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Abstract

Ensuring the safety and well-being of elderly and vulnerable populations in
assisted living environments is a critical concern. Computer vision presents an
innovative and powerful approach to predicting health risks through video monit-
oring, employing human action recognition (HAR) technology. However, real-time
prediction of human actions with high performance and efficiency is a challenge.
This research proposes a real-time human action recognition model that combines
a deep learning model and a live video prediction and alert system, in order to
predict falls, staggering and chest pain for residents in assisted living. Six thousand
RGB video samples from the NTU RGB+D 60 dataset were selected to create a
dataset with four classes: Falling, Staggering, Chest Pain, and Normal, with the
Normal class comprising 40 daily activities. Transfer learning technique was applied
to train four state-of-the-art HAR models on a GPU server, namely, UniFormerV2,
TimeSformer, I3D, and SlowFast. Results of the four models are presented in
this paper based on class-wise and macro performance metrics, inference efficiency,
model complexity and computational costs. TimeSformer is proposed for develop-
ing the real-time human action recognition model, leveraging its leading macro F1
score (95.3%), recall (95.5%), and precision (95.2%) along with significantly higher
inference throughput compared to the others. This research provides insights to
enhance safety and health of the elderly and people with chronic illnesses in assisted
living environments, fostering sustainable care, smarter communities and industry
innovation.

1 Introduction

Assisted living has become increasingly popular among the elderly and individuals with
chronic illnesses who seek a home-like environment with 24/7 access to medical and per-
sonal care (Zimmerman et al.; 2022). These residences place more emphasis on autonomy
and privacy compared to traditional hospitals and nursing homes, providing a higher qual-
ity of life (Wang et al.; 2023). Their demand is rapidly expanding, particularly due to
the aging population, with estimates that one in six people will be over 60 by 2030 1.
Monitoring health risks is an essential task in assisted living (Tay et al.; 2023). How-
ever, traditional monitoring requires staff to perform periodic checks, which are often
time-consuming, costly, prone to overlooking emergent threats, and disruptive to daily
routines of residents. Additionally, we are facing a shortage of nurses worldwide 2.

1https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
2https://www.who.int/news-room/fact-sheets/detail/nursing-and-midwifery
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Advanced computer vision technology in AI, human action recognition (HAR), has
recently demonstrated remarkable capacity for recognising human actions through videos
(Shuchang; 2022), which could be a viable solution to these challenges. This research
leverages advanced HAR technology to predict health risks in real time in assisted living,
such as falls, staggering and chest pain, through continuous video monitoring. Falling
or staggering may result from accidents, or worse, fatal diseases such as cardiovascular
disease or cerebral infarction. Falls may lead to serious injuries, such as fractures and
paralysis which can be extremely dangerous for the elderly people (Clancy et al.; 2015).
Moreover, chest pain is dangerous as it may indicate heart attacks or angina, which require
immediate medical attention 3. Prompt alerts can significantly increase the likelihood of
survival for affected individuals, by enabling timely intervention and treatments.

Real-time prediction of these critical scenarios in assisted living can contribute to
several of the UN Sustainable Development Goals (SDGs), especially the Target three 4

that addresses the reduction of health risks and premature death from non-communicable
diseases through early warning and diagnosis. It also supports building inclusive, safe and
sustainable cities and communities (SDG 11) 5 and advancing industry innovation and
resilient infrastructure (SDG 9) 6. Harnessing this cutting-edge technology to identify
critical scenarios in assisted living can potentially enhance safety and comfort in assisted
living, alleviate healthcare staff shortages, support age in place, and contribute to societal
sustainable development.

The aim of this research is to investigate to what extent a human action recognition
(HAR) model can predict life-threatening scenarios such as falls, staggering, and chest
pain to improve assisted living environments. To address the research question, the
following specific sets of research objectives were derived:

1. Investigate state-of-the-art video-based deep learning approaches to predict and
classify human actions.

2. Design an architecture for a real-time human action recognition model for assisted
living to predict falls, staggering, and chest pain from normal scenarios, enabling timely
notifications.

3. Implement deep learning models.
4. Evaluate the deep learning models based on model performance, inference efficiency,

model complexity, and computational cost.
The major contribution of this research is a novel real-time human action recognition

model that combines a deep learning HAR model with a live video prediction and alert
system to predict dangerous scenarios for assisted living. In order to identify the optimal
deep learning model, this research compares results of transfer learning with SlowFast,
I3D, TimeSformer and UniformerV2, based on confusion matrix, class-wise and macro
recall, precision and F1 score, inference throughput, number of parameters, FLOPs, and
training time. The live video prediction and alert system aims to process live videos from
assisted living environments, make inferences and send notifications regarding critical
scenarios.

This paper reviews AI advances in health risk prediction and human action recognition
models in Section Two: Related Work. It then discusses the methodology for developing
deep learning HAR models in Section Three. The architecture design of the real-time

3https://www.health.harvard.edu/heart-health/chest-pain-a-heart-attack-or-something-else
4https://sdgs.un.org/goals/goal3#targets_and_indicators
5https://sdgs.un.org/goals/goal11#targets_and_indicators
6https://sdgs.un.org/goals/goal9#targets_and_indicators
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human action recognition model for assisted living is discussed in Section Four. Section
Five demonstrates implementation of the deep learning models. The evaluation results
of the deep learning models are presented and discussed in Section Six. Section Seven
concludes the research and outlines future work.

2 Related Work

2.1 AI in Health Risks Prediction

Advanced AI technology can be leveraged to predict health risks, including accidental
incidents, such as falls, choking, injuries, and burn, and non-accidental health risks,
such as Alzheimer disease, dementia (Garcia-Constantino et al.; 2020), and behavioral
anomalies (Dang et al.; 2020). These technologies can be broadly grouped into two
categories: one is sensor-based approach, and the other is video-based approach (Tay
et al.; 2023).

