
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Configuration Manual 
 
 
 
 
 

MSc Research Project  
MSc. in Artificial Intelligence 

 
 
 

Visakh Vijayakumar Nair  
Student ID: 23198273 

 
 
 

School of Computing  
National College of Ireland 

 
 
 
 
 
 
 
 
 
 
 

Supervisor: Rejwanul Haque 



 

 

 
National College of Ireland 

 
MSc Project Submission Sheet 

 
School of Computing 

 
Student 
Name: 

 
Visakh Vijayakumar Nair……………………………………………… 

 
Student ID: 

 
23198273………………………………………………………………………..…… 

 
Programme: 

 
MSc in Artificial Intelligence 

 
Year: 

 
2024…………….. 

 
Module: 

 
Practicum …………………………………………………………………………….……… 

 
Lecturer: 

 
Dec 12, 2024 ……………………………………………………………………….……… 

Submission 
Due Date: 

 
………………………………………………………………………………………………………….……… 

 
Project Title: 

Beyond Accuracy: A Comparative Analysis of 
Recommendation Models Incorporating Quantitative and 
Qualitative Evaluation 

Word Count: 
 
1,312……………………… Page Count: 10 ……………………….…….……… 

 
I hereby certify that the information contained in this (my submission) is information 
pertaining to research I conducted for this project.  All information other than my own 
contribution will be fully referenced and listed in the relevant bibliography section at the 
rear of the project. 
ALL internet material must be referenced in the bibliography section.  Students are 
required to use the Referencing Standard specified in the report template.  To use other 
author's written or electronic work is illegal (plagiarism) and may result in disciplinary 
action. 
 
Signature: 

 
……………………………………………………………………………………………………………… 

 
Date: 

 
12 Dec, 2024…………………………………………………………………………………… 

 
 
PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST 
 
Attach a completed copy of this sheet to each project (including multiple 
copies) 

□ 

Attach a Moodle submission receipt of the online project 
submission, to each project (including multiple copies). 

□ 

You must ensure that you retain a HARD COPY of the project, 
both for your own reference and in case a project is lost or mislaid.  It is 
not sufficient to keep a copy on computer.   

□ 

 
 
Assignments that are submitted to the Programme Coordinator Office must be placed 
into the assignment box located outside the office. 
 
Office Use Only 
Signature:  
Date:  



 

 

Penalty Applied (if applicable):  



 

1 
 

 

 
 

Configuration Manual 
 

Visakh Vijayakumar Nair 
Student ID: 23198273 

 
 

1 Introduction 

This configuration manual provides detailed instructions for setting up and running the 
research project titled “Beyond Accuracy: A Comparative Analysis of Recommendation 
Models Incorporating Quantitative and Qualitative Evaluation Metrics”. The project 
aims to develop two different recommendation models and compare both their predictive 
accuracy and their ability to deliver a qualitative user experience. 

2 Section 2 

2.1 Hardware Configuration 

In this research study a local machine (Apple MacBook Pro) is used as Infrastructure as a 
Service (IaaS). The configuration of the local machine used is given below in the Table 1. 

 

Hardware Configuration 

Operating System MacOS 14.3.1 

RAM 32 GB 

Virtual CPUs 10 

Hard Disk Storage 480 

 

 



 

2 
 

 

2.2 Software Configuration 

To complete this study, some external software is used. The list of all the software and their 
versions are given below. 

 

Software Configuration 

Conda 23.7.4 

Jupyter Notebook 7.2.2 

Python 3.9.19 

MongoDb 7.0.8 

 

Conda: 
Conda is a versatile package and environment management tool that is used to create 
independent and recreatable environments for this project. With the support of Conda, 
dependencies for different models and tools are managed efficiently, ensured compatibility, 
and preventing conflicts between libraries. 

Jupyter Notebook: 
Jupyter Notebook is used as a development interface for this project, which provides an 
interactive environment to write, test, and document code. Its ability to combine executable 
code, visualizations, and markdown notes was invaluable for experimentation and detailed 
analysis. 

MongoDB: 
To store and manage the project dataset MongoDB is used, which can handle unstructured data. 
Its flexible schema and ability to handle large-scale, unstructured data made it a suitable choice 
for this research. MongoDB’s querying capabilities are practically useful for efficiently 
retrieving and analysing the data required for model training and evaluation. 

Python: 
Python is used as the core programming language used for the development and analysis of the 
recommendation models. Its extensive libraries, such as TensorFlow, PyTorch, and Scikit-
learn, facilitated the implementation and evaluation of both recommendation models. 



 

3 
 

 

Here are the python libraries that we used in this project. 

 

Python Libraries Used 

scikit-learn 1.5.2 

tensorflow 2.17.0 

torch 2.0.1 

seaborn 0.13.2 

pymongo 4.10.1 

numpy 1.23.5 

keras 3.5.0 

pandas 1.5.3 

 

3 Project Development 

3.1 Data Preparation 

The data is stored in a MongoDB database, so to access the data and pre-process it we use 
Python and PyMongo. At first, we need to import required libraries, then connect with 
MongoDB server. After that, access the findups_daily_next_world database. 



 

4 
 

 

 

Figure 1: Importing Libraries for accessing MongoDb Database 

3.1.1 Creating read_logs collection 

In our database we have three different collections: users, news, news_action_logs. To train a 
model, we need all the required information in one single dataset. For that, we build a new 
MongoDB Collection named read_logs.  

For that, we write a set of programmes which will traverse through each entry of 
news_action_logs, then access the news_id, user_id, time_stamp and weather the user 
interacted with the news or not (is_read). After that, by matching up the news_id with the 
‘_id’, the news_content will be added to the dataset. After completing all these steps, the data 
will be added to the MongoDB database as a new collection and named it as read_logs. 

 

Figure 2: The set of code for generating read_logs dataset. 
 



 

5 
 

 

3.1.2 Embedding Textual Data 

As we can see, the most important data, news_content, is a textual data. This textual data set 
cannot be use as an input for the machine learning or neural network model training. So we 
need to convert the textual form to embeddings. 

To embed the text content, here we use BERT. For that, the BERT modules, BertTokenizer 
and BertModel, are imported from the transformers library. Then we load pre-trained BERT 
tokenizer and model, ‘bert-base-uncased’. 

A separate function will be written with a sole responsibility to provide embedding values of 
given text content. The function, named get_news_embedding, which have one single 
parameter ‘text_content’, will convert the textual value to tokens. After that the tokens will be 
pass through the BertModel and convert it into embedding, which have 768 dimensions.  

The embeddings of each news_content will be identified using this function with the support 
of Python’s Lambda feature.  

 

Figure 3: Generating embeddings for each news_content. 

3.2 Transformation 

In this project, we build two different recommendation models to compare its performance. 
For the second model Behavioural Pattern Learning Model requires sequential data, which 
provides n news that user already interested in. Following a target news that user to predict 
whether the user read or ignore. And label column which shows, weather the user read the 
news or not. 

We need to check this functionality on various sequence, by adjusting the value of n (the 
number of news that the user read before. A function has been written to generate such 
sequential dataset, by which can adjust the number of news that user read. 



 

6 
 

 

 

Figure 4: Function to generate sequence dataset. 

 

Here is a sample dataset that the function generated with 4 interacted news, 1 target news and 
label column. 

 

Figure 5: Sequential Dataset 

 



 

7 
 

 

4 Model Development 
Here build two recommendation model to compare its performance in quantitative and 
qualitative basis. 

4.1 Embedding-Based Ranking Model 

The working of Embedding-Based Ranking Model is that it creates a user profile by accessing 
all the news that read by the user. First, the sum of all the embeddings of those news will be 
taken, and then the mean value of it will be calculated. That value will be considered as 
user_profile.  

 

Figure 6: function for creating user profile. 

