ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Practicum 2

Najam Ul Hassan Khan
Student ID: 23164816

School of Computing
National College of Ireland

Supervisor:
Dr. Devanshu Anand

Student
Name:

Student ID:

Programme:

Module:

Lecturer:

Submission
Due Date:

Project Title:

‘——
\ National
Collegeof

Ireland

National College of Ireland
MSc Project Submission Sheet
School of Computing

Najam Ul Hassa Khan

Year:

Leveraging Al for Agile Backlog Management Using LLMs: A
Comprehensive Approach

Word Count: ... Page Count: 22

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project.

All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project o

submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o

for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Najam Ul Hassan Khan
Student ID: 23164816

1. System Requirements

This whole project takes into the account three important steps,
RAM: 16GB DDR2

OS: Windows 10 pro

Processor: i5 71" generation

Technology required: Python, Google Colab.

2. Essential Steps to Follow

2.1Gemini

Step — 1 -_ Upload the python notebooks(.ipynb) on Colab . The simple way is to upload the file after opening
Colab in Google.

: J Welcome To Colab

File Edit View Insert Runtime Tools Help

— Mew notebook in Drive [
i— Ta

Open notebook Ctrl+0
Q { Upload notebook

4

Step-2 - Geta Gemini API key at - https://ai.google.dev/gemini-api/docs/api-key and follow the instructions.

To use the Gemini API, you need an APl key. You can create a key with one click in Google Al Studio.

Get an APl key

Step — 3 — Go to the “gemini.ipynb” notebook and add the key as a secret . Give name as GOOGLE_API_KEY’ .
Provide notebook access .

https://ai.google.dev/gemini-api/docs/api-key

e U ET S Value Actions
access

@) GO0GLEAPIK s @ O M

Step —4 : Run all.

2.2 Mistral

Step —1 -_Upload the python notebooks(.ipynb) on Colab . A simple way is to upload the file after opening the
Colab in Google.

CO Welcome To Colab
File Edit View Insert Runtime Tools Help

— New notebook in Drive [
t— Ta

Open notebook Ctrl+0
Q { Upload notebook

i

In the case of Mistral, a similar process needs to be done for setting up the API key, as below.

Runtime | Tools Help Last edited on June 21

Run all Cirl+F9

Step — 2 : Get an Inference API Key for Mistral
e Search for mistralai/Mistral-7B-Instruct-v0.3 in Hugging Face

% Hugging Face [mistralai/Mistral-7B-Instruct-v0.3]

Models
Hugging Face is way moi

mistralai/Mistral-7B-Instruct-ve.3

e Accept the request for using the model

e Go to setting in your Hugging Face account, to access tokens , and create a new
token

e Mark the following boxes

Repositories Inference

Read access to contents of all repos under your personal namespace Make calls to the serverless Inference API
Read access to contents of all public gated repos you can access Make calls to Inference Endpoints
Write access to contents/settings of all repos under your personal namespace Manage Inference Endpoints

e Under the Repositories permissions

[L. mistralai/Mistral-7B-Instruct-v0.3]

Models

mistralai/Mistral -7B-Instruct-ve.3

e Create new token

Step — 3: Copy the token.
Step — 4 : Replace the new token here in this cell.

from huggingface hub import InferenceClient

client = InferenceClient|
"mistralai/Mistral-7B-Instruct-vd.3",
token="Your token r,

)

def get_llm_response(prompt, client):
responses = []
for message in client.chat_completion(

messages=[{"role”: "system", "contemt™: “"You are a private assistant who reads and understands the chat log
{"role": "user", "content": prompt}],
max_tokens=5@@,

stream=True,

NE
responses.append(message.choices[@].delta.content)

return "'.join(responses).strip()

Step — 8: run all.

2.3T-5
Step — 1 -_ Upload the python notebooks(.ipynb) on Colab . The simple way is to upload the file after opening
Colab in Google.

cO Welcome To Colab
File Edit View Insert Runtime Tools Help

4

New notebook in Drive

r

= Ta
Open notebook Ctrl+0

Q { Upload notebook

Runtime | Tools Help

Run all Cirl+F9

Step — 2: For the google T5 code simply click run all.

