~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc Artificial Intelligence

Sayali Thakur
Student 1D: x23139901

School of Computing
National College of Ireland

Supervisor: SHERESH ZAHOOR

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Sayali Thakur
Student ID: x23139901
Programme: MSc Artificial Intelligence
Year: 2024
Module: MSc Research Project
Supervisor: SHERESH ZAHOOR
Submission Due Date: 12/12/2024
Project Title: Configuration Manual
Word Count: 910
Page Count: [

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sayali Machhindra Thakur

Date: 12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Sayali Thakur
x23139901

1 Introduction

The guide below outlines and elaborates procedures that should be followed in emulating
the project setting in terms of tools, application, and settings. They describe the pro-
cess of data pre-processing, feature extraction, modeling and evaluating and enables an
accurate replication of the experiment.

2 Project File Details

The Google Collab program is used in this project for data preparation and explora-
tion,modelling and evaluation. The Jupyter file is of scrapped youtube comments.

e Dissertation.ipynb: preprocessing and EDA done in this file and data is saved in
CSV file.

e Thesis.ipynb: preprocessing and Modelling and evaluation are done in this file.

e Youtube_comment_scraper: this file contains youtube comment scraper code

3 Software Used

e Microsoft excel: Used for dataset storing in CSV.
e Google Collab: Used for Exploration and processing.

e Jupyter Notebook: For the modelling and evaluation.

4 System Specification

A system specification is essentially a documented outline of a system, it displays tech-
nical features and specifications that a certain system is to include. It can also provide
details about the system’s components, operations, layout and many more. The system
configuration used in running this is illustrated in Figure [3| 2 below. Schematic repres-
entation: The Figure (1| and Figure [2| below illustrates the Google Collab specification.
The most basic setup would only need 8 GB of RAM, and that should be sufficient to
produce the desired results but would need slightly longer time than the current methods
being used.

Python 3 Google Compute Engine backend Python 3 Google Compute Engine backend (TPU)

Showing resources since 22:50 Showing resources since 22:49
System RAM Disk System RAM Disk
1.1/12.7GB 32.6/107.7GB 4.7 /334.6GB 15.4/2253GB

Python 3 Google Compute Engine backend (GPU)
Showing resources since 22:50

System RAM GPURAM Disk
1.5/12.7GB 0.0/15.0GB 32.6/112.6 GB

Figure 1: Google Colab Specification

Runtime type

Python 3 A

Hardware accelerator (?)

@ cru (O TagPu () AT00GPU

QO va2sTRU

Figure 2: Google Colab Runtime Specification

DESKTOP-1623HAD

Vostro 16 5630 Rename this PC

@ Device specifications Copy ~

Device name DESKTOP-1623HAD

Processor 13th Gen Intel(R) Core(TM) i7-1355U 1.70 GHz
Installed RAM 16.0 GB (15.7 GB usable)

Device ID 4EC372BC-1655-4C63-A0B5-A1366F5BOEAF
Product ID 00342-42636-97423-AAOEM

System type 64-bit operating system, x64-based processor

Pen and touch ~ No pen or touch input is available for this display

Related links Domain or workgroup ~ System protection ~ Advanced system settings

== Windows specifications Copy R
Edition Windows 11 Home Single Language
Version 23H2
Installed on 06/07/2024
05 build 22631.4460
Experience Windows Feature Experience Pack 1000.22700.1047.0

Microsoft Services Agreement
Microsoft Software License Terms

Figure 3: Machine Specification

5 Download and Install

Based on the operating system, Python must first be installed; the installation of the most
recent version is advised Python 3.10.2 for Windows 11 was downloaded and installed as
the most recent version of the file. A development environment is needed after Python
has been installed to write, run, and view the output of code.

It is simple to use Google Collab Using a Google account, sign in and add a new file
to the disk. Users have free access to computational tools like GPUs and TPUs through
Google Colab, which can be utilized to execut computationally intensive tasks. jupyter
notebook used for scraping the youtube comments. Jupyter Notebook is bundled with the
Python distribution, Anaconda 2 as shown in Figure []for which a suitable installation
can be downloaded depending on the operating system. The Anaconda’s dashboard also
features pre-installed packages like the Jupyter notebook. The first step in developing
Python code is to launch the Jupyter Notebook and create a new Python file oepn .ipynb

) ANACONDA NAVIGATOR Qv |

Figure 4: Anaconda Navigator Specification

6 Project Developement

After going through all these steps you can open the Jupyter notebook or Google Collab
and then click the new button located at the top of the file open and load scripted file
from the file reference If you scroll down to the code section, what we offered, you will
have an option to run all of them at once or each cell individually.

6.1 Importing Files

Upload 'Thesis’ folder on google drive. then run following command shown in Figure [§

6.2 Python Libraries

The packages used in the project are displayed in Figure [§| below. If necessary ” !pip
install package-name”. also emoji package needs to install first before importing eg.
”Ipip install emoji”

o from google.colab import drive
drive.mount(’/content/drive")

—Er Mounted at /content/drive

Figure 5: Procedure to mount on google drive

© import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import re
from sklearn.feature_extraction.text import Tfidfvectorizer
from wordcloud import WordCloud
from nltk.corpus import stopwords
from nltk.tokenize import word tokeni Loading..
from nltk.stem import WordMNetLemmatizer
import emoji
from transformers import BertTokenizer, TFBertModel
import tensorflow as tf
from tensorflow.keras.layers import Dense, Input, Concatenate, Attention

A P PP PP P A P P P PP PP,

from tensorflow.keras.models import Model

from sklearn.model selection import train_test split
from sklearn.preprocessing import OneHotEncoder

[] import os
import csv
import pandas as pd
from googleapiclient.discovery import build

Figure 6: Packages Used in a Project

7 Dataset

The dataset used for this research consists of two main parts. Dataset 1 as shown in Fig-
ure 7?7 contains 19,708 rows of youtube comments. It includes columns such as username,
comment, time-posted, and likes. Dataset 2 as shown in Figure 7?7 The text data used
in this paper is obtained from the WANLP 2021 Shared Task on Sarcasm and Sentiment
Detection in Arabic by [Abu Farha et al| (2021)). It contains 15,545 tweets which were
translated into English for analysis, with columns for the tweet text (tweet), sarcasm label
(sarcasm), sentiment (sentiment), and dialect (dialect). The sarcasm column indicates
whether the tweet is sarcastic (1) or not (0), and dialect specifies the language variant
used.

Datasetl loaded successfully.
Number of rows: 19788 username comment \

<] @trevornoah Subscribe if you haven't already! http://bit.1...

1 @keithlenton5313 One of my favourite comedians, Trevor. You’re ...

2 @praveenmalhotral59 Thank the local traitors who opened the door o...

3 @Light_spot_ That talent <

4 @vic-vf5tm That was hilarious.
time_posted 1likes

0 2021-02-26T21:22:32Z 7999

1 2024-11-14T707:57:27Z 2]

2 2024-11-13Te2:30:12Z 2]

3 2024-11-12T722:26:497 1}

4 2024-11-12T720:08:55Z 1

Figure 7: Packages Used in a Project

Dataset2 loaded successfully.

Number of rows: 15545 tweet sarcasm sentiment \
@ Dr. #Mahmoud_Al-Alaili: I see that Lieutenant ... 2} NEU
1 "With Federer, Aga, and the big boys ™ https:/... 2] NEU
2 “Those who advocate the principle of mixing be... 1 NEG
3 "@ihe_94 @ya78m @amooo5 @badiajnikhar @oukasaf... 1 NEG
4 "Say East Aleppo and do not say East Aleppo...... 2] NEU

dialect
e msa
1 msa
2 msa
3 gulf
4 msa

Figure 8: Packages Used in a Project

8 Preprocessing

The configuration manual offers some insight of the process undertaken to prepare the
data for integration into analysis. That is why most of these steps are considered funda-
mental to data quality and model’s performance as shown in Figure [0 and Figure

e Tokenization: Used Hugging Face Tokenizer.
e Emoji extraction: Used the emoji library, One-Hot Encoding for Emoji Features.

