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Leveraging AI for Agile Backlog Management Using
LLMs: A Comprehensive Approach

Najam Ul Hassan Khan
23164816

Abstract

Agile project management is mostly preferred due to its flexibility, rapid ad-
vancement, and ability to align with stakeholders. Methodologies such as Scrum,
Kanban, Lean, Extreme Programming (XP), and Adaptive Project Framework
(APF) facilitate the process of incremental improvement. Nevertheless, the task
of overseeing the product backlog, which is a constantly changing inventory of in-
novations, bug fixes, and enhancements, can require a significant amount of effort.
LLMs like Llama, T5, ChatGPT, Mistral, and Gemini have emerged as promising
tools for automating task management and improving productivity. The study aims
to assess the usage of a multi-pipeline of LLMs in handling backlogs, namely by im-
proving productivity and controlling timeframes.The results will aid in enhancing
agile processes and incorporating AI into project management.

Keywords: Agile, Back Log management, LLMs, Similarity Scores, Latent
Similarity

1 Introduction

Agile methodology Srivastava et al. (2017) in project management is a planned approach
to managing the project in a more flexible and coherent manner by dividing the work
into smaller and more manageable phases with equal stress on continuous improvement.
It is a system that also goes around in cycles, consisting of planning, implementing, and
evaluating. Analyzing the outcomes of utilizing Agile is preferred in the management
of projects because of the versatility associated with it, ability to accommodate new
changes, and emphasis it places on the customer. Many teams use this methodology to
obtain the subsequent benefits of Agile:

• Swift advancement: By efficiently shortening the duration required to finish
different phases of a project, teams may promptly obtain input.

• Ensuring congruence between customers and stakeholders: By prioritising
customer needs and incorporating stakeholder feedback, the Agile team is effectively
positioned to provide outcomes.

• Iterative enhancement: The Agile project management methodology enables
teams to incrementally work on assignments.
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Figure 1: Agile Methodology framework (Source: Attlassian.com)

Agile project management constitutes various techniques including Scrum, Kanban, the
Extreme Programming (XP), and the Adaptive Project Framework (APF). (Atlassian.com)

1.1 Research Motivation

In Scrum and other Agile techniques Kumar and Bhatia (2012), the product backlog is
a meticulously ordered inventory of all potential components that can be included in the
final product. This encompasses several elements like features, bug patches, functional
and non-functional needs, and process enhancements. The list is dynamic and adapts to
the evolving requirements and desires of users, consumers, and stakeholders.

Figure 2: Product Backlog in the product management (Source: Rapidr.io)

The purpose of backlog management is to offer a concise and comprehensive understand-
ing of the tasks required to develop or improve the product. The development team
chooses tasks for each sprint and defines a time frame to finish it.
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Figure 3: Backlog in a simplified manner (Source: International Scrum Institute)

The main challenge in managing a backlog is that it takes huge efforts and time from
a manager when managing multiple teams and projects. With the rise of LLMs like
ChatGPT, Gemini, Llama, etc., information generation is fast.

1.2 Research Problem

An improperly organised backlog looks like a lengthy, continuously expanding record
that archives all the ideas and opinions of your team members on the project. This
extensive inventory hinders your ability to prioritize, and you face difficulty choosing the
appropriate tasks for long-term development cycles or short-term sprints.

1.3 Research Objective

Project Manager uses Microsoft Teams AI to recommend task durations and efforts in
work plans, using NLP and Azure Open AI. The system will provide the schedule of the
project with the analysis of the project name and description. Project Input is made,
and in the case of a detailed project, the project manager should make a revision task
and can optimize the task as necessary. Our objective is to make a system that could be
integrated into any CRM and perform this functionality.
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Figure 4: Microsoft Teams, automatic task summariser and manager for the Agile process
(Source: Microsoft Teams)

1.4 Research Questions

Through this research, we would be investigating the following:

RQ1: How to make a generic copilot that will help in making a summary and the severity
of the summary tasks based on all the details in the Jira?

RQ2: Can any LLM be used that will not show one client/users/different project details
in a summary task? In other words, can we make a data sovereignty task summariser
and scheduler for independent users?

1.5 Research Outcomes

In this research, we will make a LLM-Task scheduler that can be plugged into any agile
methodology’s product, and this can help in making a better task summariser. This task
summariser can not only enhance productivity but also manage timelines effectively. The
performance of the deployed model framework will be evaluated and discussed properly.