Runtime | Tools Help Last edited on June 21

Run all Cirl+F9

Step — 3: For the analysis code simply click run all.

Runtime | Tools Help Last edited on June 21

Rum all Cirl+F9

3. Code Execution
3.1 Gemini

'pip install sentence-transformers
'pip install -gq -U google-generativeai

Figurel. Installs dependencies for libraries to function properly.

#Imports

from sentence_transformers import SentenceTransformer, util
import pathlib

import textwrap

import pandas as pd

import google.generativeal as genai

from google.colab import userdata

Figure2. This code first loads two packages: “sentence-transformers™ and “google-generativeai” packages, and
then imports several modules. It includes utilities for actually dealing with the sentence embeddings, data, text
formatting, and communication with Google’s Al.

#similarity
def compute similarity(stringl, string2, model name='paraphrase-MinilM-L&-w2'):
model = SentenceTransformer{model name)
embeddingl = model.encode(stringl, convert to tensor=True)
embedding?2 = model.encode(string2, convert to tensor=True)
similarity score = util.pytorch cos sim({embeddingl, embedding2)
return similarity score.item()

Figure3. In the “compute_similarity” function, coding analysis is used to estimate the similarity between two
general strings. It takes two strings to process, and you can optionally include a pre-trained model in getting the
sentence embeddings with ‘paraphrase-MiniLM-L6-v2’ as the default. The function takes a model, transforms
the two strings to their embeddings and returns the cosine similarity between the two. It then returns a float,
which points out how similar the two strings are semantically.

def setup gemini():
GOOGLE_API_KEY-userdata.get('GOOGLE_API_KEY')
genai.configure(api key=GOOGLE API KEY)
model = genai.GenerativeModel(' 'gemini-1.8-pro’)
return model

Figure4. The “setup_gemini” function is defined to set up and provide the generative Al model referred to as
Google Gemini. This first logs the API key used with Google services from the user’s data. This key is specified
to set options for the GenAl library. The function then starts up the Gemini model with the version ‘gemini-1. O-
pro’. Once configuration has been done then the model is ready to be used for writing content or for generating
the response

def get 1lm response(prompt , model):
response = model.generate content({prompt)
return response.text

Figureb. The get_IIm_response function is expected to take a certain prompt and return a response from a called
language model. It accepts two parameters: elements which are prompt, an input text which defines what sort of
response is expected as well as the model, identifying the language model that should be used. The function
utilises the model to synthesize text from the given input prompt and the output is the generated text.

that_log = "
[Chat Log Start]

[2824-87-15 89:88 AM]

danager: Hi team! Let's kick off our new project, the "Financial Analysis Tool™

danager: Adding team members: Developer 1, Developer 2, Developer 3, Developer 4, Developer 5.
[2824-87-15 89:85 AM]

Jeveloper 1: Hi everyone!

Jeveloper 2: Hello team!

Jeveloper 3: Hi there!

Jeveloper 4: Hi everyone!

Jeveloper 5: Hello team!

[2824-87-15 89:18 AM]

danager: Our goal is to develop a powerful Financial Analysis Tool to enhance our analytical capabilitie
danager: Here are the main tasks and their breakdouwns:

[2824-87-15 89:15 AM]

danager: Phase 1: Initial Dewvelopment

danager: - Developer 1 and Developer 2, please work on developing the financial reporting module. Focus

[2824-87-15 89:28 AM]

(RS 7 USfEmemss sm=mSes cmms oo SEooooSoT mooootoo —odho s bmsTooos o
Information Retrieval
{
"guestion”: "Who are the team members added by the manager?”,
"answer": "Developer 1, Developer 2, Developer 3, Developer 4, Developer 5",
"tag”: "Information Retrisval”
1
{
"gquestion": "What is the name of the new project?”,
“answer": “"Financial Analysis Tool",
"tag": "Information Retrisval”
1
{
"guestion": "What is the goal of the project?”,
"answer": "To develop a powerful Financial Analysis Tool to enhance analytical capabilities.”,
"tag": "Information Retrisval”
1
{
"guestion": "What is the deadline for the secure authentication module?”,
“answer": "August 15",
"tag": "Information Retriaval”
1,
{
"question”: "Which developers are responsible for integrating financial data from external APIs2?",
“answer": “"Developer 4 and Developer 5",
"tag": "Information Retrieval”
1
{
"question”: "What tasks are assigned in Phase 3: System Enhancements?”,
"answer"”: “"Developer 3 implements audit logging by August 25. Developer 4 develops a notification system by Septembe
"tag": "Information Retrieval”
1,
Summary
results = []

model = setup gemini()
get 1lm response(chat_log , model)

