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Configuration Manual

Sreelakshmi Sajikumar
x23114185

1 Introduction

This configuration manual describes the hardware and software requirements, implement-
ation procedures and policies of the Emotion Detection project. The project classifies
emotions from textual data into six categories: Six emotions to predict: Anger, Fear, Joy,
Love, Sadness, and Surprise, with a proposed multi-phase modeling that combines clas-
sical machine learning, deep learning, and transformer-based learning. The deployment
covers a Streamlit App as well as Gradio Interface.

1.1 Environment Specification and Configuration

Pre-requisites: Python Version: Python 3.11.5 (Installed locally). Installation Link:
https://www.python.org/downloads/ IDE: Visual Studio Code (for local development).
Installation Link: https://code.visualstudio.com/ Cloud Environment: Google Colab (for
running and deploying Gradio applications). Access Link:https://colab.research.google.com/
Streamlit App: Deployed locally using Streamlit for the FLAN-T5 model. Gradio App:
Deployed in Google Colab for easy web-based interaction. Python Package Manager: pip
(default in Python 3.11.5).

2 System Requirements

2.1 Hardware Requirements

Device: MSI

Processor: 12th Gen Intel(R) Core(TM) i7-1255U
RAM: 16 GB

Operating System: Windows 11 Home Single Language (64-bit)

2.2 Software Requirements

Operating System: Windows 11 Home Single Language Version: 24H2 OS Build: 26100.2454
Experience Pack: 1000.26100.36.0



Device specifications

Device name MSI

Processor 12th Gen Intel(R) Core(TM) i7-1255U 1.70 GHz
Installed RAM 16.0 GB (15.7 GB usable)

Device ID 5691E1B2-8CC9-43F8-9D91-DAGEES9456F8
Product ID 00342-42654-82409-AA0EM

System type 64-bit operating system, x64-based processor

Pen and touch  No pen or touch input is available for this display

Figure 1: Device Specifications

Windows specifications

Edition Windows 11 Home Single Language
Version
Installed on 02-12-2024

OS build

Experience Windows Feature Experience Pack 1000.26100.36.0

Microsoft Services Agreement
Microsoft Software License Terms

Figure 2: Software Requirements



3 Environment Setup

3.1 Virtual Environment Setup

Create a virtual environment for package management python -m venv myenv and Ac-
tivate the virtual environment

3.2 IDE Configuration

Install Visual Studio Code. And add Python extension for Visual Studio Code from
the extensions marketplace. Open project folder in VS Code and set the interpreter the
virtual environment.

3.3 Google Colab Configuration

o from google.colab import files

uploaded = files.upload()

Install gradio in colab

© !pip install gradio

3.4 Streamlit Application Deployment

Run the streamlit app locally;
Using the command, streamlit run streamlit_app.py

3.5 Gradio Application Deployment
Use Colab to deploy the Gradio.

° import gradio as gr

gradio_predict_emotion(text):
return predict_emotion(text)

interface = gr.Interface(fn=j predict_emotion,

dictor”,

description="Enter comment to detect the corresponding emotion (Joy, Sadness, Anger, Fear, Surprise, Disgust)")

interface.launch()




4 Programming Environment Setup

import os

import seaborn as sns

import matplotlib.pyplot as plt
import pandas as pd

import nltk

nltk.corpus import stopwords

from
from
from

nltk.stem import WordNetLemmatizer
nltk.tokenize import word_tokenize

import re

from
from
from
from
from
from

sklearn.model_selection import train_test_split
sklearn.feature_extraction.text import CountVectorizer
sklearn.feature_extraction.text import TfidfVectorizer
sklearn.linear_model import LogisticRegression
sklearn.metrics import classification_report, accuracy_score
sklearn.metrics import confusion_matrix

import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

Figure 3: Libraries for Data Preprocessing

import pandas as pd

import numpy as

sklearn.model selection import train_test split
sklearn.svm import SVC

sklearn. i import classification_report
gensim.models import Word2Vec

~t nltk

t o=

sklearn.metrics import accuracy_score

Figure 4: Libraries for WordtoVect, Glove

m sklearn.swvm import SVC

sklearn.metrics import accuracy score, classification_report

Figure 5: Libraries for SVM



numpy as np
PELLELS pd

sklearn.metrics i ~t confusion matrix, classification report
matplotlib.pyplot plt
seaborn as sns

sklearn.prep ssing t LabelEncoder

keras.models imp Sequential
tensorflow.keras.preprocessing.text i ~t Tokenizer
keras.layers import LSTM, Embedding, Dense, SpatialDropoutiD
ceras.preprocessing. sequence pad_sequences
sklearn.model selection im t train_test split

