

Configuration Manual

MSc Research Project

Practicum 2

Najam Ul Hassan Khan

Student ID: 23164816

School of Computing

National College of Ireland

Supervisor:

 Dr. Devanshu Anand

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Najam Ul Hassa Khan

…….………

Student ID:

23164816

………..……

Programme:

Ai For Business

………………………………………………………………

Year:

2023 - 2024

…………………………..

Module:

Practicum 2

…….………

Lecturer:

Dr. Devanshu Anand

…….………

Submission

Due Date:

12th August 2024

…….………

Project Title:

Leveraging AI for Agile Backlog Management Using LLMs: A

Comprehensive Approach

…….………

Word Count:

3385

……………………………………… Page Count: 22

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……

Date:

11th August 2024

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Najam Ul Hassan Khan

Student ID: 23164816

1. System Requirements
This whole project takes into the account three important steps,

RAM: 16GB DDR2

OS: Windows 10 pro

Processor: i5 7th generation

Technology required: Python, Google Colab.

2. Essential Steps to Follow

2.1 Gemini

Step – 1 - Upload the python notebooks(.ipynb) on Colab . The simple way is to upload the file after opening
Colab in Google.

Step – 2 - Get a Gemini API key at - https://ai.google.dev/gemini-api/docs/api-key and follow the instructions.

Step – 3 – Go to the “gemini.ipynb” notebook and add the key as a secret . Give name as GOOGLE_API_KEY’ .
Provide notebook access .

https://ai.google.dev/gemini-api/docs/api-key

2

Step – 4 : Run all.

2.2 Mistral
Step – 1 - Upload the python notebooks(.ipynb) on Colab . A simple way is to upload the file after opening the
Colab in Google.

In the case of Mistral, a similar process needs to be done for setting up the API key, as below.

Step – 2 : Get an Inference API Key for Mistral

• Search for mistralai/Mistral-7B-Instruct-v0.3 in Hugging Face

• Accept the request for using the model

• Go to setting in your Hugging Face account, to access tokens , and create a new

token

• Mark the following boxes

Click Here

3

• Under the Repositories permissions

• Create new token

Step – 3: Copy the token.

Step – 4 : Replace the new token here in this cell.

Step – 8: run all.

2.3 T-5
Step – 1 - Upload the python notebooks(.ipynb) on Colab . The simple way is to upload the file after opening
Colab in Google.

Step – 2: For the google T5 code simply click run all.

4

Step – 3: For the analysis code simply click run all.

3. Code Execution

3.1 Gemini

Figure1. Installs dependencies for libraries to function properly.

Figure2. This code first loads two packages: `sentence-transformers` and `google-generativeai` packages, and

then imports several modules. It includes utilities for actually dealing with the sentence embeddings, data, text

formatting, and communication with Google’s AI.

Figure3. In the “compute_similarity” function, coding analysis is used to estimate the similarity between two

general strings. It takes two strings to process, and you can optionally include a pre-trained model in getting the

sentence embeddings with ‘paraphrase-MiniLM-L6-v2’ as the default. The function takes a model, transforms

the two strings to their embeddings and returns the cosine similarity between the two. It then returns a float,

which points out how similar the two strings are semantically.

5

Figure4. The “setup_gemini” function is defined to set up and provide the generative AI model referred to as

Google Gemini. This first logs the API key used with Google services from the user’s data. This key is specified

to set options for the GenAI library. The function then starts up the Gemini model with the version ‘gemini-1. 0-

pro’. Once configuration has been done then the model is ready to be used for writing content or for generating

the response.

Figure5. The get_llm_response function is expected to take a certain prompt and return a response from a called

language model. It accepts two parameters: elements which are prompt, an input text which defines what sort of

response is expected as well as the model, identifying the language model that should be used. The function

utilises the model to synthesize text from the given input prompt and the output is the generated text.

6

Figure6. The first few lines of this section of code create a variable called results as an empty list and

preliminary work for the Google Gemini model by attaching the setup_gemini function. It next generates a

7

response to the chat_log prompt through the get_llm_response function together with the set model.

Nevertheless, as will be seen in this snippet, the generated response is not included in the results list.

.

Figure7. This code uses the setup_gemini function to set up the Google Gemini model that is used in the

generation of responses. It processes a series of questions by going through each of them in the same manner. It

forms a prompt with the question by adding the content of the question to the value of chat_log. The

get_llm_response function is then used, with this prompt and the model to generate a response. The generated

response is then printed as well as the question, answer, and a tag are added and stored in the results’ list. This

position helps in collating and analyzing the model’s answers against the right answers as shown above.

Figure8. T This code transform the results list into a DataFrame named results_df with columns question,

correct_answer, gemini_answer, and tag For a given row the script use the function compute_similarity to

compare the correct_answer and the gemini_answer and assign a similarity score to it by adding a new column

in the created DataFrame: similarity_score. This arrangement helps in the assessment of the degree of match of

the responses given by the model against the correct answers.

Figure9. The variable ‘avg_sim_score’ gets the mean of the “similarity_score” column of the results_df

DataFrame. This value shows the extent of likeness of the answers generated by the model with the correct

answers to all the questions.

8

Figure10. The first structure that the code snippet looks into is the similarity scores grouped by tags. Here, the

function calculates the average, minimum, and maximum over similarity scores for each tag and stores the

results in tag_analysis using the results_df DataFrame. To obtain the row with the highest and the lowest

similarity scores of a given tag, two helper functions get_highest_similarity_row and get_lowest_similarity_row

are introduced. The placing of the tags then generates a report for each tag giving an average of the similarity

score and the results of the two most similar and dissimilar questions and the right answers as well as those

given by the model. It helps in the assessment of those aspects of the model at which it shines or performs

dismally as per the different categories analyzed.

9

10

11

Figure11. The `get_combined_chat_log` function takes a primary chat log and several private chat logs to form

a merged chat log. It commences with appending the first log of the shorthand chat in the form of formatted

string then for a list of private chats. To each private chat the string ‘Private Chat X. ‘ is added, where X

represents a number in the code, this function concatenates `chat_log_3` with three private chat logs

`private_chat_1`, `private_chat_2`, and `private_chat_3`. Hence, the output of `combined_chat_log`, is a string

that includes all the chat logs formatted neatly.

12

Figure12. The code deals with a list of questions by using a loop to get the `question`, `expected_response`, and

`asker` fields. It is formed by joining the `chat_log` with the `asker` and the `question` to function as the input

for the language model. The `get_llm_response` function then uses this prompt in order to generate a response.

Information such as the result’s contents, the question, the expected answer, the answer arrived at by the model,

and a static tag that is assigned the tag “Privacy” are grouped in a list called the `results` list. Finally, it prints

out each result, which provides a detailed analysis of the questions and the model’s responses, thus supporting

the evaluation of the model and its approach to privacy concerns.

3.2 MISTRAL

Figure13. In this code, it manages the installation of the important packages in machine learning and natural

language processing. The command `!pip install — upgrade transformers` upgrades the transformers library of

Python which provides tools as well as pre- built models for several of the NLP tasks like text generation and

classification. The command `!pip install transformers` verifies that the specific library called `transformers` is

also there for similar provisions. Finally, `!pip install huggingface_hub` is used for installing ‘huggingface_hub’

which enables good interaction with the Hugging Face model hub and access to a large number of pretrained

models and many datasets.

13

Figure14. The code begins by calling important libraries and modules for each of the functions included in the

code. It requires the ‘sentence_transformers’ library, for creating and managing sentence vectors – important for

tasks like semantic likeness and other NLP processes.

`pandas’ is for data manipulation while ‘google. Colab’ is for data analysis. `generativeai` is for interacting with

Google’s generative AI services. The `google. that is used to organize users’ data within the ecosystem of

Google `Colab` and Google Drive. Also, `time` conducts operations that are associated with time such as

delaying the execution of a block of statements and measuring time taken to execute some statements.

Hugging Face has made available transformers which are transformer models ready for use and torch, which is a

deep learning framework used in constructing and training deep learning neural networks. Last, `requests` is to

make the HTTP request for interaction with web services. These imports allow such activities as creation of

embeddings, data pre- and post-processing, model usage, and API calls.

.

Figure15. The `compute_similarity` function calculates a measure of semantic similarity between two strings of

the input. It optionally takes a model name to choose a pre-trained sentence embedding model, by default it will

use the ‘paraphrase-MiniLM-L6-v2’ model. The function takes in the model to load and creates the embeddings

for both the strings and their cosine similarity. It returns a float which is the measure of the amount of meaning

similarity between the two strings.

Figure16. The code as you may have observed creates an instance of the Hugging Face Inference API via the

`InferenceClient `. This client is intended to interact with the model named `mistralai/Mistral-7B-Instruct-v0. 3`

and it’s authenticated by a provided token.

 It is worth mentioning that the `get_llm_response’ function is utilized to create the model responses. It

generates a chat turn that consists of a system message to introduce itself and the assistant’s purpose and the

user message that encompasses the actual prompt. The function employs `client. To achieve this, I used the

14

`signal. send` method with the name of the function `chat_completion` to send this prompt to the model for a

continuous flow of responses.

 The responses that are received end up forming a list. After, when all the responses are received, they are

concatenated and form one string that will be returned. This method enables concurrent correlating and

summing of the model responses. for real-time interaction with the model, facilitating the generation of detailed

and contextually relevant responses.

Figure17. The code goes through a list of questions to estimate the time to create answers with a language

model. For each question in the `questions` list it forms a prompt equal to the result of joining the `chat_log`

with the question. This prompt is user to get a response from the model using the `get_llm_response` function.

 `time. ‘ The time taken by the response generation is measured in this part, as noted below; , using `time()`,

record the time when the program starts and when it ends to be able to compute the time taken. This duration is

appended to the `times` list and the overall outcomes, which recognize the question, correct answer, model’s

answer, tag, and time utilized, are stored in the `results` list.

 Finally, all the questions processed are printed as well as the average time that took to generate the response.

This gives an indication of how the response generation step is performing and how efficient it is.

Figure18. This program builds a Dataframe that is named as ‘df_results’ out of the list called results utilizing

the ‘pandas’ command. The following DataFrame restructures the data as a table with columns labeled

according to the fields in the results list: “question,” “correct answer,” “gemini answer,” “tag”, and “time taken.

” This format of data facilitation eases in analysis, data visualization, or data manipulation of the response data.

15

Figure19. The code adds a new column that has been named as `similarity_score` to the `df_results` DataFrame.

This column is obtained by using the `apply` method so that a function can be applied on each row of the

DataFrame.

 The function is a lambda function that applies a function called, `compute_similarity` to the `correct_answer`

and the `gemini_answer` to compute the similarity score of the two for the row. The `axis=1` argument enables

the function to work through rows. This leads to the creation of a new DataFrame column containing the

similarity measurements, necessary for determining the proximity of the model’s responses to the correct ones.

Figure20. The code performs a detailed examination on the similarity scores present in the `df_results` data

frame in an effort to assess the performance of the language model.

 It starts with them by getting the mean of all the appearances of the entries in the similarity_score row of

`df_results. for instance, the ‘mean()’ function that gives a measure of the centrality of the responses of the

model to the actual answers. After calculating the average score this score is printed.

 The obtained DataFrame is then named `results_df` and a new DataFrame `tag_analysis` is formed if the data is

grouped by the column `tag`. This can help accumulate similarity scores to make an average, minimum or/and

maximum for each tag.

 Two functions are defined for more detailed analysis: Two functions are defined for more detailed analysis:

 - An example of a method for searching tags and their relation to saved searches is

`get_highest_similarity_row`, which selects a row with the highest similarity score with given tag.

 - `get_lowest_similarity_row` searches for the row with the minimum value of that specific tag.

 The code outputs a tag-wise analysis by using a loop for going through each of the tags in `tag_analysis`; the

average similarity, minimum and maximum values are reported therein. It also offers examples of questions, the

correct answers to these questions, and the model answers which are given along with the lowest and the highest

similarity scores. This detailed differentiation contributes to the assessment of the effectiveness of the model in

various fields and directions for development.

16

3.3 T5 Models

Figure21. The code begins by importing several libraries and modules that help in different functions. The

`sentence_transformers` library is used to create as well as manage the sentence embeddings which are crucial

for semantic similarity and other NLP operations. For data handling and data representation, the package

`pandas` is included along with google. cloud. exceptions for excepting handling and google. cloud. bigquery

for big query operations. GenerativeAI is a specialized library for easy and constructive interaction with most of

the generative AI services provided by google. The `google. This environment-specific data management of the

user can be done using the Colab library which is abbreviated as `Colab`. Also, `time` is imported to manage the

time-related action like wait and measurement of the execution time. The `transformers` library from Hugging

Face offers a way to work with pre-trained transformer models, while `torch` is a deep learning library that helps

in constructing and training neural networks. Lastly, `requests’ is an HTTP for communicating with web

services.

 In a combined manner, each import helps with everything from embedding creation and data processing, model

interaction, and API calls.

17

Figure22. The `compute_similarity` function compares the semantic distances of two strings with each other.

They are an input string and another string of text and an optional model name to select the pre-trained which is

set to be ‘paraphrase-MiniLM-L6-v2’. The function takes the specified model, generates embeddings for the

two strings and then calculates the cosine similarity of the vectors. It launches a float that indicates the content

similarity between the given strings in the way of thinking.

Figure23. The code sets up and applies the T5 text summarization model utilizing the Hugging Face

Transformers’ library. First, it selects the right computation device which is GPU if it is available and goes for

CPU if it is not. Next, it loads the `T5Tokenizer` and `T5ForConditionalGeneration` model from the

“google/flan-t5-large” checkpoint and moves the model to selected device. The `summarize` function makes an

outline for a text with the help of a definite format, a list of tokens, and the T5 model generates the outline.

Beam search and the constraint on the length of the summary as well as the summary’s context all impact the

final generated summary in the interest of maintaining succinctness. For longer texts, there is the

`split_text_into_pieces` function that partitions the text into fragments that are of a certain number of tokens

strictly and contains overlapping tokens. Thus, the summary of each chunk is made individually. The

`recursive_summarize` function is designed for working with really long texts, by dividing them into parts, then

summarizing each of them and only after that, joining the summaries. If the combined summary is still too long

it goes back to the result and summarizes it repeatedly until the required length is achieved.

Figure24. The `summarize_chat_log` function provides the basic wrapper for that, and using the recursive

summarization process allows to summarize the given chat log easily. This way it is possible to make certain

that even larger chat log files will be quickly and efficiently summarized properly.

18

Figure25. The `get_model_response` function takes a prompt and returns a response from the deployed T5

model. It starts with tokenization of both the prompt text with the help of the `tokenizer` as it converts the text

into Input IDs which are quite compatible with the model. These `input_ids` are then passed on for processing to

the said device which could be the GPU or the CPU. To get the response, the function employs the ‘generate’

method of the model along with certain parameters such as the maximum length of the response, number of

beams in the beam search, and enabling the option for early stopping of generation when the model is sure. Last

but not least, the obtained IDs from model are translated back into text by using the `tokenizer. From the above

‘`decode`’ method, the special tokens are stripped off. Thus, the decoded text is passed as the return value of the

function.

Figure26. The code starts with some operations followed by the T5 model to produce responses from the

summarized text.

• First, it sets up two lists: which it will use the `results` list to store the responses as well as the

`times` list to record the time taken for each response. It then goes to another list of questions

(`questions_2`), from where it pulls out each question, the proper answer, and tag. For every

question, the code then formulates a prompt which tells the T5 model to produce the response from

the given summary and to be brief about the answer. This prompt consists of elements like the

summary of the particular question, which is `summaries[1]`, and the actual question. The time

taken to generate each response is taken by noting the time before calling the get_model_response

function and the time after. We add the elapsed time with respect to the current frame to the

`times` list. Every created response is associated with the question, correct answer, and tag, and

added to the ‘results’ list.

• At the end of all the questions being processed, the code provides the average time taken to

generate a response and this gives an indication of how long it takes to create a response.

19

Figure27. Next, the T5 model is used for the processing of a list of questions where it produces answers based

on summarized content.

• It starts by initializing two lists: The responses received, and their metadata are stored in `results`

and time taken to process each response in `times`. It then cycles through another list of questions

(`questions_3`) in order to grab the question itself, its expected answer, and the identity of the

asker.

• In each case, the code builds a prompt encouraging the T5 model to give detailed and accurate

information based on the summaries[2] and concerning the question asked by the concerned

person.

• The time taken for each response is calculated is based on the time stamp taken before and after

the `get_model_response` function call. Then, length is appended to the times list. Every generated

response as well as the question, the correct answer, and the tag (‘Privacy’) are included to the

‘results’ list.

• The overall time taken for generating the responses for all questions is computed and printed,

which enables one to assess the performance of the model as far as the requests it received are

concerned.