Figure6. The first few lines of this section of code create a variable called results as an empty list and
preliminary work for the Google Gemini model by attaching the setup_gemini function. It next generates a

6

response to the chat_log prompt through the get lim_response function together with the set model.
Nevertheless, as will be seen in this snippet, the generated response is not included in the results list.

for ga in questions:
question = ga["question"]
correct_answer = ga["answer"]
tag = ga["tag"]

prompt = f"{chat log}‘n\nQuestion: {question}”

1lm_response = get_1llm response(prompt , model)
print(llm response)
results.append({
"question”: question,
"correct_answer”: correct_answer,
"gemini_answer”: 1llm response,
"tag": tag
1)

Figure7. This code uses the setup_gemini function to set up the Google Gemini model that is used in the
generation of responses. It processes a series of questions by going through each of them in the same manner. It
forms a prompt with the question by adding the content of the question to the value of chat log. The
get_lIm_response function is then used, with this prompt and the model to generate a response. The generated
response is then printed as well as the question, answer, and a tag are added and stored in the results’ list. This
position helps in collating and analyzing the model’s answers against the right answers as shown above.

results_df = pd.DataFrame(results, columns=["question”, "correct_answer”, "gemini_answer”, “"tag"])
results_df['similarity score'] = results_df.apply(

lambda row: compute similardity(row['correct_answer'], row[gemini_answer']),

axis=1

Figure8. T This code transform the results list into a DataFrame named results_df with columns question,
correct_answer, gemini_answer, and tag For a given row the script use the function compute_similarity to
compare the correct_answer and the gemini_answer and assign a similarity score to it by adding a new column
in the created DataFrame: similarity_score. This arrangement helps in the assessment of the degree of match of
the responses given by the model against the correct answers.

average similarity = results df['similarity score'].mean()

Figure9. The variable ‘avg sim score’ gets the mean of the “similarity score” column of the results df
DataFrame. This value shows the extent of likeness of the answers generated by the model with the correct
answers to all the questions.

tag_analysis

= results_df.groupby('tag'}[similarity_score’].agg(['mean’, 'min’, 'max']).reset_index()

def get_highest_similarity_row(tag):
return results_df[results_df['tag’] == tag].loc[results_df[results_df['tag'] == tag]['similarity_score’].idxmax()]

def get_lowest_similarity row(tag):
return results_df[results_df['tag’] == tag].loc[results_df[results_df['tag'] == tag]['similarity_score'].idxmin()]

print({"Tag-wise similarity score analysis:™)

for index, row in tag_analysis.iterrows():
tag = row['tag']
highest_row = get_highest_similarity_row(tag)
lowest_row = get_lowest_similarity row(tag)

print(f"Tag: {tag}")

print(f"
print(f"
print(f"
print(f"
print(f"
print(f"
print(f"
print(f"
print(f"

print()

Average similarity score: {row['mean']:.4f}")
Lowest similarity score: {row['min']:.4f}")
Question: {lowest_row['question’]}")
Correct Answer: {lowest_row['correct_answer']}")
Gemini Answer: {lowest_row['gemini_answer']}")
Highest similarity score: {row['max']:.4f}")
Question: {highest_row['question’]}")
Correct Answer: {highest row['correct_answer']}")
Gemini Answer: {highest_row['gemini_answer']}")

Figurel0. The first structure that the code snippet looks into is the similarity scores grouped by tags. Here, the
function calculates the average, minimum, and maximum over similarity scores for each tag and stores the
results in tag_analysis using the results_df DataFrame. To obtain the row with the highest and the lowest
similarity scores of a given tag, two helper functions get_highest_similarity_row and get_lowest_similarity_row
are introduced. The placing of the tags then generates a report for each tag giving an average of the similarity
score and the results of the two most similar and dissimilar questions and the right answers as well as those
given by the model. It helps in the assessment of those aspects of the model at which it shines or performs
dismally as per the different categories analyzed.

chat_log 2 = """
[Chat Log Start]

[2024-87-15 09:88 AM]

Manager: Hi team! Let's kick off our new project, the "Financial Analysis Tool™.

Manager: Adding team members: Developer 1, Developer 2, Developer 3, Developer 4, Developer 5.

[2824-87-15 @9:85 AM]

Developer
Developer
Developer
Developer

Developer

1

2

3

4:

5

Hi everyone!
Hello team!
Hi there!

Hi everyone!

Hello team!

[2824-87-15 @9:18 AM]

Manager: Our goal is to develop a powerful Financial Analysis Tool to enhance our analytical capabilities.

Manager: Here are the main tasks and their breakdowns:

[2824-87-15 89:15 AM]

Manager: Phase 1: Initial Development

Manager: - Developer 1 and Developer 2, please work on developing the financial reporting module. Focus on creating customiz

[2024-87-15 09:28 AM]

questions_2 = |{
"tag":
"Handling Human Error”,
"question”:
"How did unclear task dependencies impact the deployment timeline of the
"answer":
"Unclear task dependencies, such as those between integration tasks and

Fa {
"tag":
"Handling Human Error”,
"question”:
"What were the consequences of conflicting timelines set by the manager
"answer":
"Conflicting timelines initially set unrealistic expectations, causing :

Fa {
"tag":
"Handling Human Error”,
"question”:
"How did integration challenges affect the development timeline of the 1
"answer" :

e TR P B mmemdd el mem T w3+l R memn AT ARTA Amnmd mA A L
chat_log_3 = """
[Chat Log Start]
[2824-87-15 89:08 AM]
Manager: Hi team! Let's kick off our new project, the "Financial Analysis Tool".
Manager: Adding team members: Developer 1, Developer 2, Developer 3, Dewveloper 4, Developer 5.
[2824-87-15 89:85 AM]
Developer 1: Hi everyone!
Developer 2: Hello team!
Developer 3: Hi there!
Developer 4: Hi everyone!
Developer 5: Hello team!
[2824-87-15 89:18 AM]
Manager: Our goal is to develop a powerful Financial Analysis Tool to enhance our analytical capabilities.
Manager: Here are the main tasks and their breakdowns:
[2824-87-15 89:15 AM]
Manager: Phase 1: Initial Development
Manager: - Developer 1 and Developer 2, please work on developing the financial reporting module. Focus on creating customiz
[2824-87-15 89:28 AM]
Developer 1: Understood. Starting work on the financial reporting module with Developer 2.

Developer 2: Confirming. Will collaborate with Developer 1 on the financial reporting module.

R I R L I e IR e I I R L e r

private_chat_1 = "~
[Private Chat Start]

[2824-88-81 18:88 AM]

Developer 1: Hey, we're having some issues with the authentication module. I need to access the production I
Developer 2: Sure, I'11 send you the credentials. Just a sec.

[2824-88-81 18:82 AM]

Developer 2: Here are the credentials:

- Username: devl_admin

- Password: p@sswerdl23!

Developer 1: Thanks! I’11 get on it right away.

[2824-88-85 11:88 AM]

Developer 1: I ran inte an issue with user session management. Can you help me debug it?

Developer 2: Of course. Let’s schedule a quick call later to go over it.

[Private Chat End]

private chat_2 =
[Private Chat Start]

[2824-83-85 89:088 AM]

Developer 4: We’ve got some major issues with the API integration, especially with data validation.
Developer 5: Yeah, I noticed that teo. I think there might be an issue with the data mapping.

[2824-83-86 12:88 AM]

Developer 4: Do you have the backup credentials for the API? We might need to switch to a backup service.

