then lists the files in that directory to
verify the extraction.



zip file path = '/tmp/kitti-datase -format.zip'
extract to path /

with zipfile.zipFile(zip file path, 'r') as zip ref:
zip ref.extractall(extract to path)

os.listdir(extract to path)

Figure 7: Datasets extraction and listing the contents in the path

This code extracts “kitti-dataset-yolo-format.zip™ to “/content/dataset_yolo/" and then lists the files in
that directory to confirm the extraction.

pip install ultralytics

Figure 8: YOLO models package for version 8

This command installs the “ultralytics library, which is used for advanced computer vision tasks, such
as object detection and segmentation.

%env WANDB DISABLED=True

Figure 9: The command disables Weights & Biases (WandB) integration by setting the
"WANDB_DISABLED®

This command disables Weights & Biases (WandB) integration by setting the "WANDB_DISABLED"
environment variable to “True’. This is useful to prevent automatic logging and tracking if you don’t
want to use WandB for experiments.

import train test split

Figure 10: Code imports various libraries and modules for working with the YOLO object detection
model and handling data

- “ultralytics.YOLO": Imports the YOLO model for object detection.



- "numpy’, ‘pandas’, ‘matplotlib.pyplot™: For numerical operations, data manipulation, and plotting.
- “pathlib.Path™: For handling filesystem paths.

- "json’: For parsing JSON data.

- “sklearn.model_selection.train_test_split™: For splitting data into training and test sets.

- ‘tgdm.auto’: For displaying progress bars.

- “shutil™: For file operations.

- "PIL.Image": For image processing.

base_dir =
img | path

classes = json. load{f)

classes

Figure 11: This code sets up paths for image and label directories, then loads class labels from a JSON
file

- Paths Setup: Defines "base_dir’, “img_path’, and “label_path" for dataset directories.
- Load Classes: Reads and loads class labels from “classes.json" into the “classes’ variable, then displays

the content.

ims = sorted(list(img_path.glob('*")))
labels = sorted(list(label path.glob("’

print(ims[:2])
print(labels[:2])

Figure 13: This code lists and sorts image and label files
- List Files: Retrieves and sorts file paths from “img_path™ and “label_path".

- Verify: Prints the first two entries from both lists to check that the files have been correctly listed and
sorted.

ims = sorted(list(img_path.glob('*")))
labels = sorted(list(label path.glob('*’

pairs = list(zip(ims,labels))
pairs[:2]

Figure 14: This code pairs image files with their corresponding labels
- List and Sort: Retrieves and sorts image and label file paths.

- Pair Files: Zips the sorted image and label lists together into pairs.



- Check Pairs: Displays the first two image-label pairs to verify correct pairing.

train, test = train test split(pairs,test size=0.1,shuffle=True)

len(train), len(test)

Figure 15: This code splits the image-label pairs into training and testing sets
- Split Data: Divides the “pairs’ list into training and testing sets with 10% of data allocated to testing.
- Check Sizes: Prints the number of items in the training and testing sets.

train _path = Path('train').resolve()

train_path.mkdir(exist ok=True)

valid path = pPath('valid').resolve()
valid path.mkdir(exist ok=True)

Figure 16: This code creates directories for storing training and validation data
- “train_path’: Creates a ‘train’ directory if it doesn't exist.

- “valid_path™: Creates a “valid™ directory if it doesn't exist.

for t_img, t_1b in tqdm(train):
im _path = train_path / t img.name
1b path = train path / t 1b.name
shutil.copy(t img,im path)
shutil.copy(t 1b,1b path)

Figure 17: This code copies training images and labels to the “train directory
- Loop Through Pairs: Iterates over image-label pairs in the training set.

- Copy Files: Copies each image and its corresponding label to the “train” directory.

for £ img, t 1b in tqdm(test):
im path = valid path / t img.name
1b path = valid path / t 1b.name

shutil.copy(t img,im path)
shutil.copy(t 1b,1b path)

Figure 18: This code copies test images and labels to the “valid™ directory
- Loop Through Pairs: Iterates over image-label pairs in the test set.