Figure 6: Libraries for LSTM

import pandas as pd

os
torch

sklearn.model_selection i t train_test_split

sklearn.preproce g t LabelEncoder

transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments

sklearn.metrics import classification_report, accuracy_score, fl1_score, confusion_matrix
matplotlib.pyplot plt

seaborn as sns

Figure 7: Libraries for LLM

5 Project Configuration and Execution

5.1 Dataset Preparation

Datasets Used:Twitter Emotion Dataset, Text Emotion Detection Dataset, Emotion De-
tection Dataset from Kaggle

text label
i didnt feel humiliated sadness
i can go from feeling so hopeless to so damned... sadness

im grabbing a minute to post i feel greedy wrong anger
i am ever feeling nostalgic about the fireplac... love
i am feeling grouchy anger

Figure 8: Data Loading

5.2 Preprocessing Data

Preprocessing: Text cleaning (removal of stopwords, punctuation, and noise). Tokeniza-
tion and Lemmatization using nltk. Stratified sampling to handle class imbalance.
Execute the dataset preparation notebook (Dataset Preparation.ipynb) on Google
Colab or locally.
Creating a Balanced Dataset



["Jjoy" "love' "anger' 'surprise’ "fear' 'sadness’]
label
joy 14000

love 141000

anger 14000
surprise 14000

tear 14000

sadness 14000

Name: count, dtype: inte4
text 84000

label 84000

dtype: inte4

cleaning and exploring the balanced dataset. It ensures data quality by handling
missing and duplicate values. The category distribution analysis and visualization provide
valuable insights into the dataset’s composition, informing potential further analysis or
modeling steps. Saving the cleaned data ensures that the processed dataset is readily
available for subsequent tasks.

3¥ Null value counts:
text @
label e
dtype: inte4

Duplicate value counts: 36
dropped the duplicates

Category distribution:

label

anger 13997
fear 13997
sadness 13997
joy 13993
surprise 13992
love 13988
Name: count, dtype: inte4

Figure 9: Cleaning and Exploring Dataset



Distribution of Emotion Categories
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Figure 10: Distribution of Catagories

Emotion Category
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Figure 11: Sentence Length Distribution

5.3 Model Development

Classical Models: Logistic Regression with Bag-of-Words (BoW) features. SVM with
Word2Vec and GloVe embeddings. Deep Learning Models: LSTM for sequential data
analysis. Bayesian LSTM to handle uncertainty in predictions. Transformer Models:
Fine-tuned BERT, RoBERTa, and FLAN-T

Bag of words : The Bag of Words (BoW) model converts text into numerical features
by counting the occurrences of words. It disregards grammar and word order, focusing
on word frequency.



print(
print(

Feature Names: ["aa" "aaaaall® "aaron” ... "zoo' "zoom" "zumba']
BoW Representation for the first document: [@ @ @ ... @ @ @]

Figure 12: Bag-of-Words

2, random

X_train, B
print("

print(

print("T

Dataset spliting completed

Training data shape: (67168, 10008)
Testing data shape: (16792, 18088)

word2vec_model = Word2Vec(sentences=X_train.tolist(), vector =1000, window=5, min_count=1, workers=4, sg=1)

get_document_vector(tokens, model):
vectors = [model.wv[word] word in tokens if word in model.wv]

if len(vectors) > 0:
urn np.mean(vectors, axis=0)

Pn np.zeros(model.vector_size)

x: get_document_vector(x, word2vec_model))

X_train_vectors = X_train.apply(
x: get_document_vector(x, word2vec_model))

X_test_vectors = X_test.apply(

X_train_vectors = np.stack(X_train_vectors)
X_test_vectors = np.stack(X_test_vecto:

3% WARNING:gensim.models.word2vec:Each 'sentences’ item should be a list of words (usually unicode strings). First item here is instead plain <class 'str'>.

Figure 13: WordtoVec
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Use this link to download pretrained word embeddings. glove.6B.300d.txt is a popular choice

du/data/gl

1zip glove®.zip

2024-12-02 16
Resolving nlp.stanford.ed stanford.edu)... 171.64.67.140
Connecting to nlp.stanford.edu (nlp.stanford.edu)|171.64.67.140|:80 connected.
HTTP request sent, awaiting response... 302 Found
Location: [following]
2024-12-02 16:25:00
Connecting to nlp.stanford.edu (nlp.stanford.edu)|171.64.67.148|:443... connected.
HTTP request sent, awaiting response... 301 Moved Permanently
Location: [following]
2024-12-02 16:25:00
Resolving downloads.cs.stanford.edu (downloads.cs.stanford.edu) 171.64.64.22
ng to downloads.cs.stanford.edu (downloads.c tanford.edu) |171.64.64.22|:443... connected.
HTTP request sent, awaiting response... 20@ OK
52182613 2M) [application/zip]

ove.6B.zip’
glove.6B.zip 100%( >] 822.24M 5.10MB/s in 2m 40s
2024-12-02 16:27:40 (5.14 MB/s) - ‘glove.6B.zip’ saved [862182613/862182613]

Archive: glove.6B.zip
flating: glove.6B.50d.txt
nflating: glove.6B.100d.txt
flating: glove.6B.200d.txt
nflating: glove.6B.300d.txt

Figure 14: Glove

get_sentence_vector(sentence, glove_model, embedding_dim
plit()
= [glove_model[word] for word in tokens if word in glove_modell
len(vectors) >

text  label preprocessed_text sentence_length +tokens
i feel as though i have started to feel much m... joy feel though start feel much passion subject pr... 10 [feel, ‘though, 'start, ‘feel’, 'much’, 'p.
i feel very sympathetic to both love feel sympathet 2 [feel’, 'sympathet]
i shouldnt feel greedy or wrong for wanting a ... anger shouldnt feel greedi wrong want person actual ... 9 [shouldnt, ‘feel 'greedi’, 'wrong’, 'wan

i no longer feel hate towards this personand ... surprise longer feel hate toward person even sincer say.. 27 [longer, feel, 'hate’, ‘toward’, ‘persor

4 ifeel about letting go of some of my most fai... love feel let go faith employe 5 [feel, 'let, ‘g0, faith’, ‘employe]

Figure 15: Sentence Embedding using Glove



model = Sequential()

model . add (Embedding (input_di +1, output_dim-10@, input_length-X.shape[1]))
model . add (SpatialDropoutiD(e

model.add(LSTM(16@, dropo

model . add (Dense (6, act:

model . compile(loss Y izer . metrics=[ y' D)

fusr/local/1ib/python3.18/dist-packages/keras/src/layers/core/embedding.py:90: UserWarning: Argument ~input_length™ is deprecated. Just remove it.
warnings.warn(

model .fit(X_train, y train, ep batch_s validation_data=(X

229s 216ms/step - accuracy: 8.6382 - loss: 0.9747 - val accuracy: @. val_loss:

211s 2@ims/step - accuracy: 8.9299 - loss: @.1955 - val_accuracy: . val_loss:

2115 201ims/step - accuracy: 9.9487 - loss: ©.1532 - val_accuracy: 0.9 val_loss:

210s 2@@ms/step - accuracy: 8.9467 - loss: ©.1351 - val_accuracy: . val_loss:

~ 2135 203ms/step - accuracy: 8.9512 - loss: ©.1183 - val accuracy: @. val_loss:

525/525 13s 25ms/step - accuracy: ©.9206 - loss: 8.2111

Test Loss: 8.21089836955878496
Test Accuracy: 8.9212728394134521

y_pred_probs = model.predict(
y_pred = np.argmax(y_pred pi

525/525
First 16 Predictior
[A15881288 2]

Figure 16: LSTM for sequential Data Analysis

Ipip install transformers datasets torch scikit-learn

Show hidden output

file_path = "data_with 5.
df = pd.read_excel(file_path)
print(df_.head())

feel as though i have started to feel m
i feel very sympathetic to both
shouldnt feel greedy or wrong for wanting a ... anger

no longer feel hate towards this person and ... surprise
feel about letting go of some of my most f love

preprocessed_text sentence_length \
feel though start feel much passion subject pr... 10
feel sympathet p
shouldnt feel greedi wrong want person actual ... 9
longer feel hate toward person even sincer say... 27
feel let go faith employe )

tokens

[*feel®, "though®', 'start’, "feel®, "much®, 'p...
[*feel®, "sympathet’

[*shouldnt®, ‘feel®, ‘greedi’, 'wrong', 'want'...

[*longer®, 'feel®, 'hate’, oward®, ‘"person’,...

[*feel", "let’, ith", "employe”]

Figure 17: Loading Data- Transformer-Based Model
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° Emoti t(

__init_ (self, encodings,
self.encodings = encodings
self.labels = labels

_len_ (self):
return len(self.labels)

_ getitem_ (self, idx):
item = {key: torch.tensor(wval[idx]) for key, wval in self.encodings.items()}

item[ ] = torch.tensor(self.labels[idx])

return item

train_dataset = EmotionDataset(train_encodings, train_labels)
test_dataset = EmotionDataset(test_encodings, test_labels)

t : ",train_dataset. len
- ",test dataset. len

the samples in train dataset : 320666
the samples in test dataset : 800@

Figure 18: Transform the data into a PyTorch-compatible dataset

model = AutoModelForSequenceClassification.from pretrained(model_name, num_labels=len(label_encoder.classes_))

device = torch.device("cuda” if torch.cuda.is_available() else “"cpu™)

model . to(device)

Figure 19: Build the BERT MODEL

The Google FLAN-T5 model is a fine-tuned version of the T5 (Text-to-Text Trans-
fer Transformer) designed for a variety of NLP tasks, including classification tasks like
identifying emotions. Since TH models treat every NLP problem as a text generation
task.

from transformers import pipeline

zero_shot_classifier = pipeline("

labels = [“joy
result = zero_shot_classifier(text, candidate labels-labels)
print("P ted Emotion:", result['

configjson: 100% 1.15k/1.15k [00:00<00:00, 59.5kB/s]
model.safetensors: 100% 1.63G/1.63G [00:20<00:00, 54.2MB/s]

tokenizer_config.json: 100% 26.0/26.0 [00:00<00:00, 512B/s]

vocab.json: 100% 899k/899k [00:00<00:00, 5.63MB/s]

merges.txt: 100% 456k/456k [00:00<00:00, 5.66MB/s]

tokenizerjson: 100% 1.36M/1.36M [00:00<00:00, 5.05MB/s]

Hardware accelerator e.g. GPU is available in the environment, but no “device® argument is passed to the ~Pipeline™ object. Model will be on CPU.
Predicted Emotion: joy with score: ©.8782263398170471

Figure 20: Zero Shot Prompting using BART
In few-shot prompting, we provide the model with a few examples of how the task
should be performed before giving it the new input. This helps the model understand
the pattern or task better.
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RoBERTa: We'll use RoBERTa, which is a strong model for classification tasks, in a
few-shot manner. We'll give a few examples and then ask it to classify the new text into
one of the emotion categories.

Figure 21: RoBERTa for Few shot prompting

FLAN-T5: We'll use FLAN-T5, a variant of T5 fine-tuned for instruction-based tasks.
It performs well in few-shot settings, where you provide a few examples and a prompt.

] from transformers import AutoTokenizer, AutoModelForSeq2SeqlM
model_name = n-t5-

tokenizer = oTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqlM.from_pretrained(model_name)

create_emotion_prompt(text): ‘

Figure 22: Load the Flan-t5 Model

The Google FLAN-T5 model is a fine-tuned version of the T5 (Text-to-Text Trans-
fer Transformer) designed for a variety of NLP tasks, including classification tasks like
identifying emotions. Since TH models treat every NLP problem as a text generation
task, you can adapt them to classify emotions by providing an appropriate prompt.

12



model name =

tokenizer = AutoTokenizