
Pixelating to the Edge - Generative AI Art
on Edge Devices

MSc Research Project

MSc. AI for Business

Sonal Deepak Pardesi
Student ID: 22209387

School of Computing

National College of Ireland

Supervisor: Anderson Simiscuka

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Sonal Deepak Pardesi

Student ID: 22209387

Programme: MSc. AI in Business

Year: 2023 - 2024

Module: Practicum 2

Supervisor: Anderson Simiscuka

Submission Due Date: 12 August 2024

Project Title: Pixelating to the Edge - Generative AI Art on Edge Devices

Word Count: 4876

Page Count: 17

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sonal Deepak Pardesi

Date: 15th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Pixelating to the Edge - Generative AI Art on Edge
Devices

Sonal Deepak Pardesi
22209387

Abstract

Generative AI is now changing the landscape of how people are getting things
done. In this study we are focusing on one of the most popular application of gen-
erative AI which is text to image generation, a technology which created huge craze
in 2021. Even after 3 years, it is not as effective and speedy on the edge devices
like mobile as its own web version. In this research, we will compare a number of
model variations and analysis what factors affect the inference speed of the image
generation. Currently Mobile diffusion, although commercially not available, has
claimed that it can achieve 0.02 seconds of speed. I tried to study if any archi-
tectural changes and sampling techniques can improve the inference speed while
maintaining quality of image. The changes in the sampling operations like chan-
ging the scheduler from PNDMS to DDIM gave a 6.57 percent increase in inference
speed with a bit of degradation in FID and CLIP score. The architectural changes
gave significant improvement of upto 15.24 percent increase and good results with
FID and CLIP score. This research will explore the much needed generative AI
technology’s requirement on edge devices.
Keywords: Generative AI, GANs, text-to-image

1 Introduction

Images are not just an important piece of memory, from early childhood we can see
images being a very important part of the education of a child it helps them to create
a connection with the object and the language, for young and teenagers diagrams and
schematics are one of the most effective ways of learning, understanding and explaining
objects. Even in our adult lives diagrams, images and scemhatics are used in almost
every aspect of our lives right from creating an interesting invitation card, adding images
to presentations or lectures for better explainability, uploading an interesting banner for
our social media profiles, creating a POC for business pitches or just to have a unique
wallpaper to look at, using images is more integral part of our lives than we think. Seeing
this opportunity in 2015 a new technology emerged know as automated image captioning,
here a machine is expected to learn and understand different objects present in a picture
and understand the relationship between them and then write a human like caption or
description for them(Chohan et al.; 2020)
This technology was great and made researchers curious what if the process was re-
versed. Creating high resolution natural looking images from their textual descriptions
had two major components to take care of, one is language modelling and another is im-
age generation where sequential deep learning techniques were used to build a conditional

1

probablistic model(Mansimov et al.; 2015). While is was not new to train the machine
on a model for specific images for example if you require an image on landscapes you can
train the model on tons of lanscape images and then the model would be able to generate
a landscape image when prompted but here the model was restricted to one particular
style. The need of the hour was to input any textual description and get an image in
return, an in January 2021 OpenAI anounced DALL E followed by a version upgrade ie.
DALL E 2 in April 2022. OpenAI democratized the AI capabilities in terms of image
generation empowering researchers and artist to leverage state of the art language and
image model(Vayadande et al.; 2023). At present companies like OpenAI, Stability AI,
Midjourney, Ranway ML etc are making progress in this technology and rolling out new
advancements at a greater pace. However this text to image generation process requires
billions of parameters and hence a huge amount of processing and computing resource
and hence it is not possible to process this as an application on an edge device like a
mobile phone.
In 2023 Google released a research paper on it s own model Mobile Diffusion which is
similar to stable diffusion but with lesser parameters so that we can run this on an edge
device like mobile. The inference speed for the model was a striking sub second speed for
a 512x512 image(Zhao et al.; 2023).

In this research I will try to examine what factors can affect/improve the optimization
of inference efficiency in text-to-image diffusion models to support its operations on an
edge device like laptop?
The focus will be on two parameters 1. Architecture 2. Sampling Efficiency. The re-
search will compare different modification on a self created image generator to examine
the factors affecting the inference speed.