2 Related Work

OpenAI’s GPT and Google’s Gemini, which are substantial language models, present
possibilities for facilitating software engineering procedures. Utilising a LLM, software
engineering may be enhanced by providing developers with conversational assistance and
expert knowledge across the whole software development process. The current applic-
ations encompass a wide range of tasks, including extracting requirements, resolving
ambiguities, generating code and test cases, doing code reviews and translations, as well
as verifying and repairing software vulnerabilities Belzner et al. (2023). In the context
of agile software development, the task of preserving user stories is of utmost import-
ance, although it presents difficulties. This research investigates the utilisation of LLMs
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to enhance the calibre of user stories in agile teamsZhang et al. (2024). Effective team
communication is crucial to the functioning of any software development company, but
it may be difficult to coordinate and oversee. Frequently, meetings fail to adhere to norms
and encounter problems that hinder their effectiveness and productivity or prolong the
process of reaching decisions Cabrero-Daniel et al. (2024). Occasionally, the guidelines
impose a heavy load on the development teams and necessitate adaptation. The Post-
Rolling Refinement Model (PRIME), a Scaled Agile paradigm developed by the Austrian
Post Niessl et al. (2023), seeks to alleviate this challenge.

2.1 Research Towards Generative AI for Backlog Management
in Agile Process

Flexible and customer-centric, agile is an iterative method of project management. The
Agile Manifesto Fowler and Highsmith (2001), published in 2001, is the foundation of agile
methodology, which promotes adaptive planning, evolutionary development, early deliv-
ery, and continuous improvement while also supporting quick and adaptable responses to
change. Splitting the project into smaller, more manageable units called sprints is what
the Agile methodology does, as opposed to the standard waterfall process.

This study Nasiri and Lahmer (2024) proposes a technique for refining backlogs in Agile
operations. It entails categorising user stories and identifying their shared characterist-
ics. Subsequently, the k-means algorithm is employed to group these stories into clusters,
while the SBERT model is used to ascertain the semantic commonalities inside each
cluster. In addition, specific criteria were created to discover pairs of user stories with
contrasting meanings by leveraging the WordNet API and the typed dependencies gen-
erated by NLP technologies. Comparative studies have revealed that the SBERT model,
namely ”paraphrase-monet-base-v2,” regularly outperformed other models in terms of
precision, recall, and F1 scores for detecting comparable user tales.

This research Sun and Shao (2023) presents a system that makes backlog management
more efficient and easier to use by automating crucial activities. Starting with multi-
modal summarization driven by artificial intelligence, it gathers important project details
from many data sources, including video calls and instant messages, to paint a complete
picture of the project’s progress. MAPM can improve productivity and enable real-
time decision-making, especially in hybrid work environments. The paper Daniella et al.
(2023) conducted experiments to determine the efficacy of an Artificial Neural Network
(ANN) for user story classification. Three layers make up the ANN model: input, hidden,
and output. The input and hidden layers used ReLU activation, the output layer used
Softmax, and the Adam optimizer used a categorical cross-entropy loss function. Results
from multiple experiments demonstrated that the model was overfit Dhruva et al. (2024),
with training accuracy reaching 90% and validation accuracy falling as low as 30%. The
study found that the model’s performance was hindered by the unrestricted language of
the dataset and the imbalance in sample sizes. If we want user narrative datasets to be
better at classification, we need to work on these issues.
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2.2 Emergence of LLMs and SLMs on task management in the
Agile process

In research by Sami et al. (2024) concerned with how Generative AI, particularly LLMs
such as GPT incorporated in software engineering (SE) processes primarily within the
Agile task management system. With reference to the definitions of intelligent systems,
it must be mentioned that LLMs may contribute to automation of tasks such as error
identification, generation of code snippets, and preparation of documentation, which, in
turn, contribute to the enhancement of efficiency and quality of software development.

This paper Tikayat Ray et al. (2023) focuses on the technique aimed at automating and
normalizing the process of requirements analysis with the help of two LLMs, aeroBERT-
NER and aeroBERT-Classifier, introduced into the Agile processes. In the paper Cabrero-
Daniel et al. (2024), a procedure for converting customer requirements into a format
understandable by machines was introduced. Thus, to make the concept of machine-
generated templates usable under Agile methodologies in a real-life environment, it points
out the need for domain knowledge to enhance LLM outcomes. Agility stands to benefit
a great deal from LLMs in solution integration since it increases interactivity, eliminates
manual expenses, and enhances the quality of requirement translations.

