

Configuration Manual

MSc Research Project AI For Business

Ebubekir Ayhan Student ID: x23141727

School of Computing National College of Ireland

Supervisor:

Victor Del Rosal

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Ebubekir Ayhan
Student ID:	x23141727
Programme:	AI For Business Year:2024
Module:	MSc Research Project
Lecturer:	Victor Del Rosal
Due Date:	16.09.2024
Project Title:	Configuration Manual
Word Count:	

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project. <u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Ebubekir Ayhan
Date:	16.09.2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Ebubekir Ayhan Student ID: x23141727

1 Introduction

Aim of this configuration manual document is to show the steps of the machine learning model that is built by Rapidminer.

2 System Requirements

To ensure optimal performance and stability of RapidMiner Server with an attached Job Agent, please make sure your system meets the following minimum requirements:

Minimum System Requirements

Processor:

• Dual-core 2GHz processor

Memory:

• 8GB RAM

Disk Space:

More than 10GB of free disk space

 Note: The filesystem needs to support UTF-8 encoding

Operating System:

- 64-bit recommended
- Windows Server 2008 R2, 2012, 2012 R2, 2016, 2019
- Linux

Web Browser:

- Internet Explorer 10 and above, or any modern web browser
 - Recommended browsers include Google Chrome, Mozilla Firefox, Microsoft Edge, and Safari

Browser Resolution:

• Minimum resolution of 1024x768 pixels

These requirements are essential to ensure that RapidMiner Server operates efficiently and reliably. Ensuring that your system meets these specifications will help you achieve the best performance and user experience.

3 Implementation

After installing rapidminer on your computer, the steps of machine learning model are shown below.

3.1. Data Collection

The dataset has been taken from the Kaggle. The dataset can be downloaded from the link <u>https://www.kaggle.com/datasets/shilongzhuang/telecom-customer-churn-by-maven-analytics</u>.

≡	kaggle	Q Search	Sign In Register
+	Create	💿 SHI LONG ZHUANG - UPDATED 2 YEARS AGO	mload (444 kB) 🔻 🖉 🗄
Ø	Home		
Φ	Competitions	🙁 🗳 Telecom Customer Churn Prediction	
Π	Datasets	Why customers churn? How can you improve customer retention?	
ጹ	Models		
\sim	Code	Data Card Code (46) Discussion (1) Suggestions (0)	
=	Discussions		
6	Learn	About Dataset	Usability ① 10.00
~	More	Contents	License
		This dataset contains 0 tables to COU format.	Other (specified in description)
		This dataset contains 2 tables, in CSV format:	Expected update frequency
		 The Customer Churn table contains information on all 7,043 customers from a Telecommunications company in California in Q2 2022 	Never
		 Each record represents one customer, and contains details about their demographics, location, tenure, subscription services, status for the quarter (joined, stayed, or churned), and more! 	Tags
		The Zip Code Population table contains complimentary information on the estimated populations for the California zip codes in the	Business Internet
		Customer Churn table	Data Visualization

Figure 1: Data Collection From Kaggle

After this download, data can be uploaded to Rapidminer with "Import Data" process in Rapidminer. Then, the dataset should dragged into the process.

Figure 2: Uploading Dataset to Rapidminer

3.2 Data Cleaning

After uploading the data, remove the attributes that is not going to be used in the model which they do not affect the machine learning model. To do this, add "Select Attributes" process in the flow and choose "exclude attributes" and select which attributes to exclude.

Figure 3: Data Cleaning - Remove Attributes

Customer status has 3 values; joined, stayed and churned. Since "joined" customers joined recently, they must not be used in the model. Therefore, we need to filter the dataset which only contains stayed and churned. To do this, add filter examples on Rapidminer and drag it into the flow. After dragging, choose customer status does not equal to "joined".

Figure 4: Data Cleaning - Filtering Dataset

After completing those, the missing values needs to be filled. "Avg Monthly GB Download" and "Avg Motnhly Long Distance Charges" had missing values and they are numerical values. Therefore, missing values are filled with the average of the dataset. To do this, drag "replace missing values" to the flow and select attributes to be replaced and select "average".

Figure 5: Data Cleaning - Filling Missing Values

Another type of the missing values are categorical attributes (yes/no). For the missing values of those attributes, "no" can be replaced which is probably the most correct answer. To do this, find the replace missing values process again and drag into flow. Then select the attributes that you want to fill missing values and write "No" as a replenishment value.

Figure 6: Data Cleaning - Filling Missing Values (2)

Last attribute that has missing values is "Internet Type" which includes cable, fiber optic, and DSL. This missing values can be filled as "none". To do this in rapidminer, select "Replace Missing Values" process again and drag it into the flow. After that select "Internet Type" and wrote "None" as replenishment value.

Figure 7: Data Cleaning - Filling Missing Values (3)

3.3 Data Transformation

Before applying machine learning model, all the variables except "Customer Status" need to be converted to numerical. Moreover, "customer status" needs to be selected as set so that rapidminer will understand customer status needed to be predicted. To do this, select "Set Role" process in rapidminer and select customer status as target label.

Figure 8: Data Transformation - Set Role

After that, select "nominal to numerical" to convert all data into numerical data. Select only customer status attribute and invert the selection. Model will convert all data into numerical except customer status.

