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1. System Requirements 

RAM: 32GB 

OS: Windows 

Processor: Core i9, 13th Generation 

GPU: 12 GB Nvidia, 3060 RTX 

Platform: Online Google Colab Pro Plus 

1.1 Yolov8 

 

Figure 1: Google Colab staging 

This code lets you upload files to Google Colab: 

- Import: `files` module from `google.colab`. 

- Upload: `files.upload()` opens a file picker for uploading files. 

 

Figure 2: Kaggle API set up 

This code sets up Kaggle API credentials: 

1. `!mkdir -p ~/.kaggle :̀ Creates a `.kaggle  ̀directory. 

2. `!mv kaggle.json ~/.kaggle/`: Moves `kaggle.json` to `.kaggle .̀ 

3. `!chmod 600 ~/.kaggle/kaggle.json`: Restricts file access for security. 

 



Figure 3: Kitti Datasets download 

This code downloads a dataset from Kaggle: 

- `!kaggle datasets download -d shreydan/kitti-dataset-yolo-format`: Downloads the "kitti-dataset-yolo-

format" dataset. 

- `-p /tmp`: Saves the downloaded dataset to the `/tmp` directory. 

 

Figure 4: Staging for some extra data 

This code downloads and extracts a dataset from Kaggle: 

1. `!kaggle datasets download -d klemenko/kitti-dataset -p /tmp`: Downloads the "kitti-dataset" to the 

`/tmp` directory. 

2. `!unzip /tmp/weather-data.zip -d /tmp`: Extracts `weather-data.zip` contents into the `/tmp` directory. 

(Note: Ensure the file name matches the downloaded file if you intended to unzip the downloaded 

dataset.) 

 

Figure 5: Code for the dataset download 

This command downloads a dataset from Kaggle: 

- `!kaggle datasets download -d klemenko/kitti-dataset :̀ Downloads the "kitti-dataset" from Kaggle to 

your current working directory. 

 

Figure 6: List of the datasets downloaded 

This code extracts `kitti-dataset.zip  ̀into `/content/dataset/` and then lists the files in that directory to 

verify the extraction. 



 

Figure 7: Datasets extraction and listing the contents in the path 

This code extracts `kitti-dataset-yolo-format.zip` to `/content/dataset_yolo/` and then lists the files in 

that directory to confirm the extraction. 

 

Figure 8: YOLO models package for version 8 

This command installs the `ultralytics` library, which is used for advanced computer vision tasks, such 

as object detection and segmentation. 

 

Figure 9: The command disables Weights & Biases (WandB) integration by setting the 

`WANDB_DISABLED` 

This command disables Weights & Biases (WandB) integration by setting the `WANDB_DISABLED` 

environment variable to `True`. This is useful to prevent automatic logging and tracking if you don’t 

want to use WandB for experiments. 

 

Figure 10: Code imports various libraries and modules for working with the YOLO object detection 

model and handling data 

- `ultralytics.YOLO`: Imports the YOLO model for object detection. 



- `numpy`, `pandas`, `matplotlib.pyplot`: For numerical operations, data manipulation, and plotting. 

- `pathlib.Path :̀ For handling filesystem paths. 

- `json`: For parsing JSON data. 

- `sklearn.model_selection.train_test_split`: For splitting data into training and test sets. 

- `tqdm.auto`: For displaying progress bars. 

- `shutil`: For file operations. 

- `PIL.Image`: For image processing. 

 

Figure 11: This code sets up paths for image and label directories, then loads class labels from a JSON 

file 

- Paths Setup: Defines `base_dir ,̀ `img_path`, and `label_path` for dataset directories. 

- Load Classes: Reads and loads class labels from `classes.json` into the `classes` variable, then displays 

the content. 

 

Figure 13: This code lists and sorts image and label files 

- List Files: Retrieves and sorts file paths from `img_path` and `label_path`. 

- Verify: Prints the first two entries from both lists to check that the files have been correctly listed and 

sorted. 

 

Figure 14: This code pairs image files with their corresponding labels 

- List and Sort: Retrieves and sorts image and label file paths. 

- Pair Files: Zips the sorted image and label lists together into pairs. 



- Check Pairs: Displays the first two image-label pairs to verify correct pairing. 

 

Figure 15: This code splits the image-label pairs into training and testing sets 

- Split Data: Divides the `pairs` list into training and testing sets with 10% of data allocated to testing. 

- Check Sizes: Prints the number of items in the training and testing sets. 

 

Figure 16: This code creates directories for storing training and validation data 

- `train_path`: Creates a t̀rain` directory if it doesn't exist. 

- `valid_path`: Creates a `valid` directory if it doesn't exist. 

 

Figure 17: This code copies training images and labels to the t̀rain` directory 

- Loop Through Pairs: Iterates over image-label pairs in the training set. 

- Copy Files: Copies each image and its corresponding label to the t̀rain` directory. 

 

Figure 18: This code copies test images and labels to the `valid` directory 

- Loop Through Pairs: Iterates over image-label pairs in the test set. 

- Copy Files: Copies each image and its corresponding label to the `valid` directory. 