Figure 1: Unique and imaginative outputs from DALL E. (Face; 2022)

2

2 Literature Review

A few companies today dominates the field of text-to-image generation, generative AI has
truly elevated its worth with major advancements made by companies such as OpenAI
(DALL-E), Stability AI, and Midjourney. Artist across the world are fascinated and
worried at the same time experimenting with the result and quality of the art work
generated by this technology which is based on GANs and style transfer technologies
that are able to interpret textual descriptions into artwork using complex models. But
running such complex models on mobile / edge devices is still a problem because of latency
issues, not to mention the processing power limitation. Since mobile is an integral part of
human lives now and it is the fastest way for any technology to propagate, it’s important
to bring text to image to edge devices. In this paper, we discussed the architectural
enhancements and performance boosting measures required to open the possibility of
text-to-image generation at edge devices.

It has lot of potential, especially text to image generation using Generative AI for
art and many practical applications. The deployment of these models on edge devices is
hindered by problems to be solved at the architectural design and efficiency levels. Over
time, as research improves such approaches, we are likely to see more advanced generative
AI models with control synthesis, providing new ways of manipulating model behavior
and making powerful AIs like GPT-3 available everywhere.

2.1 Generative Models and Their Evolution

The essence of generative models lies in the fact that they can reproduce similar results
as the training data that they were trained on in the first phase. There are six types of
generative models, namely GANs(Generative Adversarial Networks), VAEs(Variational
Autoencoders), Autoregressive Models, Flow Based Models, Energy Based Models and
Diffusion Models(Harshvardhan et al.; 2020). While each model has its own application
and importance, the understanding of GANs and VAEs is important to understand the
evolution of the modern diffusion models used in today’s text to image generators.

GAN or Generative Adversarial Networks works on two main models one is a gener-
ator and other is a discriminator, while generator is a Decoupled Convolutional Neural
Network(DCN) the discriminator is a Convolutional Neural Network (CNN). The gener-
ator is feed by a fixed dimensional noise vector or latent variables and it produces fake
images which is then mixed with the real images from the dataset. This output is now
fed to the discriminator which classifies whether it is a fake or real image. The classifica-
tion accuracy is fed to both generator and discriminator, the objective of generator is to
increase the classification error and that of the discriminator is to decrease classification
error(Mi et al.; 2018).

VAEs or Variational Auto Encoders are another important generatie model which
has three main components the encoder, a latent space and a decoder. The encoder is
given a high dimensional input which is then compressed and fed into the latent space.
The decoder access this code from the latent space and decodes the data as correctly as
possible. The main focus here is to reduce noise in the data, recognise relevant features
and detect anamolies(Kos et al.; 2018).

As we have a better understanding of both GANs and VAEs understanding the dif-

3

Figure 2: GAN Model.(KDnuggets; 2017)

Figure 3: VAE Model. (Wikipedia; 2021)

sussion model which is used in almost every text to image generator application today
will be much easier. In a diffsuion model we have two processes first we have a pre
defined forward process which maps data distribution into a gaussian distribution. Then
we have a reverse process which uses trained neural network to reverse the effects of
forward process by using ordinary or stochastic differential equations (ODE/SDE), all
this happens in latent space and the text encoder conditions the mapping in forward
process(Cao et al.; 2024). Diffusion models are highly efficient in producing high quality
photorealistic images, they bypass issues like mode collapse, provide high stability, works
great on different data types and can be conditioned for various use cases.

Figure 4: Diffusion Model.(Weng; 2021)

2.2 Transformer Architectures in Image Generation

It is an attention based alternative to recurrent networks used for various NLP tasks but
mainly in text to image use cases. The transformer architecture consists 6 key components
starting with the self attention mechanism which provides model with weighs of different

4

words in a sentence. Then we have positional encoding which provides the position of
the tokens in the sequence. The concept of multi head attention provides simultaneous
application of several attention mechanism in parallel. After this layer the data goes
through the feed forward network which produces various encoded representations along
with this is the encoder decoder structure(Vaswani et al.; 2017).
Transformer architecture is used in various applications ranging from NLP tasks such as
language modelling and text summarizing. There are vision transformers (ViT) which
are used for image classification purposes.

2.3 Enhancing Efficiency for Edge Devices

The main difficulty in implementing text to image models on an edge device like mobile
is the requirement of high computational efficiency and limited resources on edge devices.
To combat these problems, approaches such as model distillation and diffusion GAN
fine-tuning have been proposed. Model distillation is when we train a smaller model
using that huge model as the target of training, so essentially it will have an equivalent
performance as that long model but not at all in complexity terms. There are two main
factors, architecture and sampling, which are affecting the inference speed for such model
and in this research we will also examine.