The sensor-based approach uses wearable and environmental sensors. For example,
Vandeweerd et al. (2020) designed HomeScenes, set up in a smart home laboratory en-
vironment, to understand residents’ behavior by analyzing sensor data, such as using
door sensors to record home entry and exit, bathroom sensors to detect bathroom usage,
environmental sensors to record temperature, luminance and humidity changes. (Dang
et al.; 2020) proposed a sensor fusion approach to predict cognitive health risks, such as
dementia, through wearable and ambient sensors placed in a smart kitchen, to analyze
behavior patterns through daily activities, such as preparing and serving coffee and tea.
Sensor-based approach offers several advantages: no body images are recorded, ensuring
better privacy protection, and wearable sensors are not restricted to locations. However,
specifically designed delicate sensors are often costly in both experiments and implement-
ation and can present unstable performance when the environment changes. Moreover,
wearable sensors raise concerns about comfort and inconvenience in daily life (Wang et al.;
2023). These shortcomings limit their implementation in predicting critical scenarios in
assisted living environments in the long term.

The video-based approach uses images or videos as input. Although there are con-
cerns of dependence on video quality, dataset scarcity, and privacy intrusions, it offers
greater comfort without direct body contact, has more predictable costs, and is more
scalable compared to the sensor-based approach (Tay et al.; 2023). This approach has
been widely adopted by researchers for predicting health risks (Tay et al.; 2023). For
example, many promising studies have been conducted to predict falls using computer
vision (Gaya-Morey et al.; 2024). Lin et al. (2020) proposed a framework for real-time fall
detection using human skeleton data. They combined a human pose estimation model,
OpenPose, with a LSTM or GRU prediction model to predict falls and achieved an ac-
curacy of 98%. Paul et al. (2023), Zheng et al. (2022), and Iksan et al. (2021) proposed
frameworks to perform abnormal or fall detection by using video data collected from cent-
ralized server-based cameras, allowing for triggering alarms in case of severe situations.
Specifically, Paul et al. (2023) suggested sending messages through Twilio. Zheng et al.
(2022) proposed sending the plausible video to centralized computer system for human
review. Iksan et al. (2021) suggested sending video clips along with the prediction results
to mobile applications.
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2.2 Deep Learning Models

AI approaches in human action recognition can be generally categorized into conventional
and deep learning methods. Conventional methods often combine a feature extractor
with a machine learning model, and involve handcrafted feature selection and extensive
experimentation, with feature extraction strategies varying among researchers (AK et al.;
2007). Deep learning methods autonomously learn patterns and features from data and
have recently shown their powerful aptitude for recognising human actions (Cha and
Vaidya; 2024).

3D convolutional neural networks (3D CNNs) were predominant, due to CNN’s power-
ful feature extraction capability. By adapting 2D CNNs to process 3D data, this archi-
tecture excels at capturing spatial dependencies in videos (Gaya-Morey et al.; 2024).
The two-stream inflated 3D ConvNet (I3D) (Carreira and Zisserman; 2018) and the two-
pathway SlowFast (Feichtenhofer et al.; 2019) model are notable representatives of 3D
CNNs for human action recognition.

The I3D (Carreira and Zisserman; 2018) adapts a pre-trained 2D CNN to 3D by adding
a temporal dimension, thus enabling the model to learn spatial and temporal features
simultaneously. In detail, it inflates filters and pooling kernels from 2D to 3D. This
model leverages ImageNet architecture, and after pretraining on Kinetics, it achieved
the state-of-the-art accuracy on the HMDB-51 and the UCF-101 action classification
datasets. Subsequently, Feichtenhofer et al. (2019) proposed a two-pathway SlowFast
model for video recognition. It utilizes a low frame rate to extract spatial contexts, and a
lightweight high frame rate to learn rapid motion changes with less spatial nuances. The
SlowFast model reported state-of-the-art accuracy on Kinetics and Charades, two video
action classification benchmarks, and the AVA action detection benchmark.

Human action recognition is intuitively considered a sequence-to-sequence problem.
Therefore, many researchers have adopted recurrent neural networks (RNNs) to analyze
human actions. For instance, Zheng et al. (2022), and Lin et al. (2020) utilized RNNs for
fall detection. However, unlike music or languages consisting only of temporal inform-
ation, human actions comprise spatial information. Although RNNs excel at handling
sequential data, they are less effective at capturing spatial features. Moreover, they
sometimes encounter error accumulation issues for long-term predictions, often have high
computational complexity, and are not efficient in processing periodic actions (Lyu et al.;
2022).

Transformer-based architectures have recently become a game changer, demonstrating
outstanding proficiency in understanding complex human actions and capturing long-
term temporal dependency in videos (Vandeweerd et al.; 2017). For instance, Bertasius
et al. (2021) proposed the TimeSformer, one of the first models to exclusively use self-
attention as building blocks for video recognition, whose design was inspired by the
Vision Transformers (ViT) for image classification (Dosovitskiy et al.; 2021). This model
decomposes videos into frame-level patches, which are linearly embedded as input token
embeddings to be fed into a transformer. Despite large number of parameters, indicating
exceptional learning capacity, TimeSformer has demonstrated remarkable test efficiency.
Compared to 3D CNNs, which requires long optimization procedure, this model presents
fast training convergence. It can be applied on longer video clips for more than one
minute. TimeSformer achieved state-of-the-art performance on Kinetics 400 and 600.

More recently, Li, Wang, Peng Gao, Liu, Li and Qiao (2022) implemented the Uni-
Former architecture that combines CNN and transformer architectures to extract spa-
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tial and temporal features. The hybrid approach reduces computational complexity.
Moreover, it applies local-window self-attention mechanisms on a small portion of video
to understand long-term temporal dynamics, allowing sophisticated video processing.
Subsequently, Li, Wang, He, Li, Wang, Wang and Qiao (2022) proposed UniFormerV2,
which introduces novel local and global aggregators to leverage the strengths of both ViTs
and UniFormer. This model achieved state-of-the-art accuracy on eight video recognition
benchmarks and was the first model to report over 90% top-1 accuracy on the Kinetics-
400. However, large model size and elevated hardware requirements of attention-based
architectures may limit their usage in resource-constraint devices (Karim et al.; 2024).