 



 

 

Figure 19: This code generates and saves a YAML configuration file 

- Create YAML Content: Constructs YAML text with class names, number of classes, and paths for 

training and validation data. 

- Save to File: Writes the YAML content to `kitti.yaml`. 

 

Figure 20: This command displays the contents of the `kitti.yaml` file in the output. 

 

Figure 21: This code initializes a YOLO model 

1. Load Configuration: `YOLO('yolov8n.yaml')` initializes the model with a YAML configuration file. 

2. Load Pretrained Weights: `YOLO('yolov8n.pt')` loads a YOLO model with pretrained weights from 

the `yolov8n.pt  ̀file. 

 

Figure 22: This code trains the YOLO model 

- Train Model: Uses the configuration specified in `kitti.yaml`. 

- Parameters: 

  - `epochs=10`: Runs for 10 epochs. 

  - `patience=3 :̀ Stops early if no improvement is seen for 3 epochs. 



  - `mixup=0.1 :̀ Applies mixup data augmentation with a 10% mix rate. 

  - `project='yolov8n-kitti'`: Saves results in the `yolov8n-kitti  ̀project directory. 

 

Figure 23: This code evaluates the trained YOLO model on the validation dataset 

- Validate Model: Runs the validation process and returns performance metrics for the validation set. 

 

Figure 24: This code displays a confusion matrix 

- Load Image: Opens the confusion matrix image from the specified path. 

- Plot Image: Shows the image in a 10x20 inch figure without axis labels. 

 

Figure 25: This code displays a prediction image 

- Load Image: Opens the prediction image from the specified path. 

- Plot Image: Shows the image in a 10x20 inch figure without axis labels. 

 

Figure 26: This code makes predictions on a random sample of 20 test images 

- Random Sample: Selects 20 random test images. 

- Predict: Runs the model’s prediction on these images and saves the results. 

 

Figure 27: This code retrieves all files from the specified directory: 

- List Files: Collects and lists all files in the `/content/yolov8n-kitti/train23` directory. 



 

Figure 28: This code defines and uses a function to display a list of images 

1. Define Function: `plot_images(images)` creates a vertical grid of subplots for each image in the list. 

2. Load and Plot: Opens each image and displays it in the subplot, with each image shown in a column 

of its own. 

3. Show Plot: Adjusts layout and displays the images. 

 

Figure 29: This command uses the `plot_images` function to display all images listed in `preds` 

- Display Images: Shows the images in a vertical grid format, with each image occupying its own 

subplot. 

 

Figure 30: This code zips a folder and downloads it 

1. Zip Folder: Compresses `/content/yolov8n-kitti/train23` into `prediction_folder.zip`. 

2. Download: Uses Google Colab's `files.download` to download the zipped folder to your local 

machine. 



 

Figure 31: This code compresses and downloads a folder 

1. Zip Folder: Compresses `/content/yolov8n-kitti/train22` into `validation_folder.zip`. 

2. Download: Uses Google Colab's `files.download` to download the zipped folder to your local 

machine. 

 

Figure 32: This code compresses a folder and prepares it for download 

1. Zip Folder: Compresses `/content/yolov8n-kitti/train2` into `results.zip`. 

2. Download: Uses `files.download` to download the zipped folder to your local machine. 

 

 

 



 

 

Figure 33: This code analyzes and visualizes training and validation loss metrics 

1. Load Data: Reads the `results.csv` file from the specified log directory into a DataFrame. 



2. Extract Metrics: Retrieves loss metrics for training and validation, if available. 

3. Plot Loss Curves: 

   - Training Loss: Plots box loss, objectness loss, and classification loss over epochs.  

   - Validation Loss: Plots validation losses similarly. 

It shows two side-by-side plots for training and validation loss curves. 

 

Figure 34: This code lists the contents of the specified directory 

- List Files: Displays all files and folders within `/content/yolov8n-kitti/train2  ̀ to help you identify 

available log files and directories. 

 

1.2 Yolov9 

 

Figure 35: This code imports various libraries and modules for working with the YOLO object 

detection model and handling data 

- `ultralytics.YOLO`: Imports the YOLO model for object detection. 

- `numpy`, `pandas`, `matplotlib.pyplot`: For numerical operations, data manipulation, and plotting. 

- `pathlib.Path :̀ For handling filesystem paths. 

- `json`: For parsing JSON data. 

- `sklearn.model_selection.train_test_split`: For splitting data into training and test sets. 

- `tqdm.auto`: For displaying progress bars. 

- `shutil`: For file operations. 



- `PIL.Image`: For image processing. 

 

Figure 36: This code sets up paths for image and label directories, then loads class labels from a JSON 

file 

- Paths Setup: Defines `base_dir ,̀ `img_path`, and `label_path` for dataset directories. 

- Load Classes: Reads and loads class labels from `classes.json` into the `classes` variable, then displays 

the content. 

 

Figure 37: This code lists and sorts image and label files 

- List Files: Retrieves and sorts file paths from `img_path` and `label_path`. 

- Verify: Prints the first two entries from both lists to check that the files have been correctly listed and 

sorted. 