 

Here, the model will recommend top_n number of news for the users which have the 
embedding values closer to the user_profile. For that, the user_profile will be calculated. Then 
all the news that user didn’t interact will be identified. After that the distance between the 
user_profile and the embedding of each news will be calculated using cosine_similarity 
function from sklearn. 

 

Figure 7: recommend_news function. 

By adjusting the top_n parameter value, the function can predict as many news as we required. 
We also need to pass user_id, list of news that the user already read (read_news) and all the 
news list (news_df).  

 

 



 

8 
 

 

4.2 Behavioural Pattern Learning Model 

The working of this model is that it creates a sequence dataset by combining the embeddings 
n previously read news by the user, and a target news. Followed that, a label column which 
shows weather user interact with the target news or not. To create such database, we already 
created a function get_sequence_data(), (check Figure 5).  

After some trial and error, it is identified that the combination of 4 previously interacted news 
and 1 target news sequence dataset can train a better performing model.  

4.2.1 Splitting Data into Train and Test 
The data is separated like all the embedding sequences are moved to X. Then the labels are 
assigned as y.  
 

 

Figure 8: X and y Data separation. 

 
Then the data is converted into training and testing datasets by 80:20 ratio. That means 80% 
of total data is taken for training and remaining 20% is assigned for testing. 
 

 

Figure 9: Training - Testing data splitting. 
 
 
4.2.2 Creating Weighted Class  
Since the dataset is unbiased, we need to build a weighted class to avoid bias issues in model. 
 

 

Figure 10: Generating weighted class for avoiding bias. 
 
4.2.3 Design Neural Network 
To design and implement neural network, here we use TensorFlow library. It processes 
structured input data to predict a binary outcome, such as user engagement with a specific 
item. 
 
Input Layer: 
The input layer accepts a feature vector with a size equal to the number of features in the 
training data (X_train.shape[1]). This ensures compatibility with the dataset's dimensionality. 
 
Hidden Layers: 
The first hidden layer contains 768 neurons with a ReLU (Rectified Linear Unit) activation 
function. This layer learns to capture high-level patterns from the input data. 



 

9 
 

 

 

Figure 11: Neural Network Design 
 
 
The second hidden layer, with 128 neurons, refines these patterns further, extracting 
intermediate-level features. 
 
The third hidden layer, with 64 neurons, extracts the information into meaningful, lower-
dimensional representations to improve the model’s ability to generalize. 
 
Output Layer: 
The final layer consists of a single neuron with a sigmoid activation function, producing a 
probability value between 0 and 1. This represents the likelihood of a positive classification, 
such as whether the user will engage with the target article or item. 
 
This architecture is well-suited for capturing complex relationships in high-dimensional data 
while maintaining a focus on binary outcomes. It balances feature extraction and decision-
making through its layered design. 
 
4.2.4 Model Compile 
The model is compiled with configurations tailored for binary classification tasks: 
 

 

Figure 12: Model compile by adding optimizer, loss function and metrics. 

 

Optimizer: 

The Adam optimizer is selected for its efficiency in handling large datasets and its ability to 
adapt learning rates during training dynamically. This helps the model converge faster and 
more effectively compared to traditional optimization techniques. 

Loss Function: 

The binary cross-entropy loss function is used, which is ideal for binary classification 
problems. It quantifies the difference between predicted probabilities and actual binary labels, 
guiding the model to minimize errors during training. 

 



 

10 
 

 

Evaluation Metrics: 

Accuracy is included to measure the overall correctness of the model's predictions. 

Recall is added to emphasize the model's ability to correctly identify positive instances (true 
positives), which is particularly important in scenarios where missing a relevant 
recommendation (false negatives) can have significant implications. 

This compilation setup ensures the model is optimized for both training efficiency and 
performance evaluation, with a focus on critical aspects of binary classification. 
 
4.2.5 Model Training 
Then the model trained on 20 epochs with 24 batch size, and 20% data is taken for validation 
purpose. The training will also be influenced by the weighted class, so it can avoid bias due to 
the imbalance of dataset. 
 

 

Figure 13: Model training with weighted class. 


