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1. System Requirements 
This whole project takes into the account three important steps, 

RAM: 16GB DDR2 

OS: Windows 10 pro 

Processor: i5 7th generation 

Technology required: Python, Google Colab. 

 

2. Essential Steps to Follow 

2.1 Gemini 
 
Step – 1  -  Upload the python notebooks(.ipynb) on Colab . The simple way is to upload the file after opening 
Colab in Google. 
 

                   
 
Step – 2  -    Get a Gemini API key at - https://ai.google.dev/gemini-api/docs/api-key and follow the instructions. 
 

 
 
Step – 3 – Go to the “gemini.ipynb” notebook and add the key as a secret . Give name as  GOOGLE_API_KEY’ . 
Provide notebook access .  

https://ai.google.dev/gemini-api/docs/api-key
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Step – 4 : Run all. 
 

2.2 Mistral 
Step – 1  -  Upload the python notebooks(.ipynb) on Colab . A simple way is to upload the file after opening the 
Colab in Google. 
 

 
 
In the case of Mistral, a similar process needs to be done for setting up the API key, as below.  
 

 
 
Step – 2 : Get an Inference API Key for Mistral  

• Search for mistralai/Mistral-7B-Instruct-v0.3 in Hugging Face  

 
• Accept the request for using the model 

• Go to setting in your Hugging Face account, to access tokens , and create a new 

token  

• Mark the following boxes 

Click Here 
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• Under the Repositories permissions 

 

 
 

• Create new token  

Step – 3: Copy the token.  

Step – 4 : Replace the new token here in this cell.  

 

 
 
Step – 8: run all.  

2.3 T-5 
Step – 1  -  Upload the python notebooks(.ipynb) on Colab . The simple way is to upload the file after opening 
Colab in Google. 
 

 
 

 
 

Step – 2: For the google T5 code simply click run all.  
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Step – 3: For the analysis code simply click run all. 

 

 
 

 

3. Code Execution   

3.1 Gemini 
 

 
 

Figure1. Installs dependencies for libraries to function properly. 

 

 
 

Figure2. This code first loads two packages: `sentence-transformers` and `google-generativeai` packages, and 

then imports several modules. It includes utilities for actually dealing with the sentence embeddings, data, text 

formatting, and communication with Google’s AI. 

 

 
 

Figure3. In the “compute_similarity” function, coding analysis is used to estimate the similarity between two 

general strings. It takes two strings to process, and you can optionally include a pre-trained model in getting the 

sentence embeddings with ‘paraphrase-MiniLM-L6-v2’ as the default. The function takes a model, transforms 

the two strings to their embeddings and returns the cosine similarity between the two. It then returns a float, 

which points out how similar the two strings are semantically. 
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Figure4. The “setup_gemini” function is defined to set up and provide the generative AI model referred to as 

Google Gemini. This first logs the API key used with Google services from the user’s data. This key is specified 

to set options for the GenAI library. The function then starts up the Gemini model with the version ‘gemini-1. 0-

pro’. Once configuration has been done then the model is ready to be used for writing content or for generating 

the response. 

 

 
 

Figure5. The get_llm_response function is expected to take a certain prompt and return a response from a called 

language model. It accepts two parameters: elements which are prompt, an input text which defines what sort of 

response is expected as well as the model, identifying the language model that should be used. The function 

utilises the model to synthesize text from the given input prompt and the output is the generated text.  
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Figure6. The first few lines of this section of code create a variable called results as an empty list and 

preliminary work for the Google Gemini model by attaching the setup_gemini function. It next generates a 
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response to the chat_log prompt through the get_llm_response function together with the set model. 

Nevertheless, as will be seen in this snippet, the generated response is not included in the results list. 

 

.  

 

Figure7. This code uses the setup_gemini function to set up the Google Gemini model that is used in the 

generation of responses. It processes a series of questions by going through each of them in the same manner. It 

forms a prompt with the question by adding the content of the question to the value of chat_log. The 

get_llm_response function is then used, with this prompt and the model to generate a response. The generated 

response is then printed as well as the question, answer, and a tag are added and stored in the results’ list. This 

position helps in collating and analyzing the model’s answers against the right answers as shown above. 