2.4 Factors to consider for inference efficiency

The two most important factors affecting inference efficiency are architecture and sampling
efficiency. The method proposed in MobileDiffusion paper further simplifies the model by
replacing a U-Net architecture with separable convolutions to significantly reduce compu-
tational requirements while still providing high-quality images. More over, by refactoring
transformer blocks into more lower resolution ones and simplifying activation functions
(GELU for Swish in our case)it expedite numerical stability and decrease computational
cost towards mobile device applications

Beyond architectural progress, sampling efficiency is crucial. Approaches like progress-
ive distillation have drastically cut down sampling steps from hundreds to a few, hence
making it possible for real-time inference on mobile. This enormously enhances the ef-
ficiency of sampling, even allowing for one-step generation in combinatorial conjunction
with diffusion-based GAN models (e.g., UFOgen). Together, these strategies make it
possible to produce high-quality images in sub-second times thus demonstrating the feas-
ibility of deploying advanced text-to-image models on resources-constrained devices such
as smartphones.

These improvements are making text-to-image models more deployable on mobile
platforms, as well as leading to new possibilities for real-time applications that will greatly
enrich user experience and commoditize the application of generative models in common
scenarios. Ongoing research in this direction is to refine these methods more, so that the
balance should be of computational efficiency and generating quality images at realtime
frame rate so as to enable for broader usage and accessibility out-of-the-box advanced AI
models on a mobile phone.

5

3 Methodology

The research uses a pre-trained Stable Diffusion model to create high-quality images
from a simple text-based prompt provided by the user. Our methodology aims to
take advantage of the cutting-edge diffusion models’ capabilities, and specifically the
CompVis/stable-diffusion-v1-4 variant, which was trained on vast datasets of images and
text annotations. The steps consists of downloading and installing the needed libraries,
loading the pre-trained model, receiving user prompts via an interactive interface, and
generating an image based on these prompts. Thus, there is no need to take additional
measures to collect and preprocess data as the pre-trained model is already instructed on
how to interpret the text and produce the desired results in an image form. Additionally,
we use mixed precision and accelerate the process with the GPU to ensure faster image
generation. The following sections describe the methodology in detail.

3.1 Installation of Necessary Libraries

To implement text to image model we need to install some specific libraries to run the
model smoothly. Let us understand each library in detail and how it is important for this
research.

3.1.1 Pytorch/Torch

Pytorch or torch is an open spurce library specifically used for deep learning purposes.
It was developed by Facebook’s AI research lab and it comprises a powerful collection to
support tensor computation with GPU acceleration. It provides automatic differentiation
and is mainly used for application like computer vision and NLP models(Paszke et al.;
2019). It provides great flexibility in working on models which uses stable diffusion.

3.1.2 Diffusers

It is one of the important libraries when working with text to image generation model as
it iteratively tranforms a simple noise distribution into a complex data distribution. It
also has pre trained libraries and APIs for inference(Bengesi et al.; 2024).

3.1.3 Pillow

Its is open source imaging library by python which helps with opening, manipulating and
saving many different images with different file formats. Functions like resizing, cropping,
rotating etc can be done using this library(Villán; 2019).

3.2 Loading the Model

A pre trained stable diffusion model was used for this research from the hugging face
model hub. To increase the computation speed and reducing memory usage mixed pre-
cision(fp16) was used in the model.

6

3.3 Creating Input Widget

The model works on the data or input provided by the user hence the following code was
used to generate an input widget as a part of data collection process.

Figure 5: Code used to create input widget

3.4 Generating Images

To obtained the image generated through the text prompt the function ’generate image’
is used, this function also helps save the image generated to a file. To faciliate the
generation process a button is also created.

The text-to-image generation model was implemented using the Stable Diffusion
model from Hugging Face ‘diffusers‘ Library. Once the model is loaded it can be executed
using a python environment including import dependencies like ‘torch‘, ‘diffusers‘, and
optional requirements for interactive user input as image etc., as illustrated here by ‘pil-
low‘ (PIL) which lacks options of opening with GUI-input, adjusted according to widget
on Jupyter-plots (‘ipywidgets‘). It allows users to input text prompts via an easy-to-use
widget interface which then causes the model to produce matching images. The saved im-
ages are stored in a folder to be analyzed later. The performance of the model is evaluated
using three key metrics Fréchet Inception Distance (FID), CLIP score and inference time.

In the final step of this implementation, images will be successfully output based on
text using a Stable Diffusion pre trained model. It outputs transformed image data using
prompts that the user has given to it.

Outputs Produced:
Derived Data: Text to high-quality image where the text is given by users.
Written Code: A pipeline for text-to-image generation, programmed in Python.
Model Trained: The Stable Diffusion model (ie, CompVis/stable-diffusion-v1-4)
Used Tools: Text input widgets for user interaction and prompt input
Tools and Languages Used:
Programming Languages: Python
Libraries:
We use pytorch for tensor manipulations and gpu acceleration.
PIL : for image(preprocessing) operations

4 Implementation

The final stage of implementation was based on a step-by-step breakdown of the problem
statement and then working on specific areas. The research uses a stable diffusion model,

7

hence there was no need for any external data, however, I first started with installation
of certain essential libraries. In the next step, we loaded some pre trained models which
includes the base model of this research - Stable Diffusion and FID and CLIP models for
evaluation purposes. I then performed an intial evaluation of the model to make sure that
we can set a reference point for further results to compare the percentage improvement.
The next step involved the improvement in the model to obtain better inference time,
FID and CLIP score. The changes in the model provided with some improvement but
it was also seen that the output differed with every new prompt, also there was not a
significant change in the FID and CLIP score. Hence there on the focus was to improve
the inference time. To achieve this changes in the timesteps and the scheduler where
made and that provided with improved inference time. I also did profiling on the model
to identify any bottlenecks and the following table shows the results.

aten::convolution 0.69 47.458ms 15.55 1.065s 211.585us 0.000us 0 4.150s 824.223us 5035
aten::conv2d 0.49 33.438ms 16.02 1.097s 217.949us 0.000us 0 4.140s 822.286us 5035

aten::cudnn convolution 6.75 462.638ms 10.29 705.347ms 140.089us 3.524s 45.35 3.935s 781.549us 5035
aten::scaled dot product attention 0.45 30.603ms 3.49 239.254ms 146.512us 0.000us 0 1.860s 1.139ms 1633

aten:: scaled dot product efficient attention 0.51 34.968ms 3.05 208.651ms 127.772us 0.000us 0 1.860s 1.139ms 1633
aten:: efficient attention forward 0.82 56.045ms 1.96 134.174ms 82.164us 1.834s 23.61 1.860s 1.139ms 1633

fmha cutlassF f16 aligned 64x64 rf sm75(PyTorchMemEf...) 0 0.000us 0 0.000us 0.000us 1.563s 20.11 1.563s 3.064ms 510
void cudnn::ops::nchwToNhwcKernel¡ half, half, float¿ 0 0.000us 0 0.000us 0.000us 1.239s 15.95 1.239s 218.332us 5676

aten::linear 1.51 103.276ms 15.72 1.077s 111.328us 0.000us 0 1.162s 120.092us 9677

Table 1: Profiling of the Model showing resource usage

The profiling shows that there potential bottlenecks and concerns in the model, while
the attention layers consume time but the main concern are the convolution operations
and they are main bottlenecks in CPU and CUDA time. To improve the model I used
a custom UNet architecture were depthwise separable convolutions were used, this helps
in reducing number of parameters and computation cost as compared to standard con-
volutions.
In the research to improve the sampling efficency I also incorporated DDIM (Denoising
Diffuser Implicit Models) with as low as 5 timesteps and it provided improved results.
To improve the inference speed I also used mixed precision which provided better com-
putational efficiency, reduced memory usage and most suitable for large models with big
data. Below is a summary of the entire implementation.

4.1 Libraries

The important libraries used for the model includes diffuser, transformer, torch, torch
vision, scipy and ipywidget.

4.2 Model

A number of pre trained models were used in the research to ensure efficiency of the code
and availability of authentic and huge dataset. The models include stable diffusion for
the execution and creation of the application, CLIP model, FID model for evaluation.

4.3 Profiling

This was done to identify any bottlenecks and improve them with changes in the code as
mentioned in the next step.

8

4.4 Modification in the Model

There were 3 main changes made in the model the first was to use mixed precision. Second
was to use the DDIM scheduler, here I started with 50 time steps and later in the model
reduced it to as low as 5 time step using which improved the sampling efficiency. The
last change was to use a custom UNet architecture with depthwise separable convolutions
and using swish activation instead of relu.