- Copy Files: Copies each image and its corresponding label to the “valid™ directory.



yaml file += * in(f" ' for ¢ in classes)
yaml file += ] ‘classes) }’

yaml file += ' -5_-{traih_pathj}\nva1: {str(valid path)}’
with open('kitti.ys ;
f.write(yaml file)

Figure 19: This code generates and saves a YAML configuration file

- Create YAML Content: Constructs YAML text with class names, number of classes, and paths for
training and validation data.

- Save to File: Writes the YAML content to “kitti.yaml".

cat kitti.yaml

Figure 20: This command displays the contents of the “kitti.yaml" file in the output.

model = YOLO( yolov8n.yaml')
model = YOLO( 'yolov8n.pt")

Figure 21: This code initializes a YOLO model
1. Load Configuration: "YOLO('yolov8n.yaml')" initializes the model with a YAML configuration file.

2. Load Pretrained Weights: “YOLO('yolov8n.pt")" loads a YOLO model with pretrained weights from
the “yolov8n.pt” file.

train results = model.train(
data="/content/kitti.yaml’,
epochs=180,
patience=3,

mixup=0.1,
project="y«

Figure 22: This code trains the YOLO model
- Train Model: Uses the configuration specified in “kitti.yaml".
- Parameters:

- "epochs=10": Runs for 10 epochs.

- “patience=3": Stops early if no improvement is seen for 3 epochs.



- "'mixup=0.1": Applies mixup data augmentation with a 10% mix rate.

- “project="yolov8n-Kitti": Saves results in the “yolov8n-kitti" project directory.

valid results = model.val()

Figure 23: This code evaluates the trained YOLO model on the validation dataset

- Validate Model: Runs the validation process and returns performance metrics for the validation set.

plt.imshow(Image.open( nten -kitti/train22/confusion_matrix.png'))
plt.axis('off")
plt.show()

Figure 24: This code displays a confusion matrix

- Load Image: Opens the confusion matrix image from the specified path.

- Plot Image: Shows the image in a 10x20 inch figure without axis labels.
plt.figure(figsize=(18,20))
plt.imshow(Image.open( ' /content/y« n-kitti/train22/val batche pred.jpg’))

plt.axis('off")
plt.show()

Figure 25: This code displays a prediction image
- Load Image: Opens the prediction image from the specified path.

- Plot Image: Shows the image in a 10x20 inch figure without axis labels.

preds = model.predict([test[idx][@] for idx in np.random.randint(e,len(test),(20,))],save=True)

Figure 26: This code makes predictions on a random sample of 20 test images

- Random Sample: Selects 20 random test images.

- Predict: Runs the model’s prediction on these images and saves the results.

preds = list(Path('/conte n-kitti/train23").glob("*

Figure 27: This code retrieves all files from the specified directory:

- List Files: Collects and lists all files in the “/content/yolov8n-Kitti/train23" directory.



v def plot images(images):
num_images = len(images)
rows = num_images

= plt.subplots(rows, cols, tigsize=(15, 80))
ax in axes.flat:
ax.axis('off")
r i, img_path in enumerate(images):
img = Image.open(img_path)
axes[i].imshow(img)

plt.tight layout()
plt.show()

plot images(preds)

Figure 28: This code defines and uses a function to display a list of images
1. Define Function: “plot_images(images) creates a vertical grid of subplots for each image in the list.

2. Load and Plot: Opens each image and displays it in the subplot, with each image shown in a column
of its own.

3. Show Plot: Adjusts layout and displays the images.

plot images(preds)

Figure 29: This command uses the “plot_images’ function to display all images listed in “preds

- Display Images: Shows the images in a vertical grid format, with each image occupying its own
subplot.

import shutil

folder to zip
output_filename

shutil.make_archive(output_filename.replace('.zip', ), 'zip', folder_ to_zip)

files.download(output filename)

Figure 30: This code zips a folder and downloads it
1. Zip Folder: Compresses “/content/yolov8n-kitti/train23™ into “prediction_folder.zip".