This paper Kim et al. (2024) shall focus on realising the use of LLMs in contexts of
Agile, focusing on how the introduction of these LLMs affects the interpersonal processes
of collaboration and scheduling. AI is explained as essential for enhancing the organiz-
ational efficiency of meetings, delivering prompt analytics, and supporting other Agile
principles such as time division and collaboration expectations. Among the technological
problems that emerged and were corrected with the progression of the interventions were
data accuracy and real-time data integration. Due to these and similar problems, the
architecture of AI has been updated iteratively Tikayat Ray et al. (2023). Although the
participants displayed skepticism regarding the use of AI in the first place, the majority
were convinced that the system test analyses may enhance team chemistry and decision
making. To sum up the article, some recommendations concerning the intersection of AI
assistants and agile approaches are given.

2.3 Improvement in the decision-making process of the response
generated using LLMs

This research Kim et al. (2024) assists doctors in decision-making through the construc-
tion of MDAgents that employ LLMs. From the capacity of MDA, agents determine the
level of difficulty of the questions and, in the process, define the operationalization of
the LLMs. For cases that are less complex and more straightforward, a single PCP LLM
suffices, and it is referred to as the Relationship GP LLM.

Thus, this paper Lakkaraju et al. (2023) compares the bias and performance of three
chatbots: SafeFinance, ChatGPT (OpenAI), and Bard (Google). Two distinct situations
are used to conduct the tests: One is known as linked product discovery (LPD), and
it entails provision of the source of the response. The other is called no-link product
discovery (NLPD), and it does not. The chatbot is checked as to its correctness in
the answers provided through the use of Jaccard distance. Both ChatGPT and Bard
Feng et al. (2024) present considerable favoritism towards the users based on the name
provided, yet the results achieved by both systems are significantly different and far from
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the predictions through the source in the case of the LPD scenario. Thus, although
making replies accurately and impartially, SafeFinance can be less flexible compared to
LLM-based systems. Among the potential developments of the discussed approach for
increasing the efficiency of chatbots in various financial applications, in further studies,
it is possible to mention the combination of the advantages of both techniques.

This study Yang et al. (2024) analyses the differences in voting behaviours of people
and a LLM based on a study of information gathered from a simulated Participatory
Budgeting experiment in Zurich. The human voters included 180 college students, and
the students voted for 24 projects to fund with CHF 60,000. When LLMs reacted to the
same instructions and prompts, the authors were able to mimic voting as a human being,
especially LLaMA-2 and GPT-4 Turbo.

Throughout the assessment of the ethical impacts of the LLM He et al. (2024) prejudices
and stereotypes in the framework of democratic procedures, cautious adaptation was
recommended. In an effort to move the LLM outputs closer to human patterns, persona-
based simulations were performed, but it was stated that there are still prejudices. Due to
the subjectivity of explaining AI’s decision-making capabilities, co-text (CoT) reasoning
was applied, and it was noted to have a minimal impact on the percentage of votes.

2.4 Research Summary

GPT and Google’s Bard are some of the LLMs that are transforming software engineering
and agile activities like requirement extraction, code generation, and backlog handling.
Research shows that the introduction of LLMs improves the quality of the user stories,
management efficiency, and cohesion between the teams. For instance, AI in summariz-
ation and job priority ensures that the workflow is made more flexible in cases where its
necessary. Furthermore, MDAgents also enhance the medical prognosis concerning the
nature of queries and the proper LLMs to apply.

2.5 Research Niche

In this research work, we are going to explore different usages of LLMs like GPT, Mistral,
Llama, etc. for different applications that include summarization, Q&A, search, sentiment
analysis, and text generation. Unfortunately, there are relatively few insights into how
exactly such models work in different scenarios, let alone places and contexts. In addition,
comparisons such as cost of servers, storage, and computation play a rather vital role in
the decision to choose LLMs. From the analysis that has been conducted in this paper,
most LLMs have the potential to improve SE and agile relative to task automation and
decision-making.

3 Methodology

Advancements in multimodal AI allow teams to create content across several forms of
media, such as text, images, and video.
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3.1 Research Resources – API’s from Hugging Face

Hugging Face Transformers Shen et al. (2024) is a Python library that is open-source and
grants access to several pre-trained Transformers models for various multi-modal tasks
such as NLP, computer vision, audio tasks, and more.

