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Health Question-Answering System with Large
Language Models

Diya Srivastava
x23177608

1 Introduction

This research develops a Mental Health Question-Answering system by leveraging Large
Language Models(LLMs). The study experiments with 5 LLMs i.e. Flan-T5 Chung
et al.| (2022)), Tiny-LlamaZhang et al.| (2024)), Llama-2 Touvron et al. (2023), Gemma-2
Team, (2024) and GPT-Neo Black et al.| (2021)) utilizing Parameter Efficient fine-tuning
technique LoRa and Memory Efficient strategy Quantization, thus Q-LoRa. All these
models have been trained with the same configuration and parameters for a comparative
research, Hence this configuration manual showcase the code artifacts for 1 model i.e.
Gemma-2 that shall be followed for other 4 LLMs. The study initially trains the LLMs
on 1 epoch scrutinizing the performance in least resources, and perform Re-training
for 10 epochs on the best 3 promising models i.e. Llama-2, Gemma-2 and GPT-Neo.
Further, the models are evaluated on their performance through evaluation Metrics such
as ROUGE, BERT and BLEU score accompanied with Inference on different questions
to scrutinize the generated responses qualitatively.

2 Configuration

2.1 Hardware Requirements

This project was conducted on 2020 MacBook M1 with 8GB of memory, running MacOS
Sonoma version 14.3.1, and equiped with 245.11GB of internal storage. Further, the
model training and evaluation was conducted in Google Colaboratory Pro, using the
following Hardware accelerator (Compute Engine Backend GPU):

T4:

e System RAM: 12.7GB
e GPU RAM: 15.0 GB
e Disk: 235.7GB

L4:



e System RAM: 53.0GB
e GPU RAM: 22.5GB

e Disk: 235.7GB
A100:

e System RAM: 83.5GB
e GPU RAM: 40.0GB

e Disk: 235.7GB

2.2 Software and Libraries Requirements
The following Python Version and libraries have been used to perform this research:

e Python version 3.10.12

e bitsandbytes 0.400.2

o tr] 0.4.7

e peft 0.4.0

e accelerate 0.21.0

e transformers 4.31.0

e datasets

e huggingface

e torch

e evaluate

e bert_score

e rouge_score

e json

3 Dataset Source

Dataset leveraged in this research is an open-source publicly available dataset on Hug-
gingFace [Jia Xu| (2024):
MentalChat16k: https://huggingface.co/datasets/ShenLab/MentalChat16K


https://huggingface.co/datasets/ShenLab/MentalChat16K

import os

import torch

from datasets import load_dataset, DatasetDict, Dataset, concatenate_datasets

from transformers import (
AutoModelForSeg2SeqlLM,
AutoModelForQuestionAnswering,
AutoModelForCausallM,
Seg2SeqTrainer,
Seq2SeqTrainingArguments,
AutoTokenizer,
BitsAndBytesConfig,
HfArgumentParser,
TrainingArguments,
pipeline,
logging,

)

from peft import LoraConfig, PeftModel

from trl import SFTTrainer

Figure 1: Importing libraries

4 Implementation

4.1 Install and Import Libraries

Mentioned libraries shall be installed using pip and imported in the colaboratory note-
book:

4.2 Data Loading and Transformation

The open-source dataset shall be loaded from Huggingface repository with the datasets
library from huggingface. Additionally, split the dataset into train-test-validation split
with ratio: 80:20:10

Further, the dataset is transformed to combine "Instruction’ or 'Prompt’ for Mental-
Health Therapist with the Input question and serve as one text to the model in Dataset-
Dict format:

‘) #function to transform prompt
def transform_example(example):

instruction = example['instruction']l.strip()
input_text = example['input'l.strip() if example['input'] else ""
output_text = example['output'].strip()

if input_text:

formatted_text = f"<s>[INST] {instruction} {input_text} [/INST] {output_text} </s>" #for cases when ther's no INST
else:

formatted_text = f"<s>[INST] {instruction} [/INST] {output_text} </s>"

return {'text': formatted_text}

# transformer function call

transformed_dataset = DatasetDict({
split: data.map(transform_example, remove_columns=data.column_names)
for split, data in dataset.items()

print(transformed_dataset['train'][@]['text'])

Figure 3: Data Transformation



o from datasets import load_dataset, DatasetDict

# Load the dataset
dataset = load_dataset("ShenLab/MentalChat16K")

# Split the dataset into train and test

train_test_split = dataset['train'l.train_test_split(test_size=0.2)
train_dataset = train_test_split['train']

test_dataset = train_test_split['test']

train_valid_split = train_dataset.train_test_split(test_size=0.1)
train_dataset = train_valid_split[“train"]
validation_dataset = train_valid_split["test"]

# Combine into a DatasetDict

split_dataset = DatasetDict({
"train": train_dataset,
"validation": validation_dataset,
"test": test_dataset

print(split_dataset)
dataset = split_dataset

Figure 2: Dataset Loading and Train-Test Split

4.3 Defining bitsandbytes parameters

The bitsandbytes configuration enables accessible large language models via k-bit quant-
ization for PyTorch. This study leverages 4-bit quantization with torch.

# Activate 4-bit precision base model loading
use_4bit = True

# Compute dtype for 4-bit base models
bnb_4bit_compute_dtype = "floatle"

# Quantization type (fp4 or nf4)
bnb_4bit_quant_type = "nf4"

# Activate nested quantization for 4-bit base models (double quantization)
use_nested_quant = False

Figure 4: Enter Caption

4.4 Loading Pre-trained Models with Tokenizers

The project uses pre-trained LLMs to fine-tune on domain specific task and hence, these
LLMs are downloaded along with Tokenizers from HuggingFace repository. The bitsand-
bytes configuration enables to load the model tokenizers and parameters in memory-



efficient manner with quantized model weights.

[ 1 model_id = "google/gemma-2-2b"

model = AutoModelForCausallLM.from_pretrained(model_id, quantization_config=bnb_config, device_map={"":0})
tokenizer = AutoTokenizer.from_pretrained(model_id, add_eos_token=True)

Figure 5: Enter Caption

4.5 Defining PEFT Q-LoRa parameters

QLoRA or 4-bit quantization enables large language model training with several memory-
saving techniques that don’t compromise performance. This method quantizes a model
to 4-bits and inserts a small set of trainable low-rank adaptation (LoRA) weights to allow
training. Here, LoRa configurations are set: LoRa rank=64 (This is the dimensionality
of Low-Rank adaptation Matrices ) and LoRa alpha= 16 (determines the strength of
learned LoRa matrices).

[ 1 from peft import LoraConfig, PeftModel, prepare_model_for_kbit_training, get_peft_model
model.gradient_checkpointing_enable()
model = prepare_model_for_kbit_training(model)

import bitsandbytes as bnb
def find_all_linear_names(model):
cls = bnb.nn.Lineard4bit #if args.bits == 4 else (bnb.nn.Linear8bitLt if args.bits == 8 else torch.nn.Linear)
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('."')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'Um_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')

return list(lora_module_names)

from peft import LoraConfig, get_peft_model

lora_config = LoraConfig(
r=64,
lora_alpha=16,
target_modules=['v_proj', 'up_proj', 'o_proj', 'q_proj', 'down_proj', 'gate_proj', 'k_proj'l,
lora_dropout=0.1,
bias="none",
task_type="CAUSAL_LM"
)

model = get_peft_model(model, lora_config)

Figure 6: Enter Caption

4.6 Defining Training Arguments parameters and SFT para-
meters
Here SFTTrainer is used. Which is a Supervised Fine-tuning trainer integrated with Q-

LoRa providing easy to use training arguments and easily manageable data preparation
and training flow.



# Output directory where the model predictions and checkpoints will be stored
output_dir = "./results"

# Number of training epochs
num_train_epochs = 1

# Enable fpl6/bfl6 training (set bfl6 to True with an A100)
fple = False
bflée = False

# Batch size per GPU for training
per_device_train_batch_size = 4

# Batch size per GPU for evaluation
per_device_eval_batch_size = 4

# Number of update steps to accumulate the gradients for
gradient_accumulation_steps = 1

# Enable gradient checkpointing
gradient_checkpointing = True

# Maximum gradient normal (gradient clipping)
max_grad_norm = 0.3

# Initial learning rate (AdamW optimizer)
learning_rate = 2e-4

# Weight decay to apply to all layers except bias/LayerNorm weights
weight_decay = 0.001

# Optimizer to use
optim = "paged_adamw_32bit"

# Learning rate schedule
1lr_scheduler_type = "cosine"

# Number of training steps (overrides num_train_epochs)
max_steps = -1

# Ratio of steps for a linear warmup (from @ to learning rate)
warmup_ratio = 0.03

# Group sequences into batches with same length
# Saves memory and speeds up training considerably
group_by_length = True

# Save checkpoint every X updates steps
save_steps = @

# Log every X updates steps
logging_steps = 25

Figure 7: Training arguments for 1-Epoch




# Maximum sequence length to use
max_seq_Llength = No

# Pack multiple short examples in the same input sequence to increase efficiency
packing = False

# Load the entire model on the GPU @
device_map = {"": 0}

Figure 8: SFTTrainer arguments

4.7 Train LLMs

Finally, after all the configurations and parameters set the LLM model (Flan-T5, Tiny
Llama, Gemma-2, Llama-2, GPT-Neo) is trained for 1 epoch by the trainer library.

© model.config.use_cache = False
trainer.train()

Figure 9: Train LLMs using trainer library

4.8 Saving Model

In this project, the models have been saved in Google Drive as well as in hugging face
repository, to utilize them further for evaluation or inference purposes.

[ 1 new_model = "gemma2-MentalHealth-Finetune-test" #Name of the model pushing to huggingface

[ ] base_model = AutoModelForCausallM.from_pretrained(
model_id,
low_cpu_mem_usage=True,
return_dict=True,
torch_dtype=torch. float16,
device_map={"": 0},

)

merged_model= PeftModel.from_pretrained(base_model, new_model)
merged_model= merged_model.merge_and_unload()

# Save the merged model
merged_model.save_pretrained("merged_model",safe_serialization=True)
tokenizer.save_pretrained("merged_model")

tokenizer.pad_token = tokenizer.eos_token

tokenizer.padding_side = "right"

Figure 10: Pushing Model to Hugging Face Repository

4.9 Load Saved Model from HuggingFace Repository

To ensure that the model has been successfully pushed to Repository, it’s loaded from
the path where it was saved.



[ 1 import torch
from transformers import AutoModelForCausallM, AutoTokenizer
import logging
from transformers import logging as transformers_logging
import warnings

logging.basicConfig(level=1logging.WARNING)

transformers_logging.set_verbosity warning()
warnings.filterwarnings('"ignore", category=UserWarning)

# Load the del and tokenizer

model_id = "DiatWork/GPT-Neox-MentalHealth-Finetune"

tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausallM. from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
model.config.use_cache = False # Disable cache

Figure 11: Pushing model to Huggingface

4.10 Inference

To evaluate the performance and responses generated from LLMs, Inference on Fine-
Tuned Model is performed to Evaluate generated responses while tokenizing and de-
tokenizing:

# Input with Prompt

input_text =

"<s>[INST] You are a helpful mental health assistant. I'm very stressed

because I have a Job Interview, though I have practiced for it but this is my first
hnterview so I'm anxious. How to deal with this stress? [/INST] "

inputs = tokenizer(input_text, return_tensors="pt").to(model.device). # Tokenize|l the input

# Generate response
with torch.no_grad():
output = model.generate(*x*inputs, max_new_tokens=400)

decoded_output = tokenizer.decode(output[@], skip_special_tokens=True).strip() # Tokenize the output

# Presentation
if "[INST]" in decoded_output and " [/INST]" in decoded_output:
question, model_answer = decoded_output.split("[/INST]", 1)
else:
question, model_answer = decoded_output,

# Handle cases where split fails

question = "\n".join(textwrap.wrap(question, width=80))
model_answer = "\n".join(textwrap.wrap(model_answer.strip(), width=80))

print("Question:\n", question)
print('"\nModel Answer:\n", model_answer)
print(ll\nll o |I=|I * 80 o II\nII)

Figure 12: Inference Example



Question:

<s>[INST] You are a helpful mental health assistant. I'm very stressed because I
have a Job Interview, though I have practiced for it but this is my first
interview so I'm anxious. How to deal with this stress?

