"'—-
\ National

Configuration Manual

MSc Research Project
MSc in Artificial Intelligence for Business

Sanjay Rastogi
Student 1D: x23160977

School of Computing
National College of Ireland

Supervisor: Anderson Simiscuka

~

College
Ireland

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Sanjay Rastogi
Student ID: x23160977
Programme: MSc in Artificial Intelligence for Business
Year: 2024
Module: MSc Research Project
Supervisor: Anderson Simiscuka
Submission Due Date: 12/08/2024
Project Title: Configuration Manual
Word Count: 2288
Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 9th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Sanjay Rastogi
x23160977

1. System Requirements
RAM: 32GB

OS: Windows
Processor: Core i9, 13" Generation

GPU: 12 GB Nvidia, 3060 RTX

Platform: Online Google Colab Pro Plus

1.1 Yolov8
from google.colab import files

files.upload()

Figure 1: Google Colab staging
This code lets you upload files to Google Colab:
- Import: “files” module from “google.colab’.

- Upload: “files.upload()" opens a file picker for uploading files.

mkdir -p ~/.kaggle
mv kaggle.json ~/.kaggle/
chmod 600 ~/.kaggle/kaggle.json

Figure 2: Kaggle API set up

This code sets up Kaggle API credentials:

1. “Imkdir -p ~/.kaggle: Creates a ".kaggle" directory.

2. "Imv kaggle.json ~/.kaggle/": Moves “kaggle.json” to ".kaggle".

3. "Ichmod 600 ~/.kaggle/kaggle.json: Restricts file access for security.

kaggle datasets download -d shreydan/kitti-dataset-yolo-format -p /tmp

Figure 3: Kitti Datasets download
This code downloads a dataset from Kaggle:

- "Ikaggle datasets download -d shreydan/kitti-dataset-yolo-format™: Downloads the "Kitti-dataset-yolo-
format” dataset.

- "-p /tmp’: Saves the downloaded dataset to the “/tmp™ directory.

kaggle datasets download -d klemenko/kitti-dataset -p /tmp

unzip ftmp/weather-data.zip -d /tmp

Figure 4: Staging for some extra data
This code downloads and extracts a dataset from Kaggle:

1. “'kaggle datasets download -d klemenko/kitti-dataset -p /tmp™: Downloads the "kitti-dataset" to the
“Itmp” directory.

2. "lunzip tmp/weather-data.zip -d /tmp": Extracts ‘weather-data.zip™ contents into the “/tmp" directory.
(Note: Ensure the file name matches the downloaded file if you intended to unzip the downloaded
dataset.)

kaggle datasets download -d klemenko/kitti-dataset

Figure 5: Code for the dataset download
This command downloads a dataset from Kaggle:

- “Ikaggle datasets download -d klemenko/kitti-dataset : Downloads the "Kitti-dataset™ from Kaggle to
your current working directory.

zip file path =
extract to path =

with zipfile.zipFile(zip file path, 'r') as zip ref:
zip ref.extractall(extract to path)

os.listdir(extract to path)

Figure 6: List of the datasets downloaded

This code extracts kKitti-dataset.zip™ into “/content/dataset/” and then lists the files in that directory to
verify the extraction.

zip file path = '/tmp/kitti-datase -format.zip'
extract to path /

with zipfile.zipFile(zip file path, 'r') as zip ref:
zip ref.extractall(extract to path)

os.listdir(extract to path)

Figure 7: Datasets extraction and listing the contents in the path

This code extracts “kitti-dataset-yolo-format.zip™ to “/content/dataset_yolo/" and then lists the files in
that directory to confirm the extraction.

pip install ultralytics

Figure 8: YOLO models package for version 8

This command installs the “ultralytics library, which is used for advanced computer vision tasks, such
as object detection and segmentation.

%env WANDB DISABLED=True

Figure 9: The command disables Weights & Biases (WandB) integration by setting the
"WANDB_DISABLED®

This command disables Weights & Biases (WandB) integration by setting the "WANDB_DISABLED"
environment variable to “True’. This is useful to prevent automatic logging and tracking if you don’t
want to use WandB for experiments.

import train test split

Figure 10: Code imports various libraries and modules for working with the YOLO object detection
model and handling data

- “ultralytics.YOLO": Imports the YOLO model for object detection.

- "numpy’, ‘pandas’, ‘matplotlib.pyplot™: For numerical operations, data manipulation, and plotting.
- “pathlib.Path™: For handling filesystem paths.

- "json’: For parsing JSON data.

- “sklearn.model_selection.train_test_split™: For splitting data into training and test sets.

- ‘tgdm.auto’: For displaying progress bars.

- “shutil™: For file operations.

- "PIL.Image": For image processing.

base_dir =
img | path

classes = json. load{f)

classes

Figure 11: This code sets up paths for image and label directories, then loads class labels from a JSON
file

- Paths Setup: Defines "base_dir’, “img_path’, and “label_path" for dataset directories.
- Load Classes: Reads and loads class labels from “classes.json" into the “classes’ variable, then displays

the content.

ims = sorted(list(img_path.glob('*")))
labels = sorted(list(label path.glob("’

print(ims[:2])
print(labels[:2])

Figure 13: This code lists and sorts image and label files
- List Files: Retrieves and sorts file paths from “img_path™ and “label_path".

- Verify: Prints the first two entries from both lists to check that the files have been correctly listed and
sorted.

ims = sorted(list(img_path.glob('*")))
labels = sorted(list(label path.glob('*’

pairs = list(zip(ims,labels))
pairs[:2]

Figure 14: This code pairs image files with their corresponding labels
- List and Sort: Retrieves and sorts image and label file paths.

- Pair Files: Zips the sorted image and label lists together into pairs.

- Check Pairs: Displays the first two image-label pairs to verify correct pairing.

train, test = train test split(pairs,test size=0.1,shuffle=True)

len(train), len(test)

Figure 15: This code splits the image-label pairs into training and testing sets
- Split Data: Divides the “pairs’ list into training and testing sets with 10% of data allocated to testing.
- Check Sizes: Prints the number of items in the training and testing sets.

train _path = Path('train').resolve()

train_path.mkdir(exist ok=True)

valid path = pPath('valid').resolve()
valid path.mkdir(exist ok=True)

Figure 16: This code creates directories for storing training and validation data
- “train_path’: Creates a ‘train’ directory if it doesn't exist.

- “valid_path™: Creates a “valid™ directory if it doesn't exist.

for t_img, t_1b in tqdm(train):
im _path = train_path / t img.name
1b path = train path / t 1b.name
shutil.copy(t img,im path)
shutil.copy(t 1b,1b path)

Figure 17: This code copies training images and labels to the “train directory
- Loop Through Pairs: Iterates over image-label pairs in the training set.

- Copy Files: Copies each image and its corresponding label to the “train” directory.

for £ img, t 1b in tqdm(test):
im path = valid path / t img.name
1b path = valid path / t 1b.name

shutil.copy(t img,im path)
shutil.copy(t 1b,1b path)

Figure 18: This code copies test images and labels to the “valid™ directory
- Loop Through Pairs: Iterates over image-label pairs in the test set.

- Copy Files: Copies each image and its corresponding label to the “valid™ directory.

yaml file += * in(f" ' for ¢ in classes)
yaml file +=] ‘classes) }’

yaml file += ' -5_-{traih_pathj}\nva1: {str(valid path)}’
with open('kitti.ys ;
f.write(yaml file)

Figure 19: This code generates and saves a YAML configuration file

- Create YAML Content: Constructs YAML text with class names, number of classes, and paths for
training and validation data.

- Save to File: Writes the YAML content to “kitti.yaml".

cat kitti.yaml

Figure 20: This command displays the contents of the “kitti.yaml" file in the output.

model = YOLO(yolov8n.yaml')
model = YOLO('yolov8n.pt")

Figure 21: This code initializes a YOLO model
1. Load Configuration: "YOLO('yolov8n.yaml')" initializes the model with a YAML configuration file.