 

 
 

Figure8. T This code transform the results list into a DataFrame named results_df with columns question, 

correct_answer, gemini_answer, and tag For a given row the script use the function compute_similarity to 

compare the correct_answer and the gemini_answer and assign a similarity score to it by adding a new column 

in the created DataFrame: similarity_score. This arrangement helps in the assessment of the degree of match of 

the responses given by the model against the correct answers. 

 

 
 

Figure9. The variable ‘avg_sim_score’ gets the mean of the “similarity_score” column of the results_df 

DataFrame. This value shows the extent of likeness of the answers generated by the model with the correct 

answers to all the questions. 
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Figure10. The first structure that the code snippet looks into is the similarity scores grouped by tags. Here, the 

function calculates the average, minimum, and maximum over similarity scores for each tag and stores the 

results in tag_analysis using the results_df DataFrame. To obtain the row with the highest and the lowest 

similarity scores of a given tag, two helper functions get_highest_similarity_row and get_lowest_similarity_row 

are introduced. The placing of the tags then generates a report for each tag giving an average of the similarity 

score and the results of the two most similar and dissimilar questions and the right answers as well as those 

given by the model. It helps in the assessment of those aspects of the model at which it shines or performs 

dismally as per the different categories analyzed. 
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Figure11. The `get_combined_chat_log` function takes a primary chat log and several private chat logs to form 

a merged chat log. It commences with appending the first log of the shorthand chat in the form of formatted 

string then for a list of private chats. To each private chat the string ‘Private Chat X. ‘ is added, where X 

represents a number in the code, this function concatenates `chat_log_3` with three private chat logs 

`private_chat_1`, `private_chat_2`, and `private_chat_3`. Hence, the output of `combined_chat_log`, is a string 

that includes all the chat logs formatted neatly. 
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Figure12. The code deals with a list of questions by using a loop to get the `question`, `expected_response`, and 

`asker` fields. It is formed by joining the `chat_log` with the `asker` and the `question` to function as the input 

for the language model. The `get_llm_response` function then uses this prompt in order to generate a response. 

Information such as the result’s contents, the question, the expected answer, the answer arrived at by the model, 

and a static tag that is assigned the tag “Privacy” are grouped in a list called the `results` list. Finally, it prints 

out each result, which provides a detailed analysis of the questions and the model’s responses, thus supporting 

the evaluation of the model and its approach to privacy concerns. 

3.2 MISTRAL 
 

 
 

Figure13. In this code, it manages the installation of the important packages in machine learning and natural 

language processing. The command `!pip install — upgrade transformers` upgrades the transformers library of 

Python which provides tools as well as pre- built models for several of the NLP tasks like text generation and 

classification. The command `!pip install transformers` verifies that the specific library called `transformers` is 

also there for similar provisions. Finally, `!pip install huggingface_hub` is used for installing ‘huggingface_hub’ 

which enables good interaction with the Hugging Face model hub and access to a large number of pretrained 

models and many datasets. 
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Figure14. The code begins by calling important libraries and modules for each of the functions included in the 

code. It requires the ‘sentence_transformers’ library, for creating and managing sentence vectors – important for 

tasks like semantic likeness and other NLP processes.  

`pandas’ is for data manipulation while ‘google. Colab’ is for data analysis. `generativeai` is for interacting with 

Google’s generative AI services. The `google. that is used to organize users’ data within the ecosystem of 

Google `Colab` and Google Drive. Also, `time` conducts operations that are associated with time such as 

delaying the execution of a block of statements and measuring time taken to execute some statements.  

Hugging Face has made available transformers which are transformer models ready for use and torch, which is a 

deep learning framework used in constructing and training deep learning neural networks. Last, `requests` is to 

make the HTTP request for interaction with web services. These imports allow such activities as creation of 

embeddings, data pre- and post-processing, model usage, and API calls. 

 

.  

 

Figure15. The `compute_similarity` function calculates a measure of semantic similarity between two strings of 

the input. It optionally takes a model name to choose a pre-trained sentence embedding model, by default it will 

use the ‘paraphrase-MiniLM-L6-v2’ model. The function takes in the model to load and creates the embeddings 

for both the strings and their cosine similarity. It returns a float which is the measure of the amount of meaning 

similarity between the two strings. 

 

 
 

Figure16. The code as you may have observed creates an instance of the Hugging Face Inference API via the 

`InferenceClient `. This client is intended to interact with the model named `mistralai/Mistral-7B-Instruct-v0. 3` 

and it’s authenticated by a provided token.  