5 Evaluation

We focus our main evaluations of text-to-image generation models on three key metrics:
inference time, the Fréchet Inception Distance (FID), and CLIP score. Each of these
parameters provides a different insight into the ability and effectiveness of the model.
Through measuring these metrics we try to determine whether the model is good enough
in all those aspects which help us make it a better real-world application.
Inference Time: The metric here represents the time it takes for the model to synthesize
an image based on a text prompt given into it. In practical scenarios such as a production
environment, where real-time or near-real time inferences are desired.
Quicker inference times mean that it is friendlier for users and also more cost-effective
in terms of deployment: be it set dressing an interactive art piece, generating content
against a deadline or running on a VR installation. By means of benchmarking the
inference time, we can determine if how efficient our model is and areas for possible im-
provements.
What is FID (Fréchet Inception Distance) : The Fréchet Inception distance measures the
’distance’ between two or more features of images. This approach measures the distance
in feature vector space between images generated by generators and real images and com-
pares it to benchmarks on a large-scale image recognition task. Lower FID scores mean
that the images are more similar real images combining quality and diversity.
Therefore, assessing the FID score helps us to measure if our model can produce high fidel-
ity content that is same as natural images which are crucial for many possible applications
of digital image production in sectors including e.g. art and media entertainment(Chong
and Forsyth; 2020).
CLIP Score: A metric that shows how well generated images match their textual prompts.
We use the CLIP (Contrastive Language-Image Pretraining) model to compute cosine
similarity between embedding of texts and images. The reason a higher CLIP score is
better because that shows how accurate the model can convey the text descriptions into
image(Liu et al.; 2021).
This metric is useful for things like visual storytelling, educational content creators and
assistive tech applications that provide a text-to-image correspondence. We start with
sampling a bunch of images from different text prompts using the Stable Diffusion model
in our evaluation process. After that for each image generation, we test the generation
time (inference speed) to analyze its speed. The images are generated, and then compared
to a dataset of real images in order to determine the FID score which is an indicator for
how far away from training data distribution our generator output lies regarding image
quality and diversity.
We also report the CLIP score to test how well images are generated with corresponding
texts. Through examining these three measurements, the goal is to provide a complete
assessment of model performance and mainly identify what its strengths are as well areas

9

that can be built upon in order for it have additional applications within real life scenarios.

5.1 Image Generation / Case Study 1

First we tried to analyze how accurately the model is able to generate images depending
on the give promtps. Below are some results of images generated on user prompts.

Figure 6: Fig 1. A candid photo of a Labrador enjoying breeze in a garden, 4k, high
resolution
Fig 2. A scenic landscape with mountains and a lake
Fig 3. Diljit Dosanj in a Van Gogh Painting
Fig 4. A Backpack on a mountain trail
Fig 5. A baby as a DJ on Mars
Fig 6. A bunch of mangoes in geometric bowl

5.2 Initial model / Case Study 2

The initial model is based on stable diffusion CompVis v1-4 with a CLIPImagePro-
cessor for feature extraction. In the initial model I also used PNDMS (Pseudo Numerical
Method for Diffusion Model) Scheduler for sampling efficiency. for the choice of architec-
ture UNet2DConditionModel was used from the UNet architecture and AutoencoderKL
for VAE.

Initial Model
This is the first step performed to create a benchmark for the rest of the image generation
inference time and other evaluation parameters. The values obtained from this shows

10

inference time as 9.26 seconds, FID score as 11036.33 and CLIP score as 29.23. For the
initial model all the 3 parameters were not so satisfactory and hence changes were made
to the model.

Figure 7: Results of the initial execution of model

Modified Model
In the modified model I first changed the scheduler from PNDMS to DDIM with initial
timesteps of 50 which was later reduce to 25, also incorporated mixed precision. the first
result obtained shows around 6 percent reduction in inference time, however the FID and
CLIP score were greatly affected.

Figure 8: Results from the Modified Model showing improvement in inference time but
degradation in FID and CLIP score

Figure 9: Comparision of the outputs

5.3 Sampling Efficiency / Case Study 3

Initial Model
In the previous result although we were achieving satisfactory result for inference time
the quality of the image was being affected. To solve this I kept the use of mixed precision
as it is and reduced the timestep to as low as 5. Use of DDIM ensured that the quality

11

Figure 10: Comparision of Modified Model with Initial Model

of the image is maintained and reducing time steps made the generation of image faster.