In conclusion, various AI technologies have demonstrated strong potential in pre-
dicting health risks. Compared to sensor-based approach, the video-based approach is
more suitable in our research due to its feasibility, convenience, scalability and more
controlled costs. Many state-of-the-art deep learning human action recognition models
could be leveraged to achieve this research objective, including the traditionally domin-
ant 3D CNNs, such as I3D, which benefits from image-based pretraining, and the two-
stream SlowFast network, which excels at capturing motion dynamics. Furthermore, the
new powerhouse, transformer-based architectures, such as the first convolution-free, self-
attention-based model, TimeSformer, and the exceptional hybrid model UniFormerV2,
combining transformer architecture with CNNs, could be promising candidates for pre-
dicting life-threatening scenarios in assisted living.

3 Methodology

The research methodology consists of five steps namely data gathering, data pre-processing,
data transformation, data modelling, evaluation and results as shown in Figure 1.

Figure 1: Research Methodology

The first step, Data Gathering involves identifying appropriate video data for human
action recognition. This study utilised the NTU RGB+D Action Recognition Data-
set (Shahroudy et al.; 2016), which provides RGB video samples, depth maps, and 3D
skeletal data and comprises 60 action classes, with 40 classes categorised in “Daily Ac-
tions”, 9 classes in “Medical Conditions”, and 11 classes in “Mutual Actions”. To predict
life-threatening scenarios in assisted living environments, the dataset should contain all
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predicted classes and a “Normal Scenario” class as a contrasting group. All RGB video
samples of Falling (948 videos), Staggering (948 videos), and Chest pain (948 videos) in
the “Medical Conditions” category were selected to represent dangerous scenarios. The
“Normal Scenario” class was formed by randomly selecting 80 videos from each of the
40 classes in the “Daily Actions” category to include a larger sample size (3,200 videos)
with a wide diversity of daily activities, which simulate real-life conditions.

The second step, Data Preprocessing involves train, validation and test splits, feature-
label mapping and raw video data preprocessing. The dataset was split into training,
validation and testing sets, in proportion of 75%, 12.5% and 12.5% respectively. The
splitting process ensured that the proportion of the four classes remained the same in
training, testing and validation sets. The dataset statistics are listed in the Table 1.
Then, feature-label mapping was performed. An annotation text file for each set was
created, listing the relative video path with its corresponding label. The raw video data
preprocessing involved frame extraction and decoding sampled frames. The frame extrac-
tion strategy varies depending on different models and is detailed in the Implementation
section. All the sampled frames were then decoded into tensors for further processing.

Table 1: Dataset Statistics

Class Total Samples Training (75%) Validation (12.5%) Testing (12.5%)
Falling 948 712 118 118
Staggering 948 712 118 118
Chest Pain 948 712 118 118
Normal 3200 2400 400 400
Total 6044 4536 754 754

The third step, Data Transformation includes resizing, cropping, flipping and format-
ting. Specifically, frames were initially resized to have a consistent height of 256 pixels,
preserving the aspect ratio. They were then cropped with different methods and were
resized to a consistent input shape of 224x224 pixels without maintaining aspect ratio.
For the training set, frames were randomly flipped horizontally with a 50% probability.
Finally, all frames were converted into NCTHW format (batch size, channels, temporal
dimension, height, width), and they were packed along with their labels and metadata
for model input.

The fourth step, Data Modelling involving identifying appropriate approach, and se-
lecting and training machine learning models. To select the optimal machine learning
model with limited open-source data and computational constraints, a variety of ex-
periments were performed. The tested approaches include (1) combing a human pose
detection model (MoveNet) with a deep learning model (LSTM); (2) constructing an
image-based human action recognition model from scratch, such as a Convolutional Long
Short-Term Memory (LSTM) model or a Long-term Recurrent Convolutional Network
(LRCN) model; and (3) training a state-of-the-art skeleton-based human action recogni-
tion model, PoseConv3D. However, during experimentation, the first two methods were
inefficient at predicting these selected scenarios with the given dataset, while the third
method required higher computational resources (6 days for 18 epochs7) and larger data-
sets, which were not feasible in this research. Therefore, transfer learning (4) with several
state-of-the-art human action recognition models were tested, including CNN-based mod-
els (SlowFast and I3D) and transformer-based models (TimeSFormer and Uniformer).

7Train a PoseConv3D model: https://github.com/Dariela07/pyskl-reviewd-2024
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Transfer learning can leverage pre-trained model weights from state-of-the-art models.
Although they were trained on different datasets, their weights have successfully learned
essential features for video understanding, particularly in the initial layers. Transferring
these weights to a new task leads to faster convergence, enhances feature extraction, and
can deliver good accuracy even with limited dataset size. SlowFast, I3D, TimeSFormer
and UniformerV2 trained on Kinetics datasets (Kay et al.; 2017), a large-scale human
action recognition videos dataset, were used as the base model to perform transfer learn-
ing. During experiments, the last approach demonstrated promise in fulfilling this task,
so their results are presented in this paper.

The fifth step, Evaluation and Results evaluates the performance of the four models
developed with transfer learning through class-wise and overall performance, inference
efficiency, model complexity and computational cost. Confusion matrix, precision, re-
call and F1 score are common performance metrics for multi-class classification tasks.
Considering the imbalanced dataset setup, where the normal scenarios account for higher
proportion compared to each critical scenario, macro metrics which average across classes
(give equal weight to each class), are more appropriate compared to micro metrices, which
average across instances (assign equal weight to each instance), avoiding biases coming
from the dominant class. Therefore, model performance was evaluated using confusion
matrix, macro and class-wise recall (accuracy), precision, and F1 score. Inference effi-
ciency was assessed through inference throughput. Model complexity was represented
using the number of parameters. Computational cost was measured using FLOPs and
training time. The optimal model was then proposed to implement the real-time hu-
man action recognition model, whose architecture is outlined in the Design Specification
section.