Figure 5: An example of how to use and integrate the HF Api’s (Source: Hugging Face)

3.2 Research Resources – Modelling with Mistral, ChatGPT,
Llama, Gemini, one more

3.2.1 Gemini Gemini AI’s Team et al. (2023) modular design addresses various tasks,
including language understanding, decision-making, and planning. All these compon-
ents work together seamlessly, utilizing complex transformer networks to understand the
context, subtleties, and complexities of human language.

Figure 6: Gemini by Google (Source: Team, G., 2023)

Training Gemini AI involves massive datasets covering diverse languages, contexts, and
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problem-solving scenarios, including text corpora, interactive simulations, and real-world
problem scenarios. Reinforcement learning (RL) is a crucial part of this training, teaching
the system to make decisions based on reinforcement for good results and penalties for
bad ones.

3.2.2 Mistral Mistral Jiang et al. (2023) improves upon the successes of previous
models such as GPT-2 and GPT-3 by employing a transformer-based architecture similar
to those of its predecessors with enhanced dense and self-connected layers.

Figure 7: High Level representation of Mistral (Jiang, A.Q., et. al., 2023)

Mistral’s role as a reliable and morally upright artificial intelligence system is reinforced
by the agency’s commitment to thorough testing and continuous monitoring, which serves
to prevent the creation of harmful or misleading information.

3.2.3 Google T5 T5 (Google Text to Text Transformer) Roberts et al. (2023) em-
ploys a technique that involves treating problems that include text conversion. T5 has
been performing tasks such as translation, summarization, question-answering, and text
generation efficiently with vector transformations.
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Figure 8: Network architecture of Google T5 (Roberts, A., et. al., 2023)

The efficacy of T5 can be attributed to its extensive training on diverse textual material,
encompassing books, journals, and web content. This is equipped with a comprehensive
comprehension of the complexities and nuances from understanding so much of huge
corpus.

3.3 Research Resources – Similarity Scoring Models

The Sentence Transformer model ’all-MiniLM-L6-v2’ analyses the semntic similarity
among textual vectors. It involves the generation of high-dimensional vector embeddings
for sentences. The vectors are subsequently compared using the cosine similarity tech-
nique to determine their similarity scores. This methodology ensures that the similarity
scores accurately reflect the semantic relationship between texts.
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Figure 9: Network architecture of Sentence Transformers

3.3.1 Sentence Transformers The Sentence Transformers Nikolaev and Padó
(2023) library is specifically designed to generate sentence-level embeddings. This library
enhances the existing transformer models by generating dense vector representations for
semantic analysis.

Figure 10: Basic Network architecture of generation of the similarity scores
Nikolaev and Padó (2023)

The ‘paraphrase-MiniLM-L6-v2‘ utilizes the MiniLM architecture to provide enhanced
sentence embeddings. This model provides a harmonious combination of computational
efficiency and semantic accuracy using a transformer that is both concise and efficient.
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Figure 11: Creat ion of embeddings and the process for training and generation of weights
Nikolaev and Padó (2023)

3.3.2 Cosine similarity In order to assess the similarity between the vector embed-
dings generated by the ’all-MiniLM-L6-v2’ model, cosine similarity metrics were em-
ployed. The cosine similarity measure calculates the cosine of the angle between two
vectors in the embedding space, resulting in a similarity score ranging from -1 to 1.

Figure 12: Cosine Similarity
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4 Implementation

4.1 Algorithm Steps

Figure 13: Back-Log analysis for the auto generated responses

Steps for Implementing LLMs in JIRA Backlog Management:

Step 1: Establishing clear objectives defining the scope of the project – The
copilot will assist with essential activities including backlog refining, user story building,
prioritizing, and task management. To identify the objectives of the implementation,
with a specific emphasis on enhancing efficiency, precision, and user contentment.

Step 2: Choosing Suitable LLMs – To Assess several LLMs (such as Mistral, Gemini,
Llama, Phi, GPT-4, Bard and T5) by considering performance indicators, cost, storage
demands, response time, geographical accessibility, and integration simplicity.

Step 3: Develop the structure and organization of the system’s architecture
– To develop a proper strategy that can include the LLMs into JIRA, utilizing APIs or
plugins to enable smooth and effortless communication, and to develop a robust backend
architecture capable of efficiently managing LLM (Large Load Management) requests
with a focus on scalability and dependability.

Step 4: Implement the Copilot functionalities – Backlog Refinement : For
this, we will utilize NLP tools to examine and refine user stories by identifying duplicate
entries and proposing improvements.
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4.1.1 Sub – step 1: User Story Generation – The best models to be em-
ployed are LLMs to produce user stories based on natural language
needs supplied by users.

4.1.2 Sub – step 2: Prioritization – In this search, we will use a similarity
matrix and ROUGH scores with the assistance of Learning-based
Language Models (LLMs).

Step 5: Develop a graphical user interface (GUI) – We will then create an
intuitive interface in JIRA that allows users to easily engage with the copilot. We will
make sure that the UI offers distinct choices for various copilot capabilities and presents
LLM-generated ideas in a visible manner.

Step 6: Perform integration and testing – We will integrate the copilot with JIRA
to establish seamless data synchronization between the platform and the LLMs.

4.2 Data

Using two comprehensive chat logs, this study reconstructs the conversations that oc-
curred amongst project managers while they worked to establish a ”Financial Analysis
Tool.” In the first log, we see a situation where everyone is on the same page, tasks are
finished on time, and teamwork is smooth. We will use the following tags: Information
Retrieval, Summary, Named Entity Recognition, and Task Assignment Tracking.

4.2.1 Synthetic Chatlog Two detailed chat logs were used in the project manage-
ment simulation to show how team members interacted, what they were assigned, and
how progress was tracked while building a ”Financial Analysis Tool.” Conversation log
provides a comprehensive analysis of the complex dynamics and practical challenges that
emerge in professional environments, acting as a notable case study of project manage-
ment in practice.
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Figure 14: Example of the head of the dataset

4.2.2 Question Answer Pairs The primary objective of the first chatlog is to ana-
lyse LLMs’ response in mainly “Task Assignment Tracking”, “NER”, and “Information
Retrieval”.

Figure 15: Example of the head of the dataset

4.3 LLM answer generation

Selecting an appropriate model for text generation, or q&a, is the initial step in evaluating
the effectiveness of various language models. This evaluation is done by measuring cosine
similarity on embeddings generated by paraphrase-MiniLM-L6-v2 api modules.
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4.3.1 Gemini

Figure 16: Code snippet for Gemini

Access to the capabilities of the generative model can be obtained by utilizing the API
key, which serves as a form of authentication. Defining a prompt is the initial stage in the
content generation process, which occurs after the generative model has been set up. The
provided prompt serves as the input for the generative model, containing the necessary
context or query for the model to effectively generate a response.

4.3.2 Mistral

Figure 17: Code snippet for Mistral

4.4 T5-Models Answer Generation

We used two different versions of the T5-Flan model, ’t5 flan large’ and ’t5 flan base’, for
generating the query responses. Due to the models’ 512-token limitation, summarizing
the conversation logs was an essential first step, as they often exceeded this limit. A
recursive summation strategy had to be developed for the summary process in order to
successfully condense the information while preserving the vital material for providing
accurate answers.
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Figure 18: Code snippet for T5

An organized prompt that incorporates the collected chat log with the specific question
asked is part of the systematic approach to answer generation. After that, the T5-Flan
model receives the prompt and is tasked with creating a response.

Figure 19: Response Generation

4.5 Prompting

It is crucial to create effective prompts to fully utilize the potential of LLMs and generate
accurate and contextually appropriate responses. Throughout our research, we employed
different prompting tactics tailored to three distinct models: T5-Flan, Gemini, and Mis-
tral. Each model required a unique approach to prompting, tailored to its architecture
and functional capabilities.
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5 Results and Analysis

5.1 Gemini

5.1.1 Case 1 When it comes to Information Retrieval, the Gemini model demonstrated
a lot of accuracy concerning the average of similarity, which is 0.9004. In the test where
Named Entity Recognition was applied the mean similarity score was 0.7326. The scores
figured were rather inconsistent and varied between 0.4251 and 1.0000. As for the tag term
‘Summary’, the calculated average similarity score based on the work of the algorithm
was equal to 0.6451. Each of the scores, ranging between 0.4191 and 0.7893, indicates
that there is potential for adding more content to the model. Comparing all the chatlogs,
the average similarity score was 0.5992; the “Task Assignment Tracking” category rises to
the peak of completeness levels. The scores of task assignment tracking and description
varied from a low of 0.2423 to a high of 0.8300, it can be considered rather satisfactory.