Modified Model
It can be observed that we got 10 percent improvement in the inference time and not
only that but the FID also improved greatly with a score of 8919 from 11036. The CLIP
score remained fairly unchanged.

5.4 Output with User Prompt / Case Study N

In this section we will see some images generated from user prompts and what was strik-
ing is that for each image generated the inference time was difference. While this depends
on the complexity of the prompt as well, I also tried with time step 3. Below are some
of the images generated.

User Promt Images
The first image is generated with user prompt ”monkey as DJ” and it shows 11 percent
improvement in inference speed. But the FID score was affected and CLIP score remained
almost same. To correct this and maintain the inference speed last modification was made
in the architecture discussed in next section.

Figure 11: Image Generated by User Prompt ” Monkey as DJ”

12

Figure 12: Results of the above generated image

Another image generated was ”scarecrow with pink hoodie” for this image a 14 per-
cent improvement in inference speed was observed with satisfactory FID and CLIP score.
Below is the image generated and the results obtained.

Figure 13: Image generated with prompt ”scarecrow with pink hoodie”

Figure 14: Comparision of result - initial model vs current output

Results After UNet Changes
In the final modification I changed the UNet architecture for more accurate image and
hence used the depthwise seperable convolution and changed the activation from relu to
swish. The results not only improved but the images were better as well. We can see
the inference speed was increased from 11 percent to 14 percent for the ”monkey as DJ”
image and similarly the for ” scarecrow with pink hoodie” the inference speed increased
from 14 percent to 15 percent with improved image.

13

Figure 15: Image generated after UNet modification for ”monkey as DJ”

Figure 16: Improved Results for above image

Figure 17: Improved image for ”scarecrow with hoodie”

Figure 18: Improved results for ”scarecrow with hoodie”

14

Sampling Efficiency Change Inference Speed (s) Speed Improvement (%) FID Score FID Score Change CLIP Score CLIP Score Change
Benchmark 9.26 N/A 11036 N/A 29.23 N/A

PDMS to DDIM 8.65 6.57 14057 -3021.41 28 -0.36
Mixed Precision & Reduced Timestep (5) 8.31 10.22 8919.54 2116.80 29.66 0.43

Table 2: Results obtained after applying sampling changes.

Comparison Metric Benchmark Monkey as DJ - Std UNET Monkey as DJ - Custom UNET Scarecrow with Pink Hoodie - Std UNET Scarecrow with Pink Hoodie - Custom UNET
Inference Speed (s) 9.26 8.2 7.9 7.89 7.85

Speed Improvement (%) N/A 11.48% 14.69% 14.8% 15.24%
FID Score 11036 15331.22 7510.66 9967.72 9710.65

FID Score Change N/A -4294.26 3525.68 1068.62 1325.69
CLIP Score 29.23 29.47 37.12 33.23 32.68

CLIP Score Change N/A 0.24 7.89 4 3.45

Table 3: Results obtained after making architectural changes.

5.5 Discussion

The results of our tests were examined, and a number of important insights about the
capabilities and drawbacks of text-to-image generation on edge devices were discovered.
Particularly when dealing with challenging and abstract prompts, our initial model had
difficulty with both image quality and inference speed. Changes, like changing to a
DDIM scheduler and utilizing blended accuracy, further developed inference speed yet
at first debased picture quality. The utilization of depthwise separable convolutions
and an optimized UNet architecture were two additional refinements that successfully
achieved a balance between speed and quality, leading to significant enhancements in
both metrics. Despite these advancements, the model’s performance varied depending
on prompt complexity, highlighting the need for ongoing refinement and the possibility
of incorporating more advanced architectural enhancements and training methods to
better align with current models. While these results depict improvement, they also
highlight the particular difficulties associated with optimizing generative AI for edge
device environments.

6 Conclusion and Future Work

The goal of this study was to make text-to-image generation on edge devices more effi-
cient while also improving image quality and inference speed. The targets were to look at
changed engineering and testing effectiveness techniques and propose upgrades for ver-
satile organizations. We carried out and changed a standard diffusion model to depthwise
separable convolutions, DDIM scheduler, blended accuracy, and improved UNet design.
Although performance varied depending on prompt complexity, these modifications resul-
ted in significant enhancements to inference speed and image quality depicted by results
which included inference speed comparisons and FID and CLIP score. The feasibility
of implementing generative AI on edge devices was demonstrated by the significant time
savings in inference and improved image fidelity. Although there are still limitations, such
as variability in the generation of complex images, the implications of the research point
in the right direction for real-time applications. Future work ought to investigate further
developed attention layer alterations and various architectures to additionally enhance
execution. Also, incorporating adaptive learning techniques and real world testing could
upgrade results. Financially, these headways could create functional, easy to use gener-
ative artificial intelligence applications on edge devices, growing availability and utility
in different imaginative and proficient fields.