2. Load Pretrained Weights: “YOLO('yolov8n.pt")" loads a YOLO model with pretrained weights from
the “yolov8n.pt” file.

train results = model.train(
data="/content/kitti.yaml’,
epochs=180,
patience=3,

mixup=0.1,
project="y«

Figure 22: This code trains the YOLO model
- Train Model: Uses the configuration specified in “kitti.yaml".
- Parameters:

- "epochs=10": Runs for 10 epochs.

- “patience=3": Stops early if no improvement is seen for 3 epochs.

- "'mixup=0.1": Applies mixup data augmentation with a 10% mix rate.

- “project="yolov8n-Kitti": Saves results in the “yolov8n-kitti" project directory.

valid results = model.val()

Figure 23: This code evaluates the trained YOLO model on the validation dataset

- Validate Model: Runs the validation process and returns performance metrics for the validation set.

plt.imshow(Image.open(nten -kitti/train22/confusion_matrix.png'))
plt.axis('off")
plt.show()

Figure 24: This code displays a confusion matrix

- Load Image: Opens the confusion matrix image from the specified path.

- Plot Image: Shows the image in a 10x20 inch figure without axis labels.
plt.figure(figsize=(18,20))
plt.imshow(Image.open(' /content/y« n-kitti/train22/val batche pred.jpg’))

plt.axis('off")
plt.show()

Figure 25: This code displays a prediction image
- Load Image: Opens the prediction image from the specified path.

- Plot Image: Shows the image in a 10x20 inch figure without axis labels.

preds = model.predict([test[idx][@] for idx in np.random.randint(e,len(test),(20,))],save=True)

Figure 26: This code makes predictions on a random sample of 20 test images

- Random Sample: Selects 20 random test images.

- Predict: Runs the model’s prediction on these images and saves the results.

preds = list(Path('/conte n-kitti/train23").glob("*

Figure 27: This code retrieves all files from the specified directory:

- List Files: Collects and lists all files in the “/content/yolov8n-Kitti/train23" directory.

v def plot images(images):
num_images = len(images)
rows = num_images

= plt.subplots(rows, cols, tigsize=(15, 80))
ax in axes.flat:
ax.axis('off")
r i, img_path in enumerate(images):
img = Image.open(img_path)
axes[i].imshow(img)

plt.tight layout()
plt.show()

plot images(preds)

Figure 28: This code defines and uses a function to display a list of images
1. Define Function: “plot_images(images) creates a vertical grid of subplots for each image in the list.

2. Load and Plot: Opens each image and displays it in the subplot, with each image shown in a column
of its own.

3. Show Plot: Adjusts layout and displays the images.

plot images(preds)

Figure 29: This command uses the “plot_images’ function to display all images listed in “preds

- Display Images: Shows the images in a vertical grid format, with each image occupying its own
subplot.

import shutil

folder to zip
output_filename

shutil.make_archive(output_filename.replace('.zip',), 'zip', folder_ to_zip)

files.download(output filename)

Figure 30: This code zips a folder and downloads it
1. Zip Folder: Compresses “/content/yolov8n-kitti/train23™ into “prediction_folder.zip".

2. Download: Uses Google Colab's “files.download™ to download the zipped folder to your local
machine.

folder to zip ¢)
output filename = ‘validation folder

shutil.make archive(output filename.replace(".zip), 'zip', folder to zip)

files.download(output filename)

Figure 31: This code compresses and downloads a folder
1. Zip Folder: Compresses “/content/yolov8n-kitti/train22" into “validation_folder.zip".
2. Download: Uses Google Colab's “files.download™ to download the zipped folder to your local

machine.

import shutil
lab import files

folder_to_zip =
output_filename

shutil .make_archive(output_filename.replace(’.zip', '), 'zip', folder_to_zip)

files.downlead(output filename)

Figure 32: This code compresses a folder and prepares it for download
1. Zip Folder: Compresses “/content/yolov8n-kitti/train2” into “results.zip.

2. Download: Uses “files.download™ to download the zipped folder to your local machine.

import os
import pandaS as pd

log_dir = '/content/yolov8n-kitti/train2®
log file = os.path.join{log dir, ‘"results.csv’

log _data = pd.read csv(log file)
log data.columns = log data.columns.str.strip()
print(log_data.head())

epochs = log data.index

box_loss = log_data["train/box loss'] if 'train/box loss' in log data.columns
obj_loss log data['train/obj loss'] if 'train/obj loss' in log data.columns
cls loss = log_data["train/cls loss'] if 'train/cls loss' in log data.columns
val_box loss = log data['val/box_loss'] if 'val/box_loss' in log_data.columns
val_obj_loss log data[" ‘obj loss'] if ‘val/obj loss' in log data.columns
val_cls loss log_data['val/cls _loss'] if 'val/cls_loss' in log_data.columns

[=
w b owowowmon
m @ M ™ M M

m M M M M M

plt.figure(figsize=(18, 5))

if box_loss is not None:
plt.subpleot(l, 2, 1)
plt. plot(epochsJ box loss, label="Box Loss')
if obj_loss is not None:
plt. plot(epochsJ obj_loss, label='Objectness Loss’)
if cls_loss is not None:
plt.plot{epochs, cls loss, label="Classification Loss")
plt.xlabel(" Epochs")
plt.ylabel(Loss")
plt.title(' Training Loss Curves')
plt.legend()

if val box_loss is not
plt.subplot{1l, 2, 2)
plt.plot(epochs, val_box_IOEE, label="Validation Box Loss"')
it val_obj_loss is not None:
plt.plot(epochs, val _obj loss, label="Validation Objectness Loss')
if val_cls loss is not None:
plt.plot{epochs, val cls loss, label="Validation Classification Loss')
plt.xlabel{ Epochs")
plt.ylabel{ Loss")
plt.title('Validation Loss Curves®)
plt.legend()

plt.tight layout()
plt.show()

Figure 33: This code analyzes and visualizes training and validation loss metrics

1. Load Data: Reads the “results.csv' file from the specified log directory into a DataFrame.

2. Extract Metrics: Retrieves loss metrics for training and validation, if available.

3. Plot Loss Curves:
- Training Loss: Plots box loss, objectness loss, and classification loss over epochs.
- Validation Loss: Plots validation losses similarly.

It shows two side-by-side plots for training and validation loss curves.

import os

log dir = " /conmtent/y n-kitti/train2’
print{os.listdir{log dir))

Figure 34: This code lists the contents of the specified directory

- List Files: Displays all files and folders within “/content/yolov8n-kitti/train2™ to help you identify
available log files and directories.

1.2 Yolov9

from PIL import Im

Figure 35: This code imports various libraries and modules for working with the YOLO object
detection model and handling data

- “ultralytics.YOLO™: Imports the YOLO model for object detection.

- "numpy’, ‘pandas’, ‘matplotlib.pyplot™: For numerical operations, data manipulation, and plotting.
- “pathlib.Path’: For handling filesystem paths.

- "json’: For parsing JSON data.

- “sklearn.model_selection.train_test_split™: For splitting data into training and test sets.

- ‘tqgdm.auto": For displaying progress bars.

- “shutil™: For file operations.

- "PIL.Image": For image processing.

base_dir
img_path

Figure 36: This code sets up paths for image and label directories, then loads class labels from a JSON
file

- Paths Setup: Defines "base_dir’, “img_path’, and "label_path for dataset directories.

- Load Classes: Reads and loads class labels from “classes.json” into the “classes’ variable, then displays
the content.

ims = sorted(list(img path.glob({ *")))
labels = sorted(list(label path.glob("*"))]

print{ims[:2])
print(labels[:2])

Figure 37: This code lists and sorts image and label files
- List Files: Retrieves and sorts file paths from “img_path™ and “label_path".

- Verify: Prints the first two entries from both lists to check that the files have been correctly listed and
sorted.

orted(list(img_path.glob("'*")))
sorted(1list(label path.glob

Figure 38: This code pairs image files with their corresponding labels:
- List and Sort: Retrieves and sorts image and label file paths.
- Pair Files: Zips the sorted image and label lists together into pairs.

- Check Pairs: Displays the first two image-label pairs to verify correct pairing.

train, test = train_test split(pairs,test size=0.1,shuffle=True)

len(train), len{test)

Figure 39: This code splits the image-label pairs into training and testing sets
- Split Data: Divides the “pairs’ list into training and testing sets with 10% of data allocated to testing.

- Check Sizes: Prints the number of items in the training and testing sets.

train_path = Path('1)-resolve()

train_path.mkdir{exist ok=True)
valid path = Path(id").resolve()

valid path.mkdir(exist ok=True)

Figure 40: This code creates directories for storing training and validation data
- “train_path’: Creates a ‘train” directory if it doesn't exist.

- “valid_path™: Creates a “valid™ directory if it doesn't exist.

for t_img, t_1b in tgdm{train):
im path = train_path / t img.name
1b path = train_path f t 1b.name
shutil.copy(t_img,im path)
shutil.copy(t_1b,1b path)

Figure 41: This code copies training images and labels to the “train directory

- Loop Through Pairs: Iterates over image-label pairs in the training set.

- Copy Files: Copies each image and its corresponding label to the “train” directory.
for t_img, t_1b in tqdm(test):

im path = valid path / t img.name
1b path = wvalid path f t 1b.name

shutil.copy(t _img,im path)
shutil.copy(t_1b,1b path)

Figure 42: This code copies test images and labels to the “valid™ directory
- Loop Through Pairs: Iterates over image-label pairs in the test set.

- Copy Files: Copies each image and its corresponding label to the “valid™ directory.

yaml file 1 \n
yaml_file \n'.join(f'- {c}" fo
yaml file f'\nnc: {len(classes)}’

yaml file f'\ntrain: {str(train_path)}\

with open(" kitti.yaml’, 'w') as +:
f.write{yaml file)

log dir
log file ath.join(log dir,

log data = pd.read_csv(log_file)
log data.columns = log data.columns.str.strip()
print(log_data.head())

epochs = log data.index

val box 1 ’
val obj 1 log data[’
val cls los log datal’

plt.figure(figsize=(18, 5))

if box loss is not None:

plt.subplot(, 1)

plt.plot(epoc box_loss, label="B
if obj loss ot None:

plt.plot) obj_loss, label="0b]
if cls loss 3
plt.plot
plt.xlabel(Ep
plt.ylabel("
plt.title('T
plt.legend()

log_data.
log data.
log_data.
log data.
log data.
log data.

columns
columns
columns
columns
columns
columns

if val box loss is not None:

plt.subplot(l, 2, 2)

plt.plot{epochs, val box loss, label="Validation Loss ")
if val obj loss is not MNone

plt.plot{epochs,
if val cls loss is no

plt.plot{epochs,

plt.xlabel('Eps
plt.
plt.
plt.

plt.tight layout()
plt.show{)

Figure 44: This code analyzes and visualizes training and validation loss metrics
1. Load Data: Reads the “results.csv’ file from the specified log directory into a DataFrame.
2. Extract Metrics: Retrieves loss metrics for training and validation, if available.
3. Plot Loss Curves:
- Training Loss: Plots box loss, objectness loss, and classification loss over epochs.
- Validation Loss: Plots validation losses similarly.

It shows two side-by-side plots for training and validation loss curves.

import os

log dir fcontent/yol

print(os.listdir(log_dir))

Figure 45: This code lists the contents of the specified directory:

- List Files: Displays all files and folders within “/content/yolov8n-kitti/train2™ to help you identify
available log files and directories.

1.3 Yolovl0

base dir Path(" cc .
S ta_object_image_2/training/image 2")
label path = Path(

Figure 46: This code sets up paths for image and label directories and loads class labels
1. Define Paths: Sets "base_dir’, “img_path’, and "label_path" for dataset locations.

2. Load Classes: Reads and loads class names from “classes.json” into the “classes™ variable, then
displays the loaded class labels.

sorted(list(img_path.glob("*")))
= sorted(list(label path.glob

print(ims[:2])
print(labels[:2])

Figure 47: This code retrieves and sorts image and label file paths
- List and Sort: Gathers and sorts file paths from the “img_path™ and “label_path™ directories.