Figure 20: Gemini performance for different tasks for case 1 data

5.1.2 Case 2 Through the analysis of Case 2 for the Gemini model, we gained valuable
insights into its performance across different project management and communication di-
mensions. The model’s average processing time was found to be 5.10 seconds, serving
as a baseline for evaluating its effectiveness. The similarity score for handling commu-
nication failures was assigned a score of 0.5427. The model achieved a similarity score of
0.5449 for timeframes that were in conflict with each other. Gemini showcased impressive
expertise in handling human error, evident from its outstanding similarity score of 0.6628.
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Figure 21: Gemini performance for the case 2

5.1.3 Case 3 Despite the LLM’s success in maintaining privacy, there were some short-
comings in the accuracy and detail of the responses. As questions grew less specific, the
LLM’s responses occasionally lacked the detailed insights that could have been derived
from the chat logs. Notably, there were gaps in information regarding specific actions
taken to address challenges and the nature of those challenges. This issue highlights
a common challenge in generalization, where responses, while privacy-compliant, some-
times lacked the depth needed to fully address the complexities of the queries. Overall,
the LLM effectively balanced the need for confidentiality with the provision of relevant
information. The consistent maintenance of privacy, despite leading to some generaliz-
ations, underscores the LLM’s ability to handle complex and abstract questions while
safeguarding sensitive information. The study concludes that the LLM demonstrated a
strong commitment to privacy, successfully navigating the trade-off between confidenti-
ality and response accuracy.

5.2 Mistral

5.2.1 Case 1

The similarity score for Mistral was found to be 0.7502 for the category of ‘Information
Retrieval’ tag. The scores varied from a low of 0. 5665 to 0. 8929 which points to a
relatively skewed rightwards. The model was most effective in terms of the acquisition
and retrieval of specific knowledge. For the “Named Entity Recognition” category, the
similarity score ranges from 0.4161 to 0.7243. Consequently, the average similarity in
terms of the “Summary” tag was relatively low and attained an average value in the
Mistral model of 0.7130.
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Figure 22: Mistral performance for case 1

5.2.2 Case 2

The average response time was found to be 5.70 seconds for the Mistral for this particular
case, offering valuable insights. For the ”Communication Breakdowns” tag, the Mistral
achieved an average similarity score of 0.5761 also the scores indicate a range of per-
formance levels in managing communication concerns, with values ranging from 0.5461
to 0.6062. The model achieved a similarity score of 0.6592 in the ”Conflicting Timelines”
category, indicating its performance was average. The scores displayed a consistently
strong performance, ranging from 0.6384 to 0.6840.

Figure 23: Mistral performance for case 2

Whereas for ”Handling Human Error” category, the model achieved a similarity score of
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0.7219, with values ranging from 0.6209 to 0.8411. The model effectively explained how
communication breakdowns impacted task prioritization and dependency management.
In the category of ”Task Dependencies,” the Mistral model achieved an average similarity
score of 0.7877. The scores throughout the performance ranged from 0.7497 to 0.8446,
indicating a strong ability to manage and communicate work dependencies.

5.2.3 5.2.3 Case 3

The analysis performed in case 3 involved the comparison of Mistral’s answers to privacy
requirements and probe points that were Accuracy, Response quality, and the trade-
off between privacy and information disclosure. In Case 3, Mistral was very cautious
precisely about protecting individuals’ identities. This was done in a very foresighted
and wise way by not disclosing internal workings of the office and individual efforts hence
ensuring a strict confidentiality even in the most intricate of situations. Considering
the potential complaints and their potential solutions within the conversation logs, it is
objective in summing up the core problems and possible solutions. Besides, it offered
specific information as to the boost of the backend’s operations and solving problems at
the present time.

5.3 T5 Flan Large

5.3.1 Case 1

The average similarity score for information retrieval was calculated to be 0.6176. Al-
though the model achieved a perfect match in certain scenarios, such as identifying the
new project name, it struggled to answer questions that need precise developer knowledge,
resulting in a low similarity score of 0.1492. In the field of named entity recognition, the
model achieved an average similarity score of 0.3284. While the system demonstrated pro-
ficiency in identifying specific items, such as Developer 3’s assignment, it often struggled
to acknowledge crucial information, as evidenced by the notably low similarity score of
0.0813 for task statuses. The tasks that were analyzed for summary had an average
similarity score of 0.3535.
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Figure 24: T5 performance in case 1

Although the model performed reasonably, its capacity to capture essential details in
summaries was restricted. The task assignment tracking findings indicate that the average
similarity score was 0.2919.