4 Design Specification

The real-time human action recognition model architecture combines a video-based deep
learning model, and a live video prediction and alert system, as shown in Figure 2.
The components of the deep learning model include input video, the optimal model
(TimeSformer), and inference, as discussed in section 4.1. Components of the live video
prediction and alert system are discussed in section 4.2.

4.1 Video-based Deep Learning Model

The TimeSformer, is chosen as the deep learning model, due to its strong performance
and remarkable inference efficiency among all tested models. It is recommended to be
developed using GPUs, given its large model size and high computational complexity.
The detailed model development setting and evaluation are presented in the paper. The
optimal model selected during training stage is deployed to the AI prediction system, a
component under the live video prediction and alert system, for real-time inference.

4.2 Live Video Prediction and Alert System

The live video prediction and alert system consists of a video stream collector, an AI
prediction system, a system backend, and a frontend component. These components
should be implemented using a modular approach, which is easier for maintenance, and
they communicate through API REST interfaces.
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Figure 2: Architecture for the Real-time Human Action Recognition Model

Firstly, the video stream collector receives streaming video from live cameras in as-
sisted living through an established VPN connection. VPN server simplifies the connec-
tion of cameras from client site to the cloud. Specifically, it is achieved by having the
client site router initiate a VPN connection to the VPN server in the cloud (e.g., using
an OpenVPN server). Once the connection is established, the cameras can be accessed
by the video stream collector through their private IP addresses, via the router at client
site. This approach minimises the setup complexity at the client site, as no extra network
configuration is required. Furthermore, VPN server provides additional layer of secur-
ity by encrypting video stream during transit, enhancing data privacy and protection.
Secondly, the video stream collector performs a fixed-time window segmentation, which
cuts the video into small chunks, each of a similar length to the videos used in dataset
for model development. It will then send the video chunks to a file storage service, such
as Amazon S3 cloud object storage.

The AI prediction system contains the pretrained deep learning model for making
inferences. It’s also suggested to be deployed using GPU servers, which have proven to
deliver promising results in this research. The AI prediction system loads video chunks
from the file storage service for preprocessing and transformation using a predefined test
pipeline. The test pipeline includes steps such as frame extraction, decoding, resizing,
cropping, NCTHW format conversion, and packaging inputs for model processing. Then,
the AI prediction system make an inference for each segment, classifying it into one of
the four scenarios: Falling, Staggering, Chest pain or Normal.

The model continuously generates predictions and sends the inference results to the
backend. The backend saves these inferences in a relational database server, such as
MySQL or AWS RDS. Once the predictions contain critical scenarios, the backend soft-
ware highlights the specific video chunk and sends a notification regarding the specific
event.

The information is then sent to the frontend, which hosts a basic application that the
assisted living workers or family member of the residents have access to. They should
review and confirm the flagged videos and take action upon it. Moreover, if a video clip
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is falsely predicted, it will be recorded and used for future model retraining to enhance
model robustness.

One option could be deploying the live video prediction and alert system in the cloud,
given the availability of high-speed and continuous internet in assisted living environ-
ments. Cloud-based deployment often ensures none-disruptive and continuous processing,
and can be assessed remotely. Cloud platforms such as AWS can be scaled up or down
easily when the number of clients or video streams change. The system pays for the
resources it uses, which could be cost-efficient. For instance, AWS EC2 instances can be
used to host these components. Each of the component should be deployed in a separate
EC2 machine. If more advanced features are preferred, AWS EKS (Elastic Kubernetes
Service) can also be utilised to deploy these components. As for data storage, AWS RDS
can be used for database management, and AWS S3 can be used for storing video files.

For real-world implementation, the AI prediction system would be the most expensive
component of this real-time human action recognition model, as it is deployed on GPUs,
whereas other components are deployed on regular servers. The cost of using an AWS
EC2 p3.2xlarge instance with an NVIDIA V100 GPU is estimated below. Assuming an
inference throughput of 3.96 samples/second (TimeSformer), 10-second video chunk, and
using one NVDIA V100, the total number of clients that can be monitored in assisted
living is 39.6, rounded to 39 persons. An NVDIA V100 from AWS ($3.06/h)8, incurs
a cost of approximately $2203 monthly. Therefore, at least 39 clients can be monitored
24/7 with this inference cost, which is around $55 per client. The video chunk in our
dataset is around 10 seconds; however, TimeSformer is also capable of predicting longer
videos, exceeding one minute, which may worth experimenting with if such a dataset is
available. Using longer video chunk reduces inference frequency and may decrease the
overall inference cost with same resources. Moreover, the most recent version NVDIA
A100 is more powerful than NVDIA V100, the version tested in our experiments. Using
newer server might further decrease inference cost.

5 Implementation

The deep learning models were implemented using Python and PyTorch, with the server
specifications of 64GB of RAM, an AMD RyzenTM 7 5800X processor, a Tesla V100
GPU, and two Samsung 990 PRO NVMe M.2 SSDs, each with 2TB of storage. The
transfer learning was performed using the open-source deep learning ecosystem, Open-
MMLab 9, developed by the Multimedia Laboratory (MMLab) at CUHK. OpenMMLab
offers a collection of toolkits, libraries and comprehensive pre-trained model zoos for com-
puter vision tasks. Specifically, the development version of MMAction2 10, providing a
modular design for a video understanding framework, was utilised.

Four models, SlowFast, I3D, TimeSformer and UniFormer, a total of six variants were
evaluated in this research. TimeSformer (divided) applies spatial and temporal atten-
tion separately, whereas the joint version processes spatial and temporal attention jointly
Bertasius et al. (2021). SlowFast, with a backbone of ResNet 101, offers deeper archi-
tecture compared to the ResNet 50 backbone, with increased feature representation and
computational complexity Feichtenhofer et al. (2019). The detailed model information is

8https://instances.vantage.sh/aws/ec2/p3.2xlarge
9https://github.com/open-mmlab

10https://mmaction2.readthedocs.io/en/latest/
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summarised in Table 2.