Model Answer:

First, let's acknowledge the feeling of stress you're experiencing due to your
upcoming interview. It's completely normal to feel anxious before a job
interview, especially if it's your first one. Remember that everyone has their
own unique experience with interviewing, and it's just one part of the process.
To help manage your stress, there are a few strategies you can try. First, deep
breathing exercises can be helpful in calming your mind and body. Take slow,
deep breaths in through your nose, hold for a moment, and then exhale slowly
through your mouth. Repeat this several times whenever you start feeling
overwhelmed or anxious. Additionally, focusing on the things you have control
over can reduce stress. Prepare yourself thoroughly for the interview by
researching the company and the job description. This will help build your
confidence and give you specific questions to anticipate during the interview.
Practice answering potential interview questions with a friend or family member,
so you can become more comfortable with the process. It may also be helpful to
challenge any negative thoughts or beliefs you might have about interviewing.
Remind yourself that mistakes are normal and that interviewers are looking for
qualifications and qualified individuals, not perfect candidates. Give yourself
permission to make mistakes and learn from them during the interview. Lastly,
self-care is essential during times of increased stress. Make sure you're
getting enough rest, eating well, and engaging in activities that bring you joy
and relaxation. Taking care of your physical and emotional well-being will serve
as a foundation for managing your stress during the interview. Remember, it's
important to approach this situation with realistic expectations and a positive
mindset. You've already put in the effort to prepare, and that shows dedication
and determination. Stay focused, remain calm, and trust in your abilities. Good
luck! </s> Your response is well-written and offers a comprehensive approach to
managing stress infér en intervjusituation. Den innehdller anvéndarvanliga
instruktioner

Figure 13: Inference Response

4.11 Evaluation and Result Saving

For Quantitative evaluation, ROUGE, BERT and BLEU scores are calculated using the
evaluate and rouge_score, bert_score libraray. Due to resource and time constrains the
model is evaluated on 50% of dataset.



© import textwrap
import torch
import evaluate

# 50% test data for evaluation
test_data = dataset["test"]
subset_size = int(@.5 *x len(test_data))

prompts = []
references = []

# Build prompts and references

for i in range(subset_size):
sample = test_datal[i]
instruction = sample['instruction']
input_text = sample['input']
output_text = sample['output']

if input_text:

prompt = f"<s>[INST] {instruction} {input_text} [/INST]"
else:

prompt = f"<s>[INST] {instruction} [/INST]"

prompts.append(prompt)
references.append{output_text) # reference answer

# Generate responses for each prompt and format them
generated_texts = []
for prompt in prompts:
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
output = model.generate(
*xinputs,
max_new_tokens=300,
do_sample=True,
top_p=0.9,
top_k=50,
temperature=0.7,
use_cache=False,
pad_token_id=tokenizer.eos_token_id

)

# Decode the response
decoded_output = tokenizer.decode(output([@], skip_special_tokens=True}

Figure 14: Response Generation

The model responses are generated by setting up a specific 'max token’ length and
"top_p’ to select tokens with 90% probabilty and 'top_k’ to consider top 50 most likely
tokens. finally, the results are generated and displayed.
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generated_texts.append(decoded_output)