- Verify: Prints the first two image and label paths to ensure correct listing and sorting.

ims = sorted(list(img_path.glob(" *")))
labels = sorted(list(label path.glob

pairs = list{zip(ims,labels))
pairs[:2]

Figure 48: This code pairs image files with their corresponding labels
- List and Sort: Retrieves and sorts image and label file paths.
- Create Pairs: Zips the sorted image and label lists together.

- Check Pairs: Displays the first two image-label pairs to verify correct pairing.

train, test = train_test split{pairs,test size=0.1,shuffle=True)

len{train), len(test)

Figure 49: This code splits the paired image-label data into training and testing sets
- Split Data: Divides the “pairs’ list into “train™ (90%) and “test™ (10%) sets.

- Check Sizes: Prints the number of items in the training and testing sets.

train_path = Path({ train').resolve()
train_path.mkdir(t_ok=True)
valid path = Path(valid').resolve()

valid path.mkdir(

Figure 50: This code creates directories for training and validation data

- Create Directories: Creates "train” and “valid™ directories if they don't already exist, ensuring they're
ready for storing data.

for t_img, t 1b in tgdm{train):
im path = train_path / t _img.name
1b_path = train_path / t_1b.name
shutil.copy(t_img,im path)
shutil.copy(t_1b,1b_path)

Figure 51: This code copies training images and labels to the “train” directory

- Iterate and Copy: For each image-label pair in the training set, copies the image and its corresponding
label to the “train” directory. The progress is shown using a progress bar.

for t_img, t 1b in tqdm{test):
im path = wvalid path / t img.name
1b path = valid path / t 1b.name

shutil.copy(t_img,im path)
shutil.copy(t_1b,1b path)

Figure 52: This code copies test images and labels to the “valid™ directory:

- Iterate and Copy: For each image-label pair in the test set, it copies the image and label to the “valid
directory, with progress displayed by a progress bar.

model = YOLO("yolovli@n.pt™)

model.train(data="kitti.yaml”, epochs=108, imgsz=648)

=

Figure 53: Yolov10 weights load and training
Here's a concise breakdown of the code:
- “from ultralytics import YOLO: Imports the YOLO class from the “ultralytics™ library.

- ‘'model = YOLO("yolov10n.pt")": Loads the YOLOv10n model with pre-trained weights from the
“yolov10n.pt” file.

- ‘model.train(data="Kkitti.yaml", epochs=100, imgsz=640)": Trains the model using the dataset
specified in “kitti.yaml™ for 100 epochs with an image size of 640x640 pixels.

yolo task=detect mode=train epochs=18 batch=16 plots=true model=yolov1@n.pt data=kitti.yaml

Figure 54: This command trains a YOLOv10 model for object detection using the “yolo™ CLI tool

- “task=detect": Specifies the task as object detection.

- ‘'mode=train’: Sets the mode to training.

- "epochs=10": Trains for 10 epochs.

- "batch=16": Uses a batch size of 16.

- "plots=true: Enables plotting of training metrics.

- ‘'model=yolov10n.pt™: Uses “yolov10n.pt" as the pre-trained model weights.

- “data=kitti.yaml": Uses “Kitti.yaml" for dataset configuration.

2. Steps to Reproduce
Step 1: Stage the code in the google colab

Step 2: Authenticate the google drive in which this google colab is linked
Step 3: Execute each step

Step 4: Verify the results

Reference:

[1] https://encord.com/blog/yolo-object-detection-guide/

[2] https://docs.ultralytics.com/

[3] https://www.datacamp.com/blog/yolo-object-detection-explained

https://encord.com/blog/yolo-object-detection-guide/
https://docs.ultralytics.com/
https://www.datacamp.com/blog/yolo-object-detection-explained

	1. System Requirements
	1.1 Yolov8
	1.2 Yolov9
	1.3 Yolov10

	2. Steps to Reproduce