 

Figure 38: This code pairs image files with their corresponding labels: 

- List and Sort: Retrieves and sorts image and label file paths. 

- Pair Files: Zips the sorted image and label lists together into pairs. 

- Check Pairs: Displays the first two image-label pairs to verify correct pairing. 



 

Figure 39: This code splits the image-label pairs into training and testing sets 

- Split Data: Divides the `pairs` list into training and testing sets with 10% of data allocated to testing. 

- Check Sizes: Prints the number of items in the training and testing sets. 

 

 

Figure 40: This code creates directories for storing training and validation data 

- `train_path`: Creates a t̀rain` directory if it doesn't exist. 

- `valid_path`: Creates a `valid` directory if it doesn't exist. 

 

Figure 41: This code copies training images and labels to the t̀rain` directory 

- Loop Through Pairs: Iterates over image-label pairs in the training set. 

- Copy Files: Copies each image and its corresponding label to the t̀rain` directory. 

 

Figure 42: This code copies test images and labels to the `valid` directory 

- Loop Through Pairs: Iterates over image-label pairs in the test set. 

- Copy Files: Copies each image and its corresponding label to the `valid` directory. 



 

Figure 43: This code generates and saves a YAML configuration file 

 



 

Figure 44: This code analyzes and visualizes training and validation loss metrics 

1. Load Data: Reads the `results.csv` file from the specified log directory into a DataFrame. 

2. Extract Metrics: Retrieves loss metrics for training and validation, if available. 

3. Plot Loss Curves: 

   - Training Loss: Plots box loss, objectness loss, and classification loss over epochs. 

   - Validation Loss: Plots validation losses similarly. 

It shows two side-by-side plots for training and validation loss curves. 

 

Figure 45: This code lists the contents of the specified directory: 

- List Files: Displays all files and folders within `/content/yolov8n-kitti/train2  ̀ to help you identify 

available log files and directories. 



1.3 Yolov10 

 

Figure 46: This code sets up paths for image and label directories and loads class labels 

1. Define Paths: Sets `base_dir`, `img_path`, and `label_path` for dataset locations. 

2. Load Classes: Reads and loads class names from `classes.json` into the `classes` variable, then 

displays the loaded class labels. 

 

Figure 47: This code retrieves and sorts image and label file paths 

- List and Sort: Gathers and sorts file paths from the `img_path` and `label_path` directories. 

- Verify: Prints the first two image and label paths to ensure correct listing and sorting. 

 

Figure 48: This code pairs image files with their corresponding labels 

- List and Sort: Retrieves and sorts image and label file paths. 

- Create Pairs: Zips the sorted image and label lists together. 

- Check Pairs: Displays the first two image-label pairs to verify correct pairing. 

 



 

Figure 49: This code splits the paired image-label data into training and testing sets 

- Split Data: Divides the `pairs` list into `train` (90%) and `test` (10%) sets. 

- Check Sizes: Prints the number of items in the training and testing sets. 

 

Figure 50: This code creates directories for training and validation data 

- Create Directories: Creates `train` and `valid` directories if they don't already exist, ensuring they're 

ready for storing data. 

 

Figure 51: This code copies training images and labels to the t̀rain` directory 

- Iterate and Copy: For each image-label pair in the training set, copies the image and its corresponding 

label to the `train` directory. The progress is shown using a progress bar. 

 

Figure 52: This code copies test images and labels to the `valid` directory: 

- Iterate and Copy: For each image-label pair in the test set, it copies the image and label to the `valid` 

directory, with progress displayed by a progress bar. 

 

 



 

Figure 53: Yolov10 weights load and training 

Here's a concise breakdown of the code: 

- `from ultralytics import YOLO`: Imports the YOLO class from the `ultralytics` library. 

- `model = YOLO("yolov10n.pt")`: Loads the YOLOv10n model with pre-trained weights from the 

`yolov10n.pt` file. 

- `model.train(data="kitti.yaml", epochs=100, imgsz=640)`: Trains the model using the dataset 

specified in `kitti.yaml` for 100 epochs with an image size of 640x640 pixels. 

 

Figure 54: This command trains a YOLOv10 model for object detection using the `yolo` CLI tool 

- `task=detect`: Specifies the task as object detection. 

- `mode=train`: Sets the mode to training. 

- `epochs=10`: Trains for 10 epochs. 

- `batch=16`: Uses a batch size of 16. 

- `plots=true`: Enables plotting of training metrics. 

- `model=yolov10n.pt`: Uses `yolov10n.pt` as the pre-trained model weights. 

- `data=kitti.yaml`: Uses `kitti.yaml` for dataset configuration. 

2. Steps to Reproduce 

Step 1: Stage the code in the google colab 

Step 2: Authenticate the google drive in which this google colab is linked 

Step 3: Execute each step 

Step 4: Verify the results 

Reference: 

[1] https://encord.com/blog/yolo-object-detection-guide/ 

[2] https://docs.ultralytics.com/ 

[3] https://www.datacamp.com/blog/yolo-object-detection-explained 

https://encord.com/blog/yolo-object-detection-guide/
https://docs.ultralytics.com/
https://www.datacamp.com/blog/yolo-object-detection-explained
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