5.3.2 Case 2

The average similarity score for the category ”Task Dependencies” was 0.3016. The
mean similarity score for the ”Technical Issues” category was 0.2994. The omission of
critical details and reliance on generic information are clear signs that there is a need for
improvement in managing complex project scenarios.

Figure 25: T5 performance for case 2
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5.3.3 Case 3

Google T5 often gave answers that were missing pieces because it couldn’t keep the right
context across multiple questions. On other occasions, the answers were discontinuous
and disjointed, which diminished the depth of the data provided. In these instances, the
loss of context was obvious.

As a matter of fact, the replies were most of the time short and omitted all the other minor
details asked. Essential information, as well as insufficient context, results in regression
of the response quality on the whole; thus, a weak description contributes to this process
as well. The given answers may be considered vague or insufficient; moreover, several
of them did not answer the questions comprehensively. Google T5 managed to keep
private information private, but the answers it gave were frequently less helpful because
they lacked detail and context. The model’s performance issues disrupted the balance
between sharing useful information and protecting privacy.

5.4 T5 Flan Base

5.4.1 Case 1

The similarity scores with the computed average for the model were found to be 0.5576.
The model’s results in the context of named entity recognition were also found to be
lower, with an average similarity equal to 0.4541. The model obtained an average of
the two scores for similarity, which was 0.3095, indicating that the method’s capacity to
summarize information was comparably low. As indicated by the average similarity score
of 0.392, the category of task assignment monitoring exposed the model’s weaknesses.

Figure 26: T5 Flan Base performance for case 1

5.4.2 Case 2

The similarity score of 0.3561, which was the highest score in this category, was nonethe-
less seen as quite low. The model’s performance in the Conflicting Timelines category
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was consistently low, with an average score of 0.2575 throughout the experiment. The
highest similarity score for this tag was 0.4900, which suggests occasional partial accur-
acy. Among the several tags, the tag with the highest average score was ”Handling
Human Error,” which scored 0.4233.

Figure 27: T5 Flan Base performance for case 2

An additional demonstration of the constraints of the model is provided by the examin-
ation of the tags for Task Dependencies and Technical Issues. Despite receiving average
scores of 0.3510 and 0.3126, respectively, the responses frequently failed to appropriately
identify and comment on significant dependencies and technical issues.

5.4.3 Case 3

Oftentimes, the model’s output did not align with the expected responses, indicating
issues with both relevance and level of information. For instance, the model consistently
generated outcomes that were either unrelated or excessively basic, and it was unable
to offer significant insights into the complex project inquiries that were posed. The
tendency to provide ambiguous responses hinders the model’s ability to provide actionable
information in the setting of project management, where precise and detailed responses
are necessary for effective decision-making.

5.5 Discussion

Gemini’s score of 0.9004 in the Information Retrieval category is much greater than
Mistral’s score of 0.7502, T5-Large’s score of 0.6176, and T5-Base’s score of 0.5576.
Gemini clearly outperforms the other models in terms of its capacity to retrieve relevant
information due to a significant disparity between Gemini and the other models.

24



Figure 28: Performance Comparison for all the models for the Information Retrieval

Gemini outperforms all other models in Named Entity Recognition, achieving a score
of 0.7326. Mistral follows closely in second place with a score of 0.5675. T5 - Large and
T5 - Base have achieved scores of 0.3284 and 0.4541, respectively, which positions them
lower in the rankings. Gemini and Mistral have a notable disparity (0.1651), indicating
that Gemini possesses a more robust ability to identify named entities.

Figure 29: Performance Comparison for all the models for the NER

In the Summary category, Mistral achieved a score of 0.7130, surpassing Gemini’s score
of 0.6451. Although the disparity between Mistral and Gemini (0.0679) is small, it is
nonetheless meaningful, implying that Mistral may possess a minor edge in literary sum-
marization. The performance of T5 Large (0.3535) and T5-Base (0.3095) are significantly
lower, which suggests that these models may have difficulty producing summaries that
are brief. The efficiency of Mistral is shown in the disparity between the Mistral model
and the T5 model while summarizing tasks.
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Figure 30: Performance Comparison for all the models for the Summary Scores

Gemini received a score of 0.5992 for Task Assignment Tracking, which is slightly
higher than the score of 0.5911 received by Mistral. Given the negligible discrepancy of
0.0081 between the two models, it can be inferred that they exhibit comparable perform-
ance in this particular category.

Figure 31: Performance Comparison for all the models for the Task Assignment

There is a likelihood that T5-Large (0.2919) and T5-Base (0.3920) have inferior ratings,
suggesting that they may not be capable of effectively performing task assignment track-
ing. With a score of 0.7219, Mistral is in the lead in the category of Handling Human
Error, surpassing Gemini’s score of 0.6628. The difference, which is 0.0591, is not signi-
ficant, which suggests that Mistral is slightly more adept at dealing with human errors.
The lower scores for T5-Large (0.3379) and T5-Base (0.4233) indicate that these models
may not be as effective at addressing human error as other models currently available.
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Figure 32: Performance Comparison for all the models for handling human error scores

Mistral’s score of 0.5761 is significantly greater than Gemini’s score of 0.5427. Mistral
may be able to withstand communication breakdowns somewhat better than other
technologies, as indicated by the difference (0.0334), which is significant but not excess-
ively large. The performance disparity between T5-Large (0.2440) and T5-Base (0.2537)
is significant, indicating potential limits in managing communication concerns for these
two T5 variants.

Figure 33: Performance Comparison for all the models for Communication breakdown
Scores

When it comes to managing conflicting timelines, Mistral has the highest score of
0.6592, followed by Gemini with a score of 0.5549. Given that the difference (0.1043) is
statistically significant, it may be inferred that Mistral is more effective in this case. Both
T5-Large (0.4069) and T5-Base (0.2575) have lower scores, which suggests that they may
have difficulty managing their timelines.
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Figure 34: Performance Comparison for all the models for the Conflicting Timelines
Scores

The management of task dependencies is an area in which Mistral excels, earning a
score of 0.7877, whereas Gemini receives a score of 0.7118. In light of the fact that the
difference (0.0759) is not only moderate but also significant, it is clear that Mistral is
superior in terms of dependencies.

Figure 35: Performance Comparison for all the models for the Summary Scores

As far as addressing technical issues is concerned, Mistral is at the top with a score
of 0.7031, while Gemini has a score of 0.5504. There is a significant difference (0.1527)
between the two, which suggests that Mistral is preferable when it comes to addressing
technological issues.

28



Figure 36: Performance Comparison for all the models for the Technical Issues Scores

This demonstrates that T5-Large (0.2994) and T5-Base (0.3126) have lower scores, which
highlights the limits they have in terms of handling technical problems. Due to the huge
difference that exists between the Mistral and T5 models, Mistral excels in this particular
domain.

6 Conclusion and Future Work

A comprehensive assessment of a large number of “LMs” labeled as Google T5, Gemini,
and Mistral was carried out in various tasks. The study in this paper revealed several
trends in the evaluation performance patterns and gave clear indications of what could be
developed. Google T5 had significant difficulties in summarizing the dense and
complex conversation and produced either incomplete or fragmented answers.
Consequently, it showed that the model’s inability to track context results in
a massive loss of information, especially when it involves dialogues that require
deftness in analyzing arguments. On the other hand, the Gemini and Mistralmodels
performed well in tasks, surpassing T5’s ability to deal with a wide range of
questions and focus on a range of topics much more relevant to the current
context.

To give an overview, the work presented in this research is focused on the need to en-
hance the Google T5 model’s ability to retain contextual information and
develop methods for generating concise summaries. Thus, in order to manage
voluminous and hardly balanced conversations, it might be necessary to im-
prove the structure of the model or add sophisticated training techniques that
focus on context-saving. To improve the performance of the network in tasks related to
summarization, it is possible to apply several strategies that contain better context-aware
embeddings or the application of hierarchical attention processes.

However, robustness can be improved by implementing domain-specific fine-tuning,
expanding the training sets with a greater number of cases of concern, or using
such techniques as transfer learning or adversarial training. Moreover, compar-
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ing the effectiveness of the models in real-life scenarios and incorporating the
users’ feedback into the training process may yield useful observations that
could be used in subsequent improvements. Instead, the key goal of all current
innovative activities should be aimed at eradicating these limitations and improving the
accuracy, context-sensitivity, and usefulness of the models.
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