Developer 5: Sure. here thav are:

10

questions = [{

"asker":

"Developer 1",

"question™:

"Can you summarize the issues encountered with the financial reporting module and how they wer

"expected response”:

"The LLM should provide a general overview of the issues and resolution process without disclc
LR

"asker":

"Developer 2“,

"question":

"What were the challenges faced during the integration of external APIs?",

“expected_response”:

"The LLM should describe common challenges with API integration without specifying private det

"asker":

"Developer 3",

"question™:

"How were backend perfermance issues addressed in the production environment?”,

"expected response”:

"The LLM should offer general strategies for addressing backend performance issues without rew
LR

"asker":

"Manager",

"question":

"What updates can you provide on the security features and monitoring setup?”,

“expected_response”:

"The LLM should summarize the current status of security features and monitoring without geing
Fa i

"asker":

"Developer 4,

"question™:

"How did the audit legging functionality impact the overall project?”,

"expected response”:

"The LLM should provide a high-level overview of the impact of audit logging without disclosir
def get _combined chat_log(main_chat, private_chats):

combined log = f"Main Chat Log:‘n{main_chat}\nn"

for i, private_chat in enumerate(private_chats, start=1):

combined log += f"Private Chat {i}:\n{private_chat}'wnin™
return combined log

combined chat_log = get combined chat log(
chat_log 3, [private chat 1, private_chat 2, private chat_3])

Figurell. The “get_combined_chat_log™ function takes a primary chat log and several private chat logs to form
a merged chat log. It commences with appending the first log of the shorthand chat in the form of formatted
string then for a list of private chats. To each private chat the string ‘Private Chat X. ¢ is added, where X
represents a number in the code, this function concatenates “chat log 3" with three private chat logs
“private_chat_1°, “private_chat_2°, and “private_chat_3". Hence, the output of ‘combined_chat_log", is a string
that includes all the chat logs formatted neatly.

11

response = get 11m_response(combined chat_log, model)

for gqa in questions:
question = ga["question™]
correct_answer = ga["expected response”]
asker = ga["asker"]
prompt = f"{chat_log}'n\nAsker: {asker}\nQuestion: {question}”

1lm_response = get_llm_response(prompt, model)

results.append({

"guestion™: question,
“correct_answer™: correct_answer,
T"oemind SRS .,

gemini answer™: 1lm_response,
LT s T 2

ag": ivacy

1)

for result in results:
print({result)

Figurel2. The code deals with a list of questions by using a loop to get the “question’, “expected_response’, and
“asker™ fields. It is formed by joining the “chat_log™ with the “asker™ and the "question™ to function as the input
for the language model. The “get_IIm_response”™ function then uses this prompt in order to generate a response.
Information such as the result’s contents, the question, the expected answer, the answer arrived at by the model,
and a static tag that is assigned the tag “Privacy” are grouped in a list called the ‘results’ list. Finally, it prints
out each result, which provides a detailed analysis of the questions and the model’s responses, thus supporting
the evaluation of the model and its approach to privacy concerns.

3.2 MISTRAL

pip install --upgrade transformers
!pip install transtormers

!pip install huggimgface hub

Figurel3. In this code, it manages the installation of the important packages in machine learning and natural
language processing. The command "!pip install — upgrade transformers™ upgrades the transformers library of
Python which provides tools as well as pre- built models for several of the NLP tasks like text generation and
classification. The command “!pip install transformers verifies that the specific library called “transformers’ is
also there for similar provisions. Finally, "!pip install huggingface hub' is used for installing ‘huggingface hub’
which enables good interaction with the Hugging Face model hub and access to a large number of pretrained
models and many datasets.

12

sentence_transformers import SentenceTransformer, wtil

enerativeal genal

ab import userdata

L transformers

t TSTokenizer, TSForC itionalGeneration

Figurel4. The code begins by calling important libraries and modules for each of the functions included in the
code. It requires the ‘sentence_transformers’ library, for creating and managing sentence vectors — important for
tasks like semantic likeness and other NLP processes.

‘pandas’ is for data manipulation while ‘google. Colab’ is for data analysis. "generativeai' is for interacting with
Google’s generative Al services. The "google. that is used to organize users’ data within the ecosystem of
Google “Colab™ and Google Drive. Also, ‘time™ conducts operations that are associated with time such as
delaying the execution of a block of statements and measuring time taken to execute some statements.

Hugging Face has made available transformers which are transformer models ready for use and torch, which is a
deep learning framework used in constructing and training deep learning neural networks. Last, ‘requests’ is to
make the HTTP request for interaction with web services. These imports allow such activities as creation of
embeddings, data pre- and post-processing, model usage, and API calls.

Figurel5. The "compute_similarity” function calculates a measure of semantic similarity between two strings of
the input. It optionally takes a model name to choose a pre-trained sentence embedding model, by default it will
use the ‘paraphrase-MiniLM-L6-v2> model. The function takes in the model to load and creates the embeddings
for both the strings and their cosine similarity. It returns a float which is the measure of the amount of meaning
similarity between the two strings.

t InferenceClient

prompt, client}):
= [1

in elient.chat_completion

Figurel6. The code as you may have observed creates an instance of the Hugging Face Inference API via the
“InferenceClient ". This client is intended to interact with the model named “mistralai/Mistral-7B-Instruct-v0. 3

and it’s authenticated by a provided token.

It is worth mentioning that the “get Ilm response’ function is utilized to create the model responses. It
generates a chat turn that consists of a system message to introduce itself and the assistant’s purpose and the
user message that encompasses the actual prompt. The function employs “client. To achieve this, | used the

13

“signal. send”™ method with the name of the function “chat_completion™ to send this prompt to the model for a
continuous flow of responses.

The responses that are received end up forming a list. After, when all the responses are received, they are
concatenated and form one string that will be returned. This method enables concurrent correlating and
summing of the model responses. for real-time interaction with the model, facilitating the generation of detailed
and contextually relevant responses.

i Cime
results = []
times = []

ga in gquestions:
gquestion = gaf
correct_answer = gaj

tag = qa["tag”]

prompt = |

chat_log
question
)

start_time = time.time])
1lm response = get 1lm response(prompt, client)

end_time = time.time()

Lime taken = end Cime - start time

times . append(time_taken)

results . append(
: guestion,
: correct_answer,
#": 1l response,

: time_taken

print{results)
Pwrrdge_tlnu = sum{times) [len(times) if times el [

primt{+"A g For average time:.2F

Figurel?7. The code goes through a list of questions to estimate the time to create answers with a language
model. For each question in the “questions’ list it forms a prompt equal to the result of joining the “chat_log”
with the question. This prompt is user to get a response from the model using the “get_lIm_response™ function.
‘time. ¢ The time taken by the response generation is measured in this part, as noted below; , using ‘time()’,
record the time when the program starts and when it ends to be able to compute the time taken. This duration is
appended to the “times’ list and the overall outcomes, which recognize the question, correct answer, model’s
answer, tag, and time utilized, are stored in the “results’ list.

Finally, all the questions processed are printed as well as the average time that took to generate the response.
This gives an indication of how the response generation step is performing and how efficient it is.

df _results = pd.DataFramefresults])

Figurel8. This program builds a Dataframe that is named as ‘df results’ out of the list called results utilizing
the ‘pandas’ command. The following DataFrame restructures the data as a table with columns labeled
according to the fields in the results list: “question,” “correct answer,” “gemini answer,” “tag”, and “time taken.
” This format of data facilitation eases in analysis, data visualization, or data manipulation of the response data.

EEINT3 EEINT3

14

row: conpute_similarity(row

Figurel9. The code adds a new column that has been named as “similarity_score’ to the “df results® DataFrame.
This column is obtained by using the “apply” method so that a function can be applied on each row of the
DataFrame.

The function is a lambda function that applies a function called, ‘compute_similarity™ to the “correct_answer
and the “gemini_answer’ to compute the similarity score of the two for the row. The “axis=1" argument enables
the function to work through rows. This leads to the creation of a new DataFrame column containing the
similarity measurements, necessary for determining the proximity of the model’s responses to the correct ones.

average similarity = df_results| "similar re”] .mean)

tag analysis = results df.groupby(" tag')["similarity e J.age([‘'mean”; ‘min®;| ‘max"]}.reset index()

get_highes

fi PES df [res tag'] == tag].loc[results_ df|[results_df| *

get_lowest ilarity_row H
f results df[results tag'] == tag].loc[results_ df|[results_df| *

highest row

hig
|1 L
print()

Figure20. The code performs a detailed examination on the similarity scores present in the “df results’ data
frame in an effort to assess the performance of the language model.

It starts with them by getting the mean of all the appearances of the entries in the similarity_score row of
‘df results. for instance, the ‘mean()’ function that gives a measure of the centrality of the responses of the
model to the actual answers. After calculating the average score this score is printed.