2. Download: Uses Google Colab's “files.download™ to download the zipped folder to your local
machine.



folder to zip ¢ )
output filename = ‘validation folder

shutil.make archive(output filename.replace(".zip ), 'zip', folder to zip)

files.download(output filename)

Figure 31: This code compresses and downloads a folder
1. Zip Folder: Compresses “/content/yolov8n-kitti/train22" into “validation_folder.zip".
2. Download: Uses Google Colab's “files.download™ to download the zipped folder to your local

machine.

import shutil
lab import files

folder_to_zip =
output_filename

shutil .make_archive(output_filename.replace(’.zip', '), 'zip', folder_to_zip)

files.downlead(output filename)

Figure 32: This code compresses a folder and prepares it for download
1. Zip Folder: Compresses “/content/yolov8n-kitti/train2” into “results.zip.

2. Download: Uses “files.download™ to download the zipped folder to your local machine.



import os
import pandaS as pd

log_dir = '/content/yolov8n-kitti/train2®
log file = os.path.join{log dir, ‘"results.csv’

log _data = pd.read csv(log file)
log data.columns = log data.columns.str.strip()
print(log_data.head())

epochs = log data.index

box_loss = log_data[ "train/box loss'] if 'train/box loss' in log data.columns
obj_loss log data[ 'train/obj loss'] if 'train/obj loss' in log data.columns
cls loss = log_data[ "train/cls loss'] if 'train/cls loss' in log data.columns
val_box loss = log data[ 'val/box_loss'] if 'val/box_loss' in log_data.columns
val_obj_loss log data[ " ‘obj loss'] if ‘val/obj loss' in log data.columns
val_cls loss log_data[ 'val/cls _loss'] if 'val/cls_loss' in log_data.columns
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plt.figure(figsize=(18, 5))

if box_loss is not None:
plt.subpleot(l, 2, 1)
plt. plot(epochsJ box loss, label="Box Loss')
if obj_loss is not None:
plt. plot(epochsJ obj_loss, label='Objectness Loss’)
if cls_loss is not None:
plt.plot{epochs, cls loss, label="Classification Loss")
plt.xlabel( " Epochs")
plt.ylabel( Loss")
plt.title( ' Training Loss Curves')
plt.legend()

if val box_loss is not
plt.subplot{1l, 2, 2)
plt.plot(epochs, val_box_IOEE, label="Validation Box Loss"')
it val_obj_loss is not None:
plt.plot(epochs, val _obj loss, label="Validation Objectness Loss')
if val_cls loss is not None:
plt.plot{epochs, val cls loss, label="Validation Classification Loss')
plt.xlabel{ Epochs")
plt.ylabel{ Loss")
plt.title( 'Validation Loss Curves®)
plt.legend()

plt.tight layout()
plt.show()

Figure 33: This code analyzes and visualizes training and validation loss metrics

1. Load Data: Reads the “results.csv' file from the specified log directory into a DataFrame.




2. Extract Metrics: Retrieves loss metrics for training and validation, if available.

3. Plot Loss Curves:
- Training Loss: Plots box loss, objectness loss, and classification loss over epochs.
- Validation Loss: Plots validation losses similarly.

It shows two side-by-side plots for training and validation loss curves.

import os

log dir = " /conmtent/y n-kitti/train2’
print{os.listdir{log dir))

Figure 34: This code lists the contents of the specified directory

- List Files: Displays all files and folders within “/content/yolov8n-kitti/train2™ to help you identify
available log files and directories.

1.2 Yolov9

from PIL import Im

Figure 35: This code imports various libraries and modules for working with the YOLO object
detection model and handling data

- “ultralytics.YOLO™: Imports the YOLO model for object detection.

- "numpy’, ‘pandas’, ‘matplotlib.pyplot™: For numerical operations, data manipulation, and plotting.
- “pathlib.Path’: For handling filesystem paths.

- "json’: For parsing JSON data.

- “sklearn.model_selection.train_test_split™: For splitting data into training and test sets.

- ‘tqgdm.auto": For displaying progress bars.

- “shutil™: For file operations.



- "PIL.Image": For image processing.

base_dir
img_path

Figure 36: This code sets up paths for image and label directories, then loads class labels from a JSON
file

- Paths Setup: Defines "base_dir’, “img_path’, and "label_path for dataset directories.

- Load Classes: Reads and loads class labels from “classes.json” into the “classes’ variable, then displays
the content.

ims = sorted(list(img path.glob({ *")))
labels = sorted(list(label path.glob("*"))]

print{ims[:2])
print(labels[:2])

Figure 37: This code lists and sorts image and label files
- List Files: Retrieves and sorts file paths from “img_path™ and “label_path".

