
Configuration Manual

MSc Research Project

Artificial Intelligence

Muhammad Usama
Student ID: X23240636

School of Computing

National College of Ireland

Supervisor: Anderson Augusto Simiscuka

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Muhammad Usama

Student ID: X23240636

Programme: Artificial Intelligence

Year: 2024

Module: MSc Research Project

Supervisor: Anderson Augusto Simiscuka

Submission Due Date: 12/12/2024

Project Title: Configuration Manual

Word Count: XXX

Page Count: 9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Muhammad Usama
X23240636

1 Introduction

This paper presents a description of the setup and coding process required for the imple-
mentation of the project, namely Solar Panel Automated Anomaly Detection and Local-
ization Using Deep Learning. It also identifies the hardware and software environment
needed for research to achieve comparable results. This section contains procedures and
essential programming environments as well as the necessary processes required for the
effective implementation of the intended system. The manual ensures the correct im-
plementation, training, evaluation, and fault localization of both the anomaly detection
model and the localization model.

2 Setup and Configuration

2.1 Software Configurations

The implementation and training of models in this research were conducted using Python
3.10 as the primary programming language. The code was executed in Jupyter Notebooks
Pro, which provided access to a high-RAM runtime environment to support efficient
model training and experimentation.

2.1.1 Main Libraries

• TensorFlow: For developing and training the anomaly detection model (VGG19).

• Ultralytics YOLOv8: For implementing the fault localization model.

• Other Supporting Libraries: NumPy, Pandas, Matplotlib, and OpenCV for
data preprocessing, visualization, and analysis.

3 Data Collection

Datasets have been selected and downloaded from the Kaggle source, which is mentioned
here:(Dataset; 2024)

The annotation files were created manually and are stored on Google Drive. These
can be accessed at the this link:(Annotation; 2024)

1



4 Data Transformation

The dataset for this project was downloaded from Kaggle and then uploaded to Google
Drive for easy access within the Jupyter Notebook environment. For the anomaly detec-
tion task in the first part of the project, the dataset was preprocessed and categor-
ized into six classes: Bird-drop, Clean, Dusty, Electrical-Damage, Physical-Damage,
and Snow-Covered. These images were resized to 244x244 pixels to meet the input re-
quirements of the VGG19 model, and pixel values were normalized using TensorFlow’s
vgg19.preprocess input function.

In the second part of the project, focusing on anomaly localization, YOLOv8s was
employed, which requires bounding box annotations in its specific format. To create
these annotation files, the RoboFlow tool was utilized. Images corresponding to four
classes—Physical-Damage, Electrical-Damage, Bird-Drop, and Snow-Covered—were up-
loaded to RoboFlow. Bounding boxes were manually drawn for each anomaly, and the
annotations were exported in YOLO format. These annotation files were essential for
training the YOLOv8s model to detect and localize faults effectively.

Here I upload the dataset for the annotation of the files:

Figure 1: ROBOFlow

And after uploading the dataset I make the bounding boxes for finding the configur-
ation values, After uploading the data, then next I did the manual annotation, because
some images have the multiple faults, so I make bounding boxes on all faults manually.
So here is how the annotation I started.

2



Figure 2: Dataset Annotation

After that the next step is to draw the bounding boxes,

Figure 3: Annotation file

So after the bounding boxes, ROBOFlow will make the Annotation file, so YOLO
V8s model detect the annotataion file.

5 Data Modeling

This section details the implementation of the anomaly detection and localization models.
Both parts of the project depends on essential Python libraries, including TensorFlow,
OpenCV, and the Ultralytics YOLO library. These libraries are prerequisites for running
of the VGG19 and YOLOv8s models.

Assuming these libraries are already installed in the Python environment, they can
be installed if required by using the following command:

3



pip install libraryName

The models were implemented and executed within a Jupyter Notebook, ensure the
efficient and interactive development process.

Figure 4: Desired Libraries

4



Figure 5: Python Libraries

5



5.1 Data Loading

Figure 6: Data Laoding

6



5.2 Model Loading

Figure 7: Model VGG19

Model loaded with fine tunning

Figure 8: Model with Fine Tunning

7



Figure 9: Model

5.3 For Fault Localization

Figure 10: Dataset loading

5.4 Model Summary

Figure 11: Dataset loading

6 Evaluation

The evaluation of models for both classification and fault localization tasks yielded the
following results:

1. For classification, the VGG19 model with transfer learning and fine-tuning achieved
the highest accuracy of 96% (training) and 84% (validation), outperforming other models
on the same dataset.

2. For fault localization, the YOLOv8s model performed well for single-class detection,
achieving an mAP@50 of 75%. However, when trained on all four classes, the mAP@50
decreased to 60%, due to dataset quality and manual annotation limitations.

The evaluation results are summarized in the tables below.

8



Model Techniques Used Accuracy (%)
VGG16 None 67
VGG16 Data Augmentation 75
VGG16 Data Augmentation + Transfer Learning 79
VGG19 Transfer Learning + Fine-Tuning 96 (Train) / 84 (Validation)

Table 1: Comparison of VGG Models with Different Techniques

Model Classes mAP@50 (%)
YOLOv8s Physical Damage Only 75
YOLOv8s All Classes (Physical Damage, Electrical Damage, Snow Covered, Bird Drop) 60

Table 2: Fault Localization Results

7 Code Resources

The Jupyter Notebook files (‘.ipynb‘) and other related resources for the evaluation and
comparison of VGG models are available in the shared Google Drive folder. Access the
folder using the link below:
Google Drive Folder - VGG Models and Resources

References

Annotation (2024). Google drive folder for solar panel annotations, https:

//drive.google.com/drive/folders/1QiWAj0cpLELiVqmzm5wgXiOUssiPl4Dj?

usp=drive_link. Manually created annotations. Accessed: 2024-12-10.

Dataset, K. (2024). Solar panel clean and faulty images, https://www.kaggle.com/
datasets/pythonafroz/solar-panel-clean-and-faulty-images. Dataset down-
loaded from Kaggle. Accessed: 2024-12-10.

9

https://drive.google.com/drive/folders/1j6Dvq8YLKAODWVDcc6YOYQx-qk51bpek?usp=drive_link
https://drive.google.com/drive/folders/1QiWAj0cpLELiVqmzm5wgXiOUssiPl4Dj?usp=drive_link
https://drive.google.com/drive/folders/1QiWAj0cpLELiVqmzm5wgXiOUssiPl4Dj?usp=drive_link
https://drive.google.com/drive/folders/1QiWAj0cpLELiVqmzm5wgXiOUssiPl4Dj?usp=drive_link
https://www.kaggle.com/datasets/pythonafroz/solar-panel-clean-and-faulty-images
https://www.kaggle.com/datasets/pythonafroz/solar-panel-clean-and-faulty-images

	Introduction
	Setup and Configuration
	Software Configurations
	Main Libraries


	Data Collection
	Data Transformation
	Data Modeling
	Data Loading
	Model Loading
	For Fault Localization
	Model Summary

	Evaluation
	Code Resources