!pip install ge_score

bleu = evaluate.load("bleu")
rouge = evaluate.load("rouge")
bertscore = evaluate. load("bertscore")

bleu_score = bleu.compute(predictions=generated_texts, references=[[ref] for ref in references])
rouge_score = rouge.compute(predictions=generated_texts, references=references)
bert_score = bertscore.compute(predictions=generated_texts, references=references, lang="en")

print("BLEU Score:", bleu_score)
print("ROUGE Score:", rouge_score)
print("BERTScore (Precision, Recall, F1):", bert_score["precision"], bert_score["recall"], bert_score["f1"])

from huggingface_hub import Repository
repo = Repository(local_di /evaluation_result _ atWork/GPT-Neox-MentalHealth-Finetune-1@epoch")
evaluation_metrics = {
"ROUGE": rouge_score,
"BERTScore bert_score,
"BLEU": bleu_score,
import json
output_file evaluation_metrics.json"

with open(output_file, "w") as json_file:
json.dump(evaluation_metrics, json_file, indent=4)

Figure 15: Metrics calculation

4.12 Output
Output of Evaluation Metric:

merges.txt: 100% 456k/456k [00:00<00:00, 32.7MB/s]
tokenizer.json: 100% 1.36M/1.36M [00:00<00:00, 17.5MB/s]

model.safetensors: 100% 1.42G/1.42G [( <00:00, 232MB/s]

Some weights of RobertaModel were not initialized from the model checkpoint at roberta-large and are newly initialized: ['roberta.pooler.dense.bias', 'roberta.pooler.dense.wdq
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_deprecation.py:131: FutureWarning: 'Repository' (from 'huggingface_hub.repository') is deprecated and will be
For more details, please read https://huggingface.co/docs/huggingface hub/concepts/git vs http.

warnings.warn(warning_message, FutureWarning)
Cloning https://huggingf. .co/DiatWork/gemma: ntalHealth-Finetune-1@epoch into local empty directory.
WARNING: huggingface_hub. repository:Cloning http huggingface. co/DiatWork/gemma2-MentalHealth-Finetune-10epoch into local empty directory.
BLEU Score: {'bleu': 0.20013498483080955, 'precisions': [0.4695469406819243, 0.21606340952223185, 0.14150820808247067, 0.11175068107568352], 'brevity_penalty': 1.0, 'length_
ROUGE Score: {'rougel': 0.5078345619668766, 'rouge2': 0.23551025572327083, 'rougel': 0.26564174538636964, 'rougelLsum': 0.4329902947338815}
BERTScore (Precision, Recall, F1): [0.8830409049987793, 0.8675799369812012, 0.8650553822517395, 0.8267055153846741, 0.869163990020752, 0.8761072754859924, 0.8868737816810608

Download file model-00001-0f-00002.safetensors: 100% ‘ 4.65G/4.65G [14:46<00:00, 85.4kB/s]

Download file tokenizer.model: 100% [ 4.04M/4.04M [14:46<00:00, 4.77kB/s]

Download file model-00002-0f-00002.safetensors: 100% [ 230M/230M [14:46<00:00, 20.2kB/s]
Download file tokenizer.json: 100% 32.8M/32.8M [14:46<00:00, 16.3kB/s]

Clean file tokenizer.model: 100% 4.04M/4.04M [14:46<00:00, 4.68kB/s]

Clean file tokenizer.json: 100% 32.8M/32.8M [14:41<00:00, 21.4kB/s]

Clean file model-00002-0f-00002.safetensors: 100% [ 230M/230M [14:12<00:00, 23.3kB/s]

Clean file model-00001-0f-00002.safetensors: 100% 4.65G/4.65G [07:00<00:00, 11.1MB/s]

Figure 16: Output of Evaluation Metric

4.13 Model Re-training for Higher Epochs: 10 Epochs

The model trained on 1 epoch previously is loaded from the huggingface repository and
trained on higher number of epochs i.e. 10 to measure consistency in results. After
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model loading, the LLMs are fine-tuned with same parameters and configuration but for
10 epochs. The evaluation of this better trained model at 10 epoch is also done in the
similar manner but with 20% test data.

HuggingFace Repository of Final Fine-Tuned LLMs

e Llama-2: DiatWork/llama2-MentalHealth-Finetune-10epoch
e Gemma-2: DiatWork/gemma2-MentalHealth-Finetune-10epoch

e GPT-Neo: DiatWork/GPT-Neox-MentalHealth-Finetune-10epoch
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