- Verify: Prints the first two entries from both lists to check that the files have been correctly listed and
sorted.

orted(list(img_path.glob("'*")))
sorted(1list(label path.glob

Figure 38: This code pairs image files with their corresponding labels:
- List and Sort: Retrieves and sorts image and label file paths.
- Pair Files: Zips the sorted image and label lists together into pairs.

- Check Pairs: Displays the first two image-label pairs to verify correct pairing.



train, test = train_test split(pairs,test size=0.1,shuffle=True)

len(train), len{test)

Figure 39: This code splits the image-label pairs into training and testing sets
- Split Data: Divides the “pairs’ list into training and testing sets with 10% of data allocated to testing.

- Check Sizes: Prints the number of items in the training and testing sets.

train_path = Path('1 )-resolve()

train_path.mkdir{exist ok=True)
valid path = Path( id").resolve()

valid path.mkdir(exist ok=True)

Figure 40: This code creates directories for storing training and validation data
- “train_path’: Creates a ‘train” directory if it doesn't exist.

- “valid_path™: Creates a “valid™ directory if it doesn't exist.

for t_img, t_1b in tgdm{train):
im path = train_path / t img.name
1b path = train_path f t 1b.name
shutil.copy(t_img,im path)
shutil.copy(t_1b,1b path)

Figure 41: This code copies training images and labels to the “train directory

- Loop Through Pairs: Iterates over image-label pairs in the training set.

- Copy Files: Copies each image and its corresponding label to the “train” directory.
for t_img, t_1b in tqdm(test):

im path = valid path / t img.name
1b path = wvalid path f t 1b.name

shutil.copy(t _img,im path)
shutil.copy(t_1b,1b path)

Figure 42: This code copies test images and labels to the “valid™ directory
- Loop Through Pairs: Iterates over image-label pairs in the test set.

- Copy Files: Copies each image and its corresponding label to the “valid™ directory.



yaml file 1 \n
yaml_file \n'.join(f'- {c}" fo
yaml file f'\nnc: {len(classes)}’

yaml file f'\ntrain: {str(train_path)}\

with open( " kitti.yaml’, 'w') as +:
f.write{yaml file)

log dir
log file ath.join(log dir,

log data = pd.read_csv(log_file)
log data.columns = log data.columns.str.strip()
print(log_data.head())

epochs = log data.index

val box 1 ’
val obj 1 log data[’
val cls los log datal’

plt.figure(figsize=(18, 5))

if box loss is not None:

plt.subplot( , 1)

plt.plot(epoc box_loss, label="B
if obj loss ot None:

plt.plot ) obj_loss, label="0b]
if cls loss 3
plt.plot
plt.xlabel( Ep
plt.ylabel("
plt.title('T
plt.legend()

log_data.
log data.
log_data.
log data.
log data.
log data.

columns
columns
columns
columns
columns
columns




if val box loss is not None:

plt.subplot(l, 2, 2)

plt.plot{epochs, val box loss, label="Validation Loss ")
if val obj loss is not MNone

plt.plot{epochs,
if val cls loss is no

plt.plot{epochs,

plt.xlabel( 'Eps
plt.
plt.
plt.

plt.tight layout()
plt.show{)

Figure 44: This code analyzes and visualizes training and validation loss metrics
1. Load Data: Reads the “results.csv’ file from the specified log directory into a DataFrame.
2. Extract Metrics: Retrieves loss metrics for training and validation, if available.
3. Plot Loss Curves:
- Training Loss: Plots box loss, objectness loss, and classification loss over epochs.
- Validation Loss: Plots validation losses similarly.

It shows two side-by-side plots for training and validation loss curves.

import os

log dir fcontent/yol

print(os.listdir(log_dir))

Figure 45: This code lists the contents of the specified directory:

- List Files: Displays all files and folders within “/content/yolov8n-kitti/train2™ to help you identify
available log files and directories.



1.3 Yolovl0

base dir Path( " cc .
S ta_object_image_2/training/image 2")
label path = Path(

Figure 46: This code sets up paths for image and label directories and loads class labels
1. Define Paths: Sets "base_dir’, “img_path’, and "label_path" for dataset locations.

2. Load Classes: Reads and loads class names from “classes.json” into the “classes™ variable, then
displays the loaded class labels.

sorted(list(img_path.glob( "*")))
= sorted(list(label path.glob

print(ims[:2])
print(labels[:2])

Figure 47: This code retrieves and sorts image and label file paths
- List and Sort: Gathers and sorts file paths from the “img_path™ and “label_path™ directories.

- Verify: Prints the first two image and label paths to ensure correct listing and sorting.

ims = sorted(list(img_path.glob( " *")))
labels = sorted(list(label path.glob

pairs = list{zip(ims,labels))
pairs[:2]

Figure 48: This code pairs image files with their corresponding labels
- List and Sort: Retrieves and sorts image and label file paths.
- Create Pairs: Zips the sorted image and label lists together.

- Check Pairs: Displays the first two image-label pairs to verify correct pairing.



train, test = train_test split{pairs,test size=0.1,shuffle=True)

len{train), len(test)

Figure 49: This code splits the paired image-label data into training and testing sets
- Split Data: Divides the “pairs’ list into “train™ (90%) and “test™ (10%) sets.

- Check Sizes: Prints the number of items in the training and testing sets.

train_path = Path({ train').resolve()
train_path.mkdir( t_ok=True)
valid path = Path( valid').resolve()

valid path.mkdir(

Figure 50: This code creates directories for training and validation data

- Create Directories: Creates "train” and “valid™ directories if they don't already exist, ensuring they're
ready for storing data.

for t_img, t 1b in tgdm{train):
im path = train_path / t _img.name
1b_path = train_path / t_1b.name
shutil.copy(t_img,im path)
shutil.copy(t_1b,1b_path)

Figure 51: This code copies training images and labels to the “train” directory

- Iterate and Copy: For each image-label pair in the training set, copies the image and its corresponding
label to the “train” directory. The progress is shown using a progress bar.

for t_img, t 1b in tqdm{test):
im path = wvalid path / t img.name
1b path = valid path / t 1b.name

shutil.copy(t_img,im path)
shutil.copy(t_1b,1b path)

Figure 52: This code copies test images and labels to the “valid™ directory:

- Iterate and Copy: For each image-label pair in the test set, it copies the image and label to the “valid
directory, with progress displayed by a progress bar.



model = YOLO("yolovli@n.pt™)

model.train(data="kitti.yaml”, epochs=108, imgsz=648)

=

Figure 53: Yolov10 weights load and training
Here's a concise breakdown of the code:
- “from ultralytics import YOLO: Imports the YOLO class from the “ultralytics™ library.

- ‘'model = YOLO("yolov10n.pt")": Loads the YOLOv10n model with pre-trained weights from the
“yolov10n.pt” file.

- ‘model.train(data="Kkitti.yaml", epochs=100, imgsz=640)": Trains the model using the dataset
specified in “kitti.yaml™ for 100 epochs with an image size of 640x640 pixels.

yolo task=detect mode=train epochs=18 batch=16 plots=true model=yolov1@n.pt data=kitti.yaml

Figure 54: This command trains a YOLOv10 model for object detection using the “yolo™ CLI tool

- “task=detect": Specifies the task as object detection.

- ‘'mode=train’: Sets the mode to training.

- "epochs=10": Trains for 10 epochs.

- "batch=16": Uses a batch size of 16.

- "plots=true: Enables plotting of training metrics.

- ‘'model=yolov10n.pt™: Uses “yolov10n.pt" as the pre-trained model weights.

- “data=kitti.yaml": Uses “Kitti.yaml" for dataset configuration.

2. Steps to Reproduce
Step 1: Stage the code in the google colab

Step 2: Authenticate the google drive in which this google colab is linked
Step 3: Execute each step

Step 4: Verify the results

Reference:

[1] https://encord.com/blog/yolo-object-detection-guide/

[2] https://docs.ultralytics.com/

[3] https://www.datacamp.com/blog/yolo-object-detection-explained



https://encord.com/blog/yolo-object-detection-guide/
https://docs.ultralytics.com/
https://www.datacamp.com/blog/yolo-object-detection-explained
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