 It is worth mentioning that the `get_llm_response’ function is utilized to create the model responses. It 

generates a chat turn that consists of a system message to introduce itself and the assistant’s purpose and the 

user message that encompasses the actual prompt. The function employs `client. To achieve this, I used the 
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`signal. send` method with the name of the function `chat_completion` to send this prompt to the model for a 

continuous flow of responses.  

 The responses that are received end up forming a list. After, when all the responses are received, they are 

concatenated and form one string that will be returned. This method enables concurrent correlating and 

summing of the model responses. for real-time interaction with the model, facilitating the generation of detailed 

and contextually relevant responses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure17. The code goes through a list of questions to estimate the time to create answers with a language 

model. For each question in the `questions` list it forms a prompt equal to the result of joining the `chat_log` 

with the question. This prompt is user to get a response from the model using the `get_llm_response` function.  

 `time. ‘ The time taken by the response generation is measured in this part, as noted below; , using `time()`, 

record the time when the program starts and when it ends to be able to compute the time taken. This duration is 

appended to the `times` list and the overall outcomes, which recognize the question, correct answer, model’s 

answer, tag, and time utilized, are stored in the `results` list.  

 Finally, all the questions processed are printed as well as the average time that took to generate the response. 

This gives an indication of how the response generation step is performing and how efficient it is. 

 

 
 

Figure18. This program builds a Dataframe that is named as ‘df_results’ out of the list called results utilizing 

the ‘pandas’ command. The following DataFrame restructures the data as a table with columns labeled 

according to the fields in the results list: “question,” “correct answer,” “gemini answer,” “tag”, and “time taken. 

” This format of data facilitation eases in analysis, data visualization, or data manipulation of the response data. 
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Figure19. The code adds a new column that has been named as `similarity_score` to the `df_results` DataFrame. 

This column is obtained by using the `apply` method so that a function can be applied on each row of the 

DataFrame.  

 The function is a lambda function that applies a function called, `compute_similarity` to the `correct_answer` 

and the `gemini_answer` to compute the similarity score of the two for the row. The `axis=1` argument enables 

the function to work through rows. This leads to the creation of a new DataFrame column containing the 

similarity measurements, necessary for determining the proximity of the model’s responses to the correct ones. 

 

 
 

Figure20. The code performs a detailed examination on the similarity scores present in the `df_results` data 

frame in an effort to assess the performance of the language model.  

 It starts with them by getting the mean of all the appearances of the entries in the similarity_score row of 

`df_results. for instance, the ‘mean()’ function that gives a measure of the centrality of the responses of the 

model to the actual answers. After calculating the average score this score is printed.  

 The obtained DataFrame is then named `results_df` and a new DataFrame `tag_analysis` is formed if the data is 

grouped by the column `tag`. This can help accumulate similarity scores to make an average, minimum or/and 

maximum for each tag.  

 Two functions are defined for more detailed analysis: Two functions are defined for more detailed analysis:  

 - An example of a method for searching tags and their relation to saved searches is 

`get_highest_similarity_row`, which selects a row with the highest similarity score with given tag.  

 - `get_lowest_similarity_row` searches for the row with the minimum value of that specific tag.  

 The code outputs a tag-wise analysis by using a loop for going through each of the tags in `tag_analysis`; the 

average similarity, minimum and maximum values are reported therein. It also offers examples of questions, the 

correct answers to these questions, and the model answers which are given along with the lowest and the highest 

similarity scores. This detailed differentiation contributes to the assessment of the effectiveness of the model in 

various fields and directions for development. 
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3.3 T5 Models  
 

 
 

Figure21. The code begins by importing several libraries and modules that help in different functions. The 

`sentence_transformers` library is used to create as well as manage the sentence embeddings which are crucial 

for semantic similarity and other NLP operations. For data handling and data representation, the package 

`pandas` is included along with google. cloud. exceptions for excepting handling and google. cloud. bigquery 

for big query operations. GenerativeAI is a specialized library for easy and constructive interaction with most of 

the generative AI services provided by google. The `google. This environment-specific data management of the 

user can be done using the Colab library which is abbreviated as `Colab`. Also, `time` is imported to manage the 

time-related action like wait and measurement of the execution time. The `transformers` library from Hugging 

Face offers a way to work with pre-trained transformer models, while `torch` is a deep learning library that helps 

in constructing and training neural networks. Lastly, `requests’ is an HTTP for communicating with web 

services.  

 In a combined manner, each import helps with everything from embedding creation and data processing, model 

interaction, and API calls. 
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Figure22. The `compute_similarity` function compares the semantic distances of two strings with each other. 

They are an input string and another string of text and an optional model name to select the pre-trained which is 

set to be ‘paraphrase-MiniLM-L6-v2’. The function takes the specified model, generates embeddings for the 

two strings and then calculates the cosine similarity of the vectors. It launches a float that indicates the content 

similarity between the given strings in the way of thinking. 

 

 
 

Figure23. The code sets up and applies the T5 text summarization model utilizing the Hugging Face 

Transformers’ library. First, it selects the right computation device which is GPU if it is available and goes for 

CPU if it is not. Next, it loads the `T5Tokenizer` and `T5ForConditionalGeneration` model from the 

“google/flan-t5-large” checkpoint and moves the model to selected device. The `summarize` function makes an 

outline for a text with the help of a definite format, a list of tokens, and the T5 model generates the outline. 

Beam search and the constraint on the length of the summary as well as the summary’s context all impact the 

final generated summary in the interest of maintaining succinctness. For longer texts, there is the 

`split_text_into_pieces` function that partitions the text into fragments that are of a certain number of tokens 

strictly and contains overlapping tokens. Thus, the summary of each chunk is made individually. The 

`recursive_summarize` function is designed for working with really long texts, by dividing them into parts, then 

summarizing each of them and only after that, joining the summaries. If the combined summary is still too long 

it goes back to the result and summarizes it repeatedly until the required length is achieved. 

 

 
 

Figure24. The `summarize_chat_log` function provides the basic wrapper for that, and using the recursive 

summarization process allows to summarize the given chat log easily. This way it is possible to make certain 

that even larger chat log files will be quickly and efficiently summarized properly. 
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Figure25. The `get_model_response` function takes a prompt and returns a response from the deployed T5 

model. It starts with tokenization of both the prompt text with the help of the `tokenizer` as it converts the text 

into Input IDs which are quite compatible with the model. These `input_ids` are then passed on for processing to 

the said device which could be the GPU or the CPU. To get the response, the function employs the ‘generate’ 

method of the model along with certain parameters such as the maximum length of the response, number of 

beams in the beam search, and enabling the option for early stopping of generation when the model is sure. Last 

but not least, the obtained IDs from model are translated back into text by using the `tokenizer. From the above 

‘`decode`’ method, the special tokens are stripped off. Thus, the decoded text is passed as the return value of the 

function. 

 

 
 

Figure26. The code starts with some operations followed by the T5 model to produce responses from the 

summarized text.  

• First, it sets up two lists: which it will use the `results` list to store the responses as well as the 

`times` list to record the time taken for each response. It then goes to another list of questions 

(`questions_2`), from where it pulls out each question, the proper answer, and tag. For every 

question, the code then formulates a prompt which tells the T5 model to produce the response from 

the given summary and to be brief about the answer. This prompt consists of elements like the 

summary of the particular question, which is `summaries[1]`, and the actual question. The time 

taken to generate each response is taken by noting the time before calling the get_model_response 

function and the time after. We add the elapsed time with respect to the current frame to the 

`times` list. Every created response is associated with the question, correct answer, and tag, and 

added to the ‘results’ list.  

• At the end of all the questions being processed, the code provides the average time taken to 

generate a response and this gives an indication of how long it takes to create a response. 
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Figure27. Next, the T5 model is used for the processing of a list of questions where it produces answers based 

on summarized content.  

• It starts by initializing two lists: The responses received, and their metadata are stored in `results` 

and time taken to process each response in `times`. It then cycles through another list of questions 

(`questions_3`) in order to grab the question itself, its expected answer, and the identity of the 

asker.  

• In each case, the code builds a prompt encouraging the T5 model to give detailed and accurate 

information based on the summaries[2] and concerning the question asked by the concerned 

person.  

• The time taken for each response is calculated is based on the time stamp taken before and after 

the `get_model_response` function call. Then, length is appended to the times list. Every generated 

response as well as the question, the correct answer, and the tag (‘Privacy’) are included to the 

‘results’ list.  

• The overall time taken for generating the responses for all questions is computed and printed, 

which enables one to assess the performance of the model as far as the requests it received are 

concerned. 