15

References

Bengesi, S., El-Sayed, H., Sarker, M. K., Houkpati, Y., Irungu, J. and Oladunni, T.
(2024). Advancements in generative ai: A comprehensive review of gans, gpt, autoen-
coders, diffusion model, and transformers., IEEE Access .

Cao, H., Tan, C., Gao, Z., Xu, Y., Chen, G., Heng, P.-A. and Li, S. Z. (2024). A survey on
generative diffusion models, IEEE Transactions on Knowledge and Data Engineering .

Chohan, M., Khan, A., Mahar, M. S., Hassan, S., Ghafoor, A. and Khan, M. (2020).
Image captioning using deep learning: A systematic, image 11(5).

Chong, M. J. and Forsyth, D. (2020). Effectively unbiased fid and inception score and
where to find them, Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 6070–6079.

Face, H. (2022). Hugging face - the ai community building the future. Accessed: 2022-
XX-XX.
URL: https://huggingface.co

Harshvardhan, G., Gourisaria, M. K., Pandey, M. and Rautaray, S. S. (2020). A com-
prehensive survey and analysis of generative models in machine learning, Computer
Science Review 38: 100285.

KDnuggets (2017). Kdnuggets - analytics, data science, and machine learning. Accessed:
2017-XX-XX.
URL: https://www.kdnuggets.com

Kos, J., Fischer, I. and Song, D. (2018). Adversarial examples for generative models,
2018 ieee security and privacy workshops (spw), IEEE, pp. 36–42.

Liu, X., Gong, C., Wu, L., Zhang, S., Su, H. and Liu, Q. (2021). Fusedream: Training-
free text-to-image generation with improved clip+gan space optimization.
URL: https://arxiv.org/abs/2112.01573

Mansimov, E., Parisotto, E., Ba, J. L. and Salakhutdinov, R. (2015). Generating images
from captions with attention, arXiv preprint arXiv:1511.02793 .

Mi, L., Shen, M. and Zhang, J. (2018). A probe towards understanding gan and vae
models, arXiv preprint arXiv:1812.05676 .

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L. et al. (2019). Pytorch: An imperative style, high-
performance deep learning library, Advances in neural information processing systems
32.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.
and Polosukhin, I. (2017). Attention is all you need, Advances in neural information
processing systems 30.

Vayadande, K., Bhemde, S., Rajguru, V., Ugile, P., Lade, R. and Raut, N. (2023). Ai-
based image generator web application using openai’s dall-e system, 2023 International
Conference on Recent Advances in Science and Engineering Technology (ICRASET),
IEEE, pp. 1–5.

16

Villán, A. F. (2019). Mastering OpenCV 4 with Python: a practical guide covering topics
from image processing, augmented reality to deep learning with OpenCV 4 and Python
3.7, Packt Publishing Ltd.

Weng, L. (2021). From gan to wgan. Accessed: 2021-XX-XX.
URL: https://lilianweng.github.io/lil-log/2021/05/26/gan-and-wgan.html

Wikipedia (2021). Wikipedia, the free encyclopedia. Accessed: 2021-XX-XX.
URL: https://www.wikipedia.org

Zhao, Y., Xu, Y., Xiao, Z. and Hou, T. (2023). Mobilediffusion: Subsecond text-to-image
generation on mobile devices, arXiv preprint arXiv:2311.16567 .

17

	Introduction
	Literature Review
	Generative Models and Their Evolution
	Transformer Architectures in Image Generation
	Enhancing Efficiency for Edge Devices
	Factors to consider for inference efficiency

	Methodology
	Installation of Necessary Libraries
	Pytorch/Torch
	Diffusers
	Pillow

	Loading the Model
	Creating Input Widget
	Generating Images

	Implementation
	Libraries
	Model
	Profiling
	Modification in the Model

	Evaluation
	Image Generation / Case Study 1
	Initial model / Case Study 2
	Sampling Efficiency / Case Study 3
	Output with User Prompt / Case Study N
	Discussion

	Conclusion and Future Work