Table 2: Specifications of Selected Pretrained Models

Model Backbone Sampling Batch Epochs Dataset
SlowFast ResNet 50 4×16×1 8GPUs×8 256 Kinetics 400
SlowFast ResNet 101 8×8×1 8GPUs×8 256 Kinetics 400
I3D ResNet 50 32×2×1 8GPUs×8 100 Kinetics 400
TimeSformer (divided) ViT 8×32×1 8GPUs×8 15 Kinetics 400
TimeSformer (joint) ViT 8×32×1 8GPUs×8 15 Kinetics 400
UniFormerV2 ViT 8×-×1* 8GPUs×8 55 Kinetics 700

Note: * The stride is dynamically calculated as total frames divided by clip length.

I3D and SlowFast utilise ResNet as backbone. The backbone of I3D is pretrained
on ImageNet, while no pretraining is performed on the backbone of SlowFast. The
backbone of TimeSformer is the Vision Transformer (ViT) Dosovitskiy et al. (2021),
pretrained on ImgeNet-1K. UniFormerV2 also utilises the ViT backbone and applies
Contrastive Language-Image Pretraining (CLIP) Radford et al. (2021). The training
sampling strategy is denoted in the table as “clip length (frames sampled per clip) ×
temporal stride between sampled frames × number of clips per video during training”.
All models are trained using 8 GPUs, with a batch size of 8 per GPU. These models are
pretrained on the Kinetics dataset for varied epochs.

During transfer learning, model’s output layer was modified to four classes. A class
weight of [1, 1, 1, 0.3] was set in the cross-entropy loss function for each model to address
class imbalance. Training parameters were maintained as in the original model settings.
The optimizer for UniFormerV2 is AdamW, all other models use SGD. Shuffling was
solely applied on training data. A smaller learning rate compared to the original setup
was used, combined with LinearLR and CosineAnnealingLR for dynamically adjusting
the learning rate. All models were initially trained for 50 epochs, except for I3D, which
was trained for 60 epochs as it continued to converge after 50 epochs.

UniFormerV2, TimeSformer (joint), and TimeSformer (divided) required longer times
for training 50 epochs, for 13.91, 16.64, and 18.15 hours, respectively, while showing
faster convergence speeds. UniFormerV2 achieved a mean class accuracy of above 90%
on validation set initially at 12 epochs, using 3.51 hours. For TimeSformer, the divided
variant first achieved an accuracy above 90% in 3.23 hours at 9 epochs, while the joint
version took 5.01 hours at 14 epochs. In contrast, I3D required the least total training
time, at 4.83 hours for 50 epochs and 5.80 hours for 60 epochs. It first observed a
mean class accuracy above 90% in 1.53 hours at 16 epochs. However, during multiple
experiments, both SlowFast models were unable to achieve a mean class accuracy above
90%. The training times for 50 epochs for SlowFast (ResNet 50) and SlowFast (ResNet
101) were 6.19 and 13.38 hours respectively.

Model checkpoints from the last training epoch and the epoch with the best mean class
accuracy on the validation set were selected to perform model testing on the test dataset.
The best testing results were recorded as the model’s performance. These results were
analysed, evaluated from multiple perspectives and compared in Section 6. The optimal
model was selected for implementing the real-time human action recognition model for
assisted living.
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6 Evaluation

The aim of this experiment is to compare UniFormerV2, TimeSformer, I3D and SlowFast
deep learning HAR models with a customised RGB video dataset to predict several
critical scenarios. Through the use of transfer learning techniques, four types of models,
including a total of six pre-trained models, were trained to predict falls, staggering, and
chest pain out of normal activities.

6.1 Performance Overview

Table 3: Performance Comparison of Models

Model Mean Acc. (%) Throughput (/s) Params (M) GFLOPs Total Train Hours Train Hours Acc. >90%

UniFormerV2 95.36 1.28 114 143 13.91 3.51 (12 epochs)

TimeSformer (joint) 93.44 3.65 85.808 180 16.64 5.01 (14 epochs)

TimeSformer (divided) 95.49 3.96 121 196 18.15 3.23 (9 epochs)

I3D 93.43 0.97 27.232 33.271 5.80* 1.53 (16 epochs)

SlowFast (r50) 84.95 0.96 33.567 27.816 6.19 -

SlowFast (r101) 86.81 0.37 62 97.1 13.38 -

Note: * I3D model was trained for 60 epochs, while the others were trained for 50 epochs.

Table 3 shows the comparison of the six models based on mean class accuracy, infer-
ence throughput, the number of parameters, GigaFLOPs, total training hours, and the
training hours required to achieve an above 90% mean class accuracy.

Mean class accuracy represents model’s overall accuracy among all classes. Inference
throughput assesses inference speed, calculated as the number of samples processed per
second on the test data, which is critical for real-time applications. The number of
parameters reflects model complexity, size, and learning capacity; a higher count implies
greater model complexity, and higher memory and computational power requirements.
FLOPs (Floating Point Operations) evaluate computational complexity, which is the
number of floating-point arithmetic operations a processor performed per second. Total
training hours represent how fast a model can train on given hardware, providing insights
for resource requirements and hardware benchmarking. The training hours required to
achieve an above 90% mean class accuracy indicate convergence spend, training efficiency,
and practical feasibility. A long total training time suggests a computationally intensive
model but does not necessarily mean that the model is inefficient in learning. For instance,
TimeSformer (divided) required a long total training time for 50 epochs but a short period
to achieve an above 90% accuracy, suggesting a fast convergence speed and efficient model
learning.