e Feature extraction: Used Text Frequency-Inverse Document Frequency (TF-IDF),
Word Embeddings, Emoji Embeddings.

import pandas as pd

Load the dataset
file path = '/content/drive/MyDrive/Colab Notebooks/Thesis/new tweetercomments dataset.csv'
try:
df = pd.read_csv(file path)
except Exception as e:
df = pd.read csv(file path, encoding='latinl') # Fallback encoding

print("Initial Dataset Info:")
print(df.info())

print("First few rows:")
print(df.head())

Step 1: Inspect unigue values in the 'sarcasm’ column

print("\nUnique values in 'sarcasm':")
print(df['sarcasm’].unique())

Step 2: Drop rows with missing or invalid "sarcasm’ wvalues
valid_sarcasm_values = ['TRUE', 'FALSE']
df_cleaned = df[df["sarcasm’].isin(valid_sarcasm_values)].copy()

Step 3: Replace 'TRUE'/'FALSE' with 1/8 and ensure the column type is integer
df_cleaned['sarcasm'] = df_cleaned['sarcasm’].replace({ 'FALSE': 8, 'TRUE': 1}).astype(int)

Step 4: Basic cleaning for the "tweet' column
df_cleaned["tweet'] = df_cleaned[tweet’].str.strip() # Remove leading/trailing spaces
df_cleaned = df_cleaned[df_cleaned['tweet'] != "'] # Remove empty strings

Step 5: Clean remaining columns
df_cleaned = df_cleaned.dropna(subset=["sentiment”, 'dialect']ﬂ

Step 6: Save the cleaned dataset to a new CSV file
cleaned_file path = '/content/drive/MyDrive/Colab Notebooks/Thesis/tweetercomments_cleaned_dataset.csv’
df_cleaned.to_csv(cleaned_file path, index=False)

Step 7: Display final dataset information and first few rows
print("\nCleaned Dataset Info:")

print{df_cleaned.info())

print("\nFirst few rows of cleaned dataset:")
print{df_cleaned.head())

print(f"\nCleaned dataset saved successfully to '{cleaned_file_path}'!"™)

Figure 9: Data Preprocessing Steps

Preprocess Text Column (Cleaned tweets should already be preprocessed)
def preprocess text(text):
return text.strip().lower()

print(“\n---- Preprocessing Tweets ----")

data['‘cleaned tweet'] = data['tweet'].apply(preprocess_text)
print(“"Cleaned tweets example:")

print (data['cleaned tweet'].head())

Extract emojis from tweets
def extract emojis(text):
return ''.join(c for c in text if c¢ in emoji.EMOJI_DATA)

print("\n---- Extracting Emojis ----")

data['emojis'] = data['tweet'].apply(extract emojis)
data['emojis'] = data['emojis'].replace('', "[NO_EMOJI]")
print("Extracted emojis example:")

print(data[['tweet®, 'emojis']].head())

One-Hot Encoding for Emoji Features

print("\n---- Emoji One-Hot Encoding ----")

emoji_encoder = OneHotEncoder(sparse_output=False)

emoji_features = emoji_encoder.fit transform(data['emojis'].values.reshape(-1, 1))
print("Shape of One-Hot Encoded Emoji Features:", emoji_features.shape)

Figure 10: Data Preprocessing Next Steps

9 Data Modelling

Before modeling, the important predictors are obtained from the recursive feature elimin-
ation phase and then fed into the x-data and y-data functions with the target variable. If
any of the two sets has more observations, smote will be used to balance the data before
the test. train is split and fed into the models. This is shown in the figures below:

In this study, five machine learning algorithms and one is the deep learning algorithm
have been employed. The best parameter will be selected when these models are tuned
with the various parameters; the best parameter will be selected by the grid-search CV.
Some packages need to import before running models. following are the images of the
models implemented.