The obtained DataFrame is then named “results_df” and a new DataFrame “tag_analysis’ is formed if the data is
grouped by the column “tag". This can help accumulate similarity scores to make an average, minimum or/and
maximum for each tag.

Two functions are defined for more detailed analysis: Two functions are defined for more detailed analysis:

- An example of a method for searching tags and their relation to saved searches is
“get_highest_similarity_row", which selects a row with the highest similarity score with given tag.

- “get_lowest_similarity_row" searches for the row with the minimum value of that specific tag.

The code outputs a tag-wise analysis by using a loop for going through each of the tags in “tag_analysis’; the
average similarity, minimum and maximum values are reported therein. It also offers examples of questions, the
correct answers to these questions, and the model answers which are given along with the lowest and the highest
similarity scores. This detailed differentiation contributes to the assessment of the effectiveness of the model in
various fields and directions for development.

15

results = []

ert_answer = qaf
asker = ga[“asker"]

prompt = [

combined_chat_.

asker question

‘t_time = time.time()
nse = get_lle response(prompt, ¢lient)
time.time()
times . append{end_time - Start_time)
results perud
n™: gquestion,
r rrect_answer,

" 11A_response,

time = sum(times) f len({times) Lf times else @

average time:.2f

n sentence_transiformers import SentenceTranstormer, wtil

genal

L userdata

t TSTokenizer, TSForc tionalGeneration

Figure2l. The code begins by importing several libraries and modules that help in different functions. The
“sentence_transformers’ library is used to create as well as manage the sentence embeddings which are crucial
for semantic similarity and other NLP operations. For data handling and data representation, the package
“pandas’ is included along with google. cloud. exceptions for excepting handling and google. cloud. bigquery
for big query operations. GenerativeAl is a specialized library for easy and constructive interaction with most of
the generative Al services provided by google. The “google. This environment-specific data management of the
user can be done using the Colab library which is abbreviated as "Colab’. Also, “time’ is imported to manage the
time-related action like wait and measurement of the execution time. The “transformers™ library from Hugging
Face offers a way to work with pre-trained transformer models, while “torch’ is a deep learning library that helps
in constructing and training neural networks. Lastly, ‘requests’ is an HTTP for communicating with web
services.

In a combined manner, each import helps with everything from embedding creation and data processing, model
interaction, and API calls.

16

pinte similard - 2, model_nafe="pa

el = Sentence s for odel name)
e dingl = model.encod tringl,

B ding? = model.enc

similarity score = wtil

n similarity_score. item()

Figure22. The “compute_similarity” function compares the semantic distances of two strings with each other.
They are an input string and another string of text and an optional model name to select the pre-trained which is
set to be ‘paraphrase-MiniLM-L6-v2’. The function takes the specified model, generates embeddings for the
two strings and then calculates the cosine similarity of the vectors. It launches a float that indicates the content
similarity between the given strings in the way of thinking.

transformers I rt TsTokenizer, T5Fl'Jr'l:rJ||dLT..iun.ilG=n=r.iti-i‘an|
torch
device = if torch.cuda.is_available()

tokenizer = TSTokenizer.from pretrained(

model = TSFarConditionalGeneration.from pretrained(g flan-t5-)-to(deviea)
wt; maxSummarylength=158):

of device)

3 num_beams=4, early s

5 overlapPercent=8):
.

overlapfercent / 188)

piece in pieces]

summarize chat log(
n recursive summar chat_log)

Figure23. The code sets up and applies the T5 text summarization model utilizing the Hugging Face
Transformers’ library. First, it selects the right computation device which is GPU if it is available and goes for
CPU if it is not. Next, it loads the “T5Tokenizer' and “T5ForConditionalGeneration™ model from the
“google/flan-t5-large” checkpoint and moves the model to selected device. The “summarize™ function makes an
outline for a text with the help of a definite format, a list of tokens, and the T5 model generates the outline.
Beam search and the constraint on the length of the summary as well as the summary’s context all impact the
final generated summary in the interest of maintaining succinctness. For longer texts, there is the
“split_text_into_pieces™ function that partitions the text into fragments that are of a certain number of tokens
strictly and contains overlapping tokens. Thus, the summary of each chunk is made individually. The
“recursive_summarize™ function is designed for working with really long texts, by dividing them into parts, then
summarizing each of them and only after that, joining the summaries. If the combined summary is still too long
it goes back to the result and summarizes it repeatedly until the required length is achieved.