The divided space-time TimeSformer achieved the highest mean class accuracy and
inference throughput among all models. This variant demonstrated greater accuracy,
faster inference, and quicker training convergence, compared to the joint space-time vari-
ant, despite slightly larger number of parameters, FLOPs, and total training time. Both
SlowFast variants showed less satisfying performance, with less than 90% mean class
accuracy and the slowest inference speeds.

In general, the models with transformer structures, including two TimeSformer mod-
els and UniFormerV2, have more parameters, demand higher FLOPs and total training
time. TimeSFomer (divided) has the largest number of parameters, up to 196 million, con-
tributing to its outstanding performance through more comprehensive feature learning.
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Notably, although TimeSformer (divided) is computationally intensive, it demonstrated
the fastest inference throughput and relatively fast convergence. This characteristic has
been mentioned in the original paper by the authors Bertasius et al. (2021). In contrast,
I3D has the smallest parameter count (27.232 million), the shortest total training time,
and the fastest convergence speed, suggesting a less complex model with lower memory
and hardware requirements, making it easier to deploy.

TimeSformer (divided) and SlowFast (r101) achieved better accuracy compared to
their respective variants, therefore they are selected as representatives of their model
types. The performance of the four models–UniFormerV2, TimeSformer (divided), I3D,
SlowFast (ResNet101)–is further analysed and compared in the following sections.

6.2 Confusion Matrix

Figure 3: Confusion Matrix for the Four Models

Figure 3 presents the confusion matrix for UniFormerV2, TimeSformer (divided), I3D,
and SlowFast (ResNet101) on the test data. Confusion matrix is widely used to assess
classification results, identify model weakness, and calculate other performance metrics
such as recall, precision, and F1-score. In each confusion matrix, rows are “true labels”
and columns are “predicted labels”. Diagonal values are the correctly predicted instances,
known as true positive. The sum of all cells except for the row and column where the class
is located, is true negatives, meaning correctly predicted instances of “not this class”.
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The sum of all cells in the same row, excluding the diagonal value, is the false negative
for that class. This indicates a risk of missing critical scenarios, which may lead to injuries
or severe consequences. UniFormerV2 and SlowFast did not encounter false negatives for
the falling (0 case) class. For predicting staggering, TimeSformer recorded the fewest
false negatives (1 case). For chest pain, UniFormerV2 had the fewest false negatives (9
cases). On the contrary, SlowFast incurred the highest false negatives for staggering (20
cases) and chest pain (29 cases). Overall, there are less false negatives in predicting falls,
more in predicting staggering, much more frequent in predicting chest pain across all
models.

The sum of all cells in a column, excluding the diagonal value, is the false positive for
that class, representing a false alarm, which can be disruptive and costly. TimeSformer
observed the fewest false positives in predicting all three critical scenarios: falls (0 case),
chest pain (5 cases), and staggering (13 cases). In comparison, SlowFast had the highest
false positives in predicting falls (8 cases) and chest pain (38), while it faced the fewest
false positives along with TimeSformer for predicting staggering (5 cases).

6.3 Class-wise and Macro Performance Evaluation

Model performance was evaluated using accuracy, recall, precision, and F1 score. The
class-wise accuracy/recall, precision and F1 score for class “i” are calculated using for-
mular 1, 2, and 3.

Accuracyi / Recalli =
True Positivei

True Positivei + False Negativei
(1)

Precisioni =
True Positivei

True Positivei + False Positivei
(2)

F1 Scorei =
2× Precisioni × Recalli
Precisioni +Recalli

(3)

Figure 4: Class Accuracy Comparison on Test Dataset
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Figure 4 shows the comparison of the four models based on their Class-wise Accuracy
and the Mean Class Accuracy. Normal daily actions accounted for a significantly larger
sample size in the dataset. Therefore, class-wise accuracy and their average were used to
assess the models’ capability in predicting these specific cases, because overall accuracy
may lead to bias, given the fact that it is heavily influenced by the dominant class.
In multi-class classification, class-wise accuracy for a single class (i) is calculated the
same as recall, measuring the proportion of instances in one critical scenario that the
model accurately predicted out of all instances in that class. The results indicate that
all four models demonstrated good capability in predicting Falling, achieving a recall
of above 99%. TimeSFormer demonstrated superior accuracy in predicting Staggering
(99.15%), followed by UniFormerV2 and I3D (both at 98.31%), and SlowFast (83.05%).
The best performance in predicting Chest Pain was observed on UniFormerV2 (93.27%),
followed by TimeSFormer (88.14%), I3D (84.75%), and SlowFast (75.42%). Overall,
TimeSFormer showed the best mean class accuracy and macro recall, at 95.49%, followed
by UniFormerV2 (95.36%), I3D (93.43%), and SlowFast (86.81%).

Figure 5: Precision Comparison on Test Dataset

A comparison of the four models by class-wise and macro precision is shown in Fig-
ure 5. Precision measures the model’s capability to predict instances of each dangerous
scenario accurately. The results show that TimeSFormer had the highest macro precision
(95.19%), followed by UniFormerV2 (92.18%), I3D (91.61%), and SlowFast (87.02%).
All models achieved a precision of above 95% for predicting falls, with particularly prom-
ising results for TimeSFormer (100%), UniFormerV2 (99.16%), and I3D (98.32%). The
top precision for predicting Staggering was achieved by TimeSFormer (95.90%), followed
by SlowFast (95.15%), I3D (88.55%), and UniFormerV2 (85.29%). However, when pre-
dicting Chest Pain, precision was low on average, with the best performance at 88.89%
(TimeSFormer), while SlowFast was nearly incapable of accurately predicting Chest Pain
(70.08%). The prediction of the falling group was more trustworthy, whereas there is a
higher chance of false alarms for predicting Chest Pain with these models.
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Figure 6: F1 Scores on Test Data

A comparison of the four models by class-wise and macro F1 score is plotted in
Figure 6. This matric evaluates the overall model performance considering both recall
and precision. The F1 score for each class is calculated as the harmonic mean of precision
and recall. The average of the F1 scores from all classes is the macro F1 score. These
values are between 0 and 1, with higher values representing better performance.