	Views: Design	Results Turbo Prep	Auto Model Interactive Analysis	Find data, op	eratorsetc 🌙	All Studio	•
Repository ×	Process			Parameter	rs ×		
🗘 Import Data 🛛 🖃 👻	Process >	90% 🔎	🔎 🔎 👔 🚦 📮 🧣 🔍	🛛 🔁 🌮 Nomina	al to Numerical		
BOUIL (10/26/23 10:40 AM - 4.8 MB	Retrieve telecom cu Replace Missing	Valu Replace Missing Valu	Set Role Nominal to Numerical	^ attribute filter	r type	subset 🔻	
data (11/24/23 9:50 PM – 1.5 MB)) inp	exa exa exa	exa) era 🚱 era)	attributes		🗟 Select	0
Invistico_Ainine (11/16/23 2:02 F knnmodel_datingapp (12/5/23 2:02 F		pre pre	pre	invert se	election		٢
telecom_customer_churn (5/2	Select Attributes Filter Examples Re	place Missing Value	Select Attribute	es: attributes		×	Œ
Temporary Repository (Local)		era 🗰 era	Se Th	elect Attributes: attribute ne attribute which shouk	es d be chosen.		٩
Operators ×			Attributes		Selected Attributes		0
nominal to numerical			Search	×	Search	0 X	٦
Types (5)			& City	^	3 Customer Stat	tus	Ð
Numerical to Binominal			& Device Prote	ection Plan 📒 😑			
Numerical to Polynomir			& Gender	400			
Nominal to Numerical			& Internet Type	e			
Parse Numbers	<		& Married				
Guess Types	Leverage the Wisdom of Crowds to get operator rec	commendations based on your proces	s design!	5 V			
No results were found.	•	Activate Wisdom of Crowds			Apply	X Cancel	

Figure 9: Data Transformation - Nominal to Numerical

After transforming all data into numerical, data needs to be splitted into two; one for training, and one for testing. %70 of the data is going to be splitted for training and %30 of the data for testing. To do this, select "Split Data" in Rapidminer and drag into the flow and select the splitting ratios.

Figure 10: Data Transformation - Splitting Data

3.4 Data Modelling

After finishing all the preprocessing, machine learning model can be implemented. After splitting the data, one of the parts (%70) needs to be connected to the model which is "Neural Network". The other part (%30) and neural network process need to be connected apply model for testing. After all, "Performance" operator should be added to see the accuracy and the other performance parameters. After modelling, the model is ready to run.

	•	Views: Design	Results	Turbo Prep	Auto Model	Interactive Analysis	3
Repository ×	Process						
🕒 Import Data 🛛 🔳 💌	Process >			90% 🏸) 🔎 🔎 🗎	F 😽	🤹 🥌 💽
auur (10/20/23 10:40740 - 4.8 MB data (11/24/23 9:50 PM - 1.5 MB) final_result (12/5/23 3:24 PM - 9.1 Invistico_Alriine (11/16/23 2:02 F # knnmodel_datingapp (12/5/23 telecom_customer_churn (5/2 ∨	ee Missing Valu S a term on b pre	Set Role Nominal to N	umerical S exa ori pre	plit Data	Neural Net tra mod exa		res res
Operators X neural net X Modeling (4)	niu			Apply Mode mod uni n	lab nod	Performance lab per	e exa
 Predictive (4) Neural Nets (4) Deep Learning Neural Net AutoMLP 							~
 Verceptron We found "Self-Organizing Map", "Information Selection " and one more result in the Marketplace. Show mel 	< Leverage the Wisdom of	of Crowds to get operator re	commendations b	ased on your proce	ss design!		>

Figure 11: Data Modelling for Neural Network

To apply other machine learning algorithms, only "neural network" process needs to be changed with the new one and model needs to be runned to get results.

Figure 12 : Data Modelling for Deep Learning

Figure 14: Data Modelling for Naïve Bayes

Figure 15: Data Modelling for Random Forest

Process		
Process >		🔎 🔎 👔 🖡 📮 🥃 🗾
Set Role Nominal to Numerical	Spiit Data exa par par par par	Performance per case res res
<		

Figure 16: Data Modelling for Support Vector Machine (SVM)

4 Evaluation

After running the model, performance tab of Rapidminer shows the results of your model. Since "joined" customer status removed from the model, it shows 0 for joined. There is a total %80 accuracy in the model.

accuracy: 80.02%

	true Stayed	true Churned	class precision
pred. Stayed	1411	390	78.35%
pred. Churned	5	171	97.16%
class recall	99.65%	30.48%	

Figure 17: Neural Network Results

accuracy: 77.04%

	true Stayed	true Churned	class precision
pred. Stayed	1153	191	85.79%
pred. Churned	263	370	58.45%
class recall	81.43%	65.95%	

Figure 18: Deep Learning Results

accuracy: 78.	81%
---------------	-----

	true Stayed	true Churned	class precision
pred. Stayed	1294	297	81.33%
pred. Churned	122	264	68.39%
class recall	91.38%	47.06%	

Figure 19: k-NN Results

accuracy: 44.31%

	true Stayed	true Churned	class precision
pred. Stayed	468	153	75.36%
pred. Churned	948	408	30.09%
class recall	33.05%	72.73%	

Figure 20: Naïve Bayes Results

accuracy: 71.83%

	true Stayed	true Churned	class precision
pred. Stayed	1416	557	71.77%
pred. Churned	0	4	100.00%
class recall	100.00%	0.71%	

Figure 21: Random Forest Results

accuracy: 78.76%

	true Stayed	true Churned	class precision
pred. Stayed	1117	121	90.23%
pred. Churned	299	440	59.54%
class recall	78.88%	78.43%	

Figure 22: SVM Results