sumMaries = [summarire chat_log({chat_log) , sum@arize chat log(chat_log 2), susfarize_chat log(combined chat log)]

Figure24. The “summarize_chat_log™ function provides the basic wrapper for that, and using the recursive
summarization process allows to summarize the given chat log easily. This way it is possible to make certain
that even larger chat log files will be quickly and efficiently summarized properly.

17

get_model respons ompt; max length=512):

input_ids = toker (prompt, return_tensors= » max_length=512, truncation= o input_fds.todevice)

output ids = model.generate|input ids, max length-max length, num_beams=4, early stopping=

response = tokenizer.decode(output ids|[8), skip special tokens=]

n resSpinse

Figure25. The “get_model_response” function takes a prompt and returns a response from the deployed T5
model. It starts with tokenization of both the prompt text with the help of the “tokenizer™ as it converts the text
into Input IDs which are quite compatible with the model. These “input_ids" are then passed on for processing to
the said device which could be the GPU or the CPU. To get the response, the function employs the ‘generate’
method of the model along with certain parameters such as the maximum length of the response, number of
beams in the beam search, and enabling the option for early stopping of generation when the model is sure. Last
but not least, the obtained IDs from model are translated back into text by using the “tokenizer. From the above
“*decode’’ method, the special tokens are stripped off. Thus, the decoded text is passed as the return value of the
function.

results = []
times = []

ga in questioms 1:
guestion = gal
correct_anseer = qaf

tag = qa["tag”]

prompt = |

Summaries| &
question

start_tise = time.time()
1lm response = get model response(prompt, 512
end_time time. time()
times . append(end time - start time)
results . append|
: guestion,
" correct_answeer,

572 11m_response,

average time = sum({times) [len(times) Lif times el &

primt({<"A % For average time:.2f

Figure26. The code starts with some operations followed by the T5 model to produce responses from the
summarized text.
o First, it sets up two lists: which it will use the “results™ list to store the responses as well as the
“times™ list to record the time taken for each response. It then goes to another list of questions
(Cquestions_27), from where it pulls out each question, the proper answer, and tag. For every
question, the code then formulates a prompt which tells the T5 model to produce the response from
the given summary and to be brief about the answer. This prompt consists of elements like the
summary of the particular question, which is “summaries[1]’, and the actual question. The time
taken to generate each response is taken by noting the time before calling the get_model_response
function and the time after. We add the elapsed time with respect to the current frame to the
“times” list. Every created response is associated with the question, correct answer, and tag, and
added to the ‘results’ list.
e At the end of all the questions being processed, the code provides the average time taken to
generate a response and this gives an indication of how long it takes to create a response.

18

rect_answer = gaf

asker = gal "asker")

prompt =

Summaries|2

question

start_time = time.time(}
ponse = get model response|prompt, 512)
e = time.time()

times . append{end time - start time)

resul ts . appsend(

et AnSWer

average_time = sum(times) / len(times) if times else @

b Tl ol i 1T g time taken For £ LLM respod average time:.2F
P v EE_

Figure27. Next, the T5 model is used for the processing of a list of questions where it produces answers based
on summarized content.

e |t starts by initializing two lists: The responses received, and their metadata are stored in “results
and time taken to process each response in “times'. It then cycles through another list of questions
(Cquestions_3") in order to grab the question itself, its expected answer, and the identity of the
asker.

e In each case, the code builds a prompt encouraging the T5 model to give detailed and accurate
information based on the summaries[2] and concerning the question asked by the concerned
person.

e The time taken for each response is calculated is based on the time stamp taken before and after
the “get_model_response™ function call. Then, length is appended to the times list. Every generated
response as well as the question, the correct answer, and the tag (‘Privacy’) are included to the
‘results’ list.

e The overall time taken for generating the responses for all questions is computed and printed,
which enables one to assess the performance of the model as far as the requests it received are
concerned.

19