Class-wise analysis shows that, the F1 scores for predicting falls were promising using
all these models, with the top three being UniFormerV2 (99.58%), TimeSformer (99.57%),
and I3D (98.73%). For predicting staggering, TimeSformer showed the best performance
(97.50%), followed by I3D (93.17%), and UniFormerV2 (91.34%) and SlowFast (88.69%).
When predicting chest pain, UniFormerV2 achieved highest F1 Score (89.71%), followed
by TimeSformer (88.51%), I3D (84.75%), and SlowFast (72.65%).

In terms of Macro F1 score, TimeSformer (95.33%) achieved the highest value, fol-
lowed by UniFormerV2 (93.61%) and I3D (92.45%) with a slight decrease, and SlowFast,
with a suboptimal performance (86.76%). Overall, all models demonstrated strong per-
formance in predicting falls, moderately strong performance in predicting staggering and
relatively lower performance in predicting chest pain.

In conclusion, high accuracy, recall, and precision are preferred. A higher recall
indicates a lower risk of failing to predict a danger; a higher precision represents a lower
probability of producing false alarms; and a higher F1 score reflects stronger and more
balanced performance between recall and precision.

A comparison of the class-wise performance among four models is summarised in
Tables 4, 5, and 6. It is seen that both UniFormerV2 and SlowFast excelled in recall
(100%) for predicting falls. Overall, UniFormerV2 showed the top performance, with
the highest F1 score of 99.58% in predicting this class, and TimeSformer demonstrated
the best precision (100%). For predicting staggering, TimeSformer achieved the highest
F1 score (97.50%), recall (99.15%), and precision (95.90%). All four models were less
effective in predicting chest pain, with UniFormerV2 showing the best F1 score of 89.71%
and recall of 92.37%, and TimeSformer presenting the best precision (88.90%). Class-wise
analysis suggests a model’s capacity of predicting certain classes. If the goal is to predict
specific actions, these results can offer valuable insights.
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A comparison of macro metrics among all models is presented in Table 7. Macro met-
rics indicate that TimeSformer (divided) is the top-performing model regarding macro F1
Score (95.33%), recall (95.49%), and precision (95.19%). UniFormerV2 and I3D ranked
at the second and third position for these metrics.

Table 4: Performance Comparison for Predicting Falls

Metric UniFormerV2 TimeSformer I3D SlowFast
Recall 100% 99.15% 99.15% 100%
Precision 99.16% 100% 98.32% 93.65%
F1 Score 99.58% 99.57% 98.73% 96.72%

Table 5: Performance Comparison for Predicting Staggering

Metric UniFormerV2 TimeSformer I3D SlowFast
Recall 98.31% 99.15% 98.31% 83.05%
Precision 85.29% 95.90% 88.55% 95.15%
F1 Score 91.34% 97.50% 93.17% 88.69%

Table 6: Performance Comparison for Predicting Chest Pain

Metric UniFormerV2 TimeSformer I3D SlowFast
Recall 92.37% 88.14% 84.75% 75.42%
Precision 87.20% 88.89% 84.75% 70.08%
F1 Score 89.71% 88.51% 84.75% 72.65%

Table 7: Macro Metrics

Metric UniFormerV2 TimeSformer I3D SlowFast
Macro Recall 95.36% 95.49% 93.43% 86.81%
Macro Precision 92.18% 95.19% 91.61% 87.02%
Macro F1 Score 93.61% 95.33% 92.45% 86.76%

6.4 Breakdown of Misclassified Normal Actions and Their Fre-
quency

The specific normal actions misclassified as falling, staggering and chest pain and their
corresponding number of misclassified instances, are presented in Table 8, in order to
further investigate model behaviour and error patterns. The actions list is ordered in
descending order of instance occurrence, followed by alphabetical order of words. This
analysis provides insights into the types of actions that models struggled to distinguish
from these three critical classes and paves the way to improve model performance, espe-
cially for the staggering and chest pain classes, which showed weaker results, in future
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work. We could increase samples in those misclassified actions to allow models to learn
more of these cases in future training.

The results show that UniFormerV2 and I3D made one mistake of classifying ”throw”
as Falling, and SlowFast misclassified a few instances of ”picking up” and ”putting on a
shoe” as Falling. Overall, models tend to misclassify dynamic movements such as ”throw-
ing”, ”kicking something”, ”jumping”, and ”hopping” as ”staggering”. The actions most
frequently misclassified as ”chest pain” were ”nod head/bow”, ”reach into pocket”, ”sit
down”, and ”put on shoe”.

Table 8: Normal Actions Misclassified as Falls, Staggering, and Chest Pain in Test Data

Class UniFormerV2 TimeSformer I3D SlowFast

Falls throw 1 throw 1 pick up 2

put on a shoe 1

Staggering jump up 5 hopping 2 hopping 3 throw 1

hopping 4 throw 1 throw 3 sit down 1

kicking something 4 put on a shoe 1 jump up 2 stand up 1

put on a shoe 2 kicking something 2 take off jacket 1

throw 2 drop 1 kicking something 1

pick up 1 phone call 1

sit down 1 pick up 1

stand up 1 sit down 1

stand up 1

Chest Pain nod head/bow 6 nod head/bow 4 reach into pocket 4 reach into pocket 5

reach into pocket 4 put on glasses 2 sit down 2 put on a shoe 5

put on a shoe 1 reach into pocket 2 drink water 1 sit down 4

put palms together 1 play with phone/tablet 1 kicking something 1 drink water 3

salute 1 put on a shoe 1 nod head/bow 1 point to something 3

shake head 1 sit down 1 phone call 1 nod head/bow 2

sit down 1 take off a shoe 1 point to something 1 taking a selfie 2

wipe face 1 throw 1 put on a hat/cap 1 take off a shoe 2

put on a shoe 1 reading 2

put on glasses 1 drop 1

put palms together 1 eat meal 1

take off a shoe 1 phone call 1

take off jacket 1 play with phone/tablet 1

type on a keyboard 1 put on glasses 1

shake head 1

type on a keyboard 1

wipe face 1

writing 1
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6.5 Performance and Efficiency Trade-offs Across Models

Figure 7: Comparison of FLOPs, Parameters, and Training Time

Figure 7 presents the comparison of FLOPs, number of parameters, and the training time.
A positive correlation is seen between FLOPs, parameters and training time of these four
models. Larger FLOPs and parameters require a longer training time. It is notable that
the two models with attention components (UniFormerV2 and TimeSformer) are highly
computationally intensive, with significantly more parameters and much longer training
time compared to the other two. On the contrary, I3D has the lowest FLOPs, parameters
and training time.