Tokenization with BERT
print("\n---- Tokenizing Text with BERT ----")
max_seq_length = 128
tokenizer = BertTokenizer.from pretrained('bert-base-uncased")
text inputs = tokenizer(
list(data['cleaned tweet']),
truncation=True,
padding=True,
max_length=max_seq length,
return_tensors="tf"
)
print("BERT Tokenization Complete:")
print(f"Input IDs Shape: {text_inputs['input_ids'].shape}")

Train-Test Split

print("\n---- Splitting Data into Train and Test Sets ----")
X text = text inputs['input ids']

X emoji = emoji features

y = data['sarcasm’]

X train text, X test text, X train emoji, X test emoji, y train, y test = train test split(
X_text.numpy(), X emoji, y, test size=0.2, random state=42)

Figure 11: Data Modelling Early Steps

from sklearn.metrics import accuracy score

Rule-based sarcasm detection: Example with keyword matching
def rule based sarcasm detection(texts):
sarcasm_indicators = ['yeah right', 'totally’, 'sure', 'obviously','as if',
'just great', 'brilliant', 'fantastic’', ‘'what a surprise', 'how original']
return [
1 if any(indicator in text.lower() for indicator in sarcasm_indicators) else @
for text in texts

]

Apply rule-based detection on cleaned tweet
y_pred _rule based = rule based sarcasm detection(data['cleaned tweet'])

Evaluate accuracy of rule-based predictions

rule based accuracy = accuracy_score(data['sarcasm'], y pred rule based)
print("Rule-Based Accuracy:", rule based accuracy)

Calculate confusion matrix for Rule-Based Model

cm_rule based = confusion matrix(data| 'sarcasm'], y pred rule based)
print("Confusion Matrix for Rule-Based Model:\n", cm _rule based)

Figure 12: Rule Based Pattern matching

Naive Bayes

nb _model = MultinomialNB()

nb _model,fit(X train combined, y train)

y_pred nb = nb_model.predict(X test combined)

print("Naive Bayes Report:\n", classification report(y test, y pred nb))

Figure 13: Naive Bayes

Support Vector Machine (SVM)

svm_model = SVC(kernel="linear', probability=True)
svm_model.fit(X train combined scaled, y train)

y _pred svm = svm _model.predict(X test combined scaled)

print("SvM Report:\n", classification report(y test, y pred svm))

Figure 14: SVM

Random Forest Classifier

rf _model = RandomForestClassifier(n estimators=100)

rf _model .fit(X train _combined, y train) # No scaling for Random Forest
y_pred rf = rf_model.predict(X test combined)

print("Random Forest Report:\n", classification report(y test, y pred rf))

Figure 15: Random Forest

XGBoost Classifier

xgb model = xgb.XGBClassifier(use label encoder=False, eval metric="mlogloss')

xgb model.fit(X train_combined scaled, y train) # XGBoost requires scaled features
y_pred xgb = xgb model.predict(X test combined scaled)

print("XGBoost Report:\n", classification_report(y test, y pred xgb))

Figure 16: XGBoost

Prepare inputs for BERT and emoji features
input_ids = bert_inputs['input_ids']

attention mask = bert_inputs['attention mask']
X emoji = emoji_features

y = data["sarcasm’].values

Convert TensorFlow tensors to NumPy arrays for compatibility with train_test split
input_ids_np = input_ids.numpy()
attention_mask_np = attention_mask.numpy()

Train-Test Split
X_train_ids, X_test_ids, X_train_mask, X_test_mask, X_train_emoji, X_test_emoji, y_train, y_test = train_test_split(
input_ids np, attention mask np, X emoji, y, test size=0.2, random state=42)

Define Multimodal Model
bert model = TFBertModel.from pretrained('bert-base-uncased")

BERT branch
input_ids_layer = Input(shape=(128,), dtype=tf.int32, name='input ids')
attention_mask_layer = Input(shape=(128,), dtype=tf.int32, name='attention mask')

bert_output = Lambda(
lambda x: bert _model (input_ids=x[e], attention mask=x[1])[1],
output_shape=(768,), # Explicitly specify the output shape
name="bert_embedding”)([input_ids_layer, attention_mask_layer])

Emoji branch

emoji_input = Input(shape=(X_train_emoji.shape[1],), name="emoji_input")
emoji_dense = Dense(128, activation="relu')(emoji_input)

Figure 17: Deep Learning 1

Combine branches

combined = Concatenate()([bert_output, emoji_dense])

dropout = Dropout(©.3)(combined)

output = Dense(1, activation="sigmoid', name='output')(dropout)

Define and compile the model
model = Model(inputs=[input_ids_layer, attention_mask layer, emoji input], outputs=output)
model.compile(optimizer=Adam(learning_rate=2e-5), loss='binary_crossentropy’, metrics=["accuracy'])

Train the model
history = model.fit(
[X_train_ids, X_train_mask, X_train_emoji],
y_train,
validation_data=([X_test_ids, X test mask, X test _emoji], y_test),
batch size=32,
epochs=3

)

Evaluate the model
y_pred_dl = (model.predict([X_test_ids, X test _mask, X test emoji]) > ©.5).astype(int)
print("Deep Learning Report:\n", classification_report(y_test, y pred_dl))

Figure 18: Deep Learning 2

hyper tuning
from sklearn.model selection import GridsSearchcv

Define XGBoost parameter grid

param_grid = {
'n_estimators': [5e, 1ee, 150],
‘max_depth®: [3, 5, 7],
"learning_rate': [®0.01, 0.1, 0.2],
"subsample’: [@.8, 1.80],
"colsample bytree': [©.8, 1.0]

}

Initialize XGBoost model
xgb_model = xgb.XGBClassifier(use_label encoder=False, eval_metric='mlogloss")

Perform grid search
grid_search = Gridsearchcv(estimator=xgb model, param grid=param_grid, scoring="f1', cv=3, verbose=1)
grid search.fit(X train, y train)

Get best parameters and performance
print("Best Parameters:™, grid_search.best_params_)
print("Best F1-Score:", grid search.best score)

Evaluate on test set
best_xgb_model = grid_search.best_estimator_

y_pred_tuned = best_xgb _model.predict(X_test)
print("Tuned XGBoost Report:\n", classification_report(y_test, y pred_tuned))

Figure 19: Hyperparameter Tuning

10

import shap

Number of features in each section (TF-IDF, emoji, sentiment, POS count)
num_tfidf = 1000 # Number of TF-IDF features
num_emoji = 128 # Number of PCA-reduced emoji features

Generate feature names dynamically

feature_names = (
[f"TF-IDF_{i}" for i in range(num_tfidf)] + # TF-IDF feature names
[f"Emoji_{i}" for i in range(num emoji)] + # Emoji feature names
["sentiment’, "POS Count'] # Sentiment and POS Count

)
Ensure the number of feature names matches the features in X_test
assert len(feature_names) == X_test.shape[1], \
f"Number of generated feature names ({len(feature_names)}) does not match number of features in X test ({X test.shape[1]})"
SHAP explanations for the XGBoost model
explainer = shap.Explainer(xgb model, X test) # Attach X test to the model for SHAP computation
shap_values = explainer(X test)
Print information
print(f"Number of features in X test: {X test.shape[1]}")

print(f"Generated feature names (sample): {feature_names[:5]} ... {feature_names[-5:]}") # Display some feature names

Vvisualize feature importance
shap.summary_plot(shap_values, X_test, feature names=feature_names)

Figure 20: Feature Importance

References
Abu Farha, 1., Zaghouani, W. and Magdy, W. (2021). Overview of the wanlp 2021

shared task on sarcasm and sentiment detection in arabic, Proceedings of the Sizth
Arabic Natural Language Processing Workshop.

11

	Introduction
	Project File Details
	Software Used
	System Specification
	Download and Install
	Project Developement
	Importing Files
	Python Libraries

	Dataset
	Preprocessing
	Data Modelling