Figure 8: Comparison of Macro F1 Score, Precision, Recall, Against Throughput

Figure 8 shows the comparison of macro F1 score, macro precision, and macro recall vs.
inference throughput to assess the relationship between model performance and inference
efficiency. A model with higher values for all these metrics is preferred. TimeSformer
demonstrated the fastest inference speed, tripling the performance of the model with the
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second rank, and had the top macro F1, recall and precision. UniFormerV2 sits in the
second rank for macro recall, F1 score, and throughput. I3D ranked the third for these
metrics. SlowFast showed the worst overall performance metrics and slowest inference
speed.

Figure 9: Comparison of Macro F1 Score, Precision, Recall, Against Parameters

Figure 9 compares the macro F1 score, macro precision, and macro recall against
the number parameters to examine the relationship between the model performance and
model complexity. It is not surprising that the two transformer-based models showed high
performance with a larger number of parameters. But it is notable that I3D achieved
strong performance with the smallest number of parameters.

6.6 Discussion

This study proposes a model to predict dangerous scenarios in assisted living. For real-life
implementation, a model that exhibits high performance, high inference efficiency, low
model complexity, and low computational cost is preferred.

In conclusion, although some models may provide certain advantages in predicting
specific classes, TimeSformer outperformed all models across all macro metrics for the
three classes, achieving a macro F1 of 95.3%, recall of 95.5%, and precision of 95.2%.
In a real-time monitoring system, videos from all clients are queued for predicting; a
faster inference throughput allows more samples to be processed within a limited time.
Although TimeSformer requires longer total training time, its convergence speed is fast,
and model training is much less frequent compared to inference, which may not need
to be retrained for months. Conversely, inference runs 24/7 for assisted living. The
high inference throughput of TimeSformer allows it to make inference for almost four
times as many clients compared to I3D at the same time. Given that GPU servers on
Amazon Cloud Service are billed hourly, high throughput significantly reduces the cost
of the AI prediction system in the real-time HAR model in the long term. Moreover,
our models were designed and implemented using GPU servers, therefore there are no
hardware restrictions for training complex and computationally intensive models, such as
TimeSformer. Ultimately, model selection is prioritised based on overall performance and
inference throughput in our case, with TimeSformer proving to be the optimal model.
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In contrast, the I3D model has the fewest parameters, FLOPs and training time,
but still demonstrated good performance, slightly less promising than TimeSformer and
UniFormerV2, with a macro F1 score of 92.5%, recall of 93.4%, and precision of 91.6%.
Despite slower inference speed compared to TimeSformer and UniFormerV2, I3D’s strong
accuracy and low resource usage could potentially make it a strong candidate for resource-
constrained environments.

7 Conclusion and Future Work

The aim of this research was to investigate to what extent a human action recognition
(HAR) model can predict life-threatening scenarios such as falls, staggering and chest
pain to improve assisted living environments. This research proposes a real-time human
action recognition model that combines a video-based deep learning HAR model and a
live video prediction and alert system. The results prove that transfer learning with state-
of-the-art HAR models possesses a strong capacity to predict critical scenarios from daily
actions. Notably, TimeSformer demonstrated a 99.57% F1 score in predicting falls and
97.50% F1 score in predicting staggering. UniFormerV2 showed an 89.91% F1 score in
predicting chest pain. Overall, TimeSformer is a compelling candidate, as it achieved the
highest macro F1 score (95.3%) among all tested models, reflecting strong and balanced
overall performance across different classes. It also achieved the highest macro recall
(95.5%), minimizing the risks of missing a critical event, and the best macro precision
(95.2%), presenting a low likelihood of producing false alarms. Moreover, TimeSformer
demonstrated the fastest inference speed. Although it has higher model complexity and
computational cost, these are not restrictions for deployment using GPUs, as suggested
by this research.

One limitation of this study is that the NTU RGB+D 60 dataset utilized is not ex-
plicitly designed for assisted living environments, therefore its performance may require
further testing in real-world settings; the dataset contains 40 daily action classes, which
may not encompass all daily activities occurring inside assisted living, potentially lim-
iting the model’s robustness when encountering unseen actions. Moreover, the paper
has not benchmarked itself against sensor-based or skeleton-based HAR models for pre-
dicting these scenarios. Another limitation is that TimeSformer has high computational
requirements which may make model training and deployment difficult with a much larger
dataset size for real-life application development.

AI-enabled real-time prediction of critical scenarios assists in immediate danger de-
tection, potentially enhancing safety, trust, and comfort in assisted living. It allows the
residents to maintain their independence with greater confidence, knowing that they are
well protected, and that rapid intervention is possible during emergencies. This work
could contribute to the Sustainable Development Goals (SDGs) by supporting health
and well-being, sustainable communities and cities, and industrial innovation and resili-
ent infrastructure. It might be improved by testing more deep learning HAR models. It is
also worth experimenting with a skeleton-based HAR approach, which may be efficient in
capturing human actions, and less resource-intensive. Moreover, it is suggested to include
more critical scenarios, such as choking and vomiting, to create a more comprehensive
model for predicting a series of dangers in assisted living. Furthermore, it is recommen-
ded to evaluate the model’s performance, if possible, using live video from real assisted
living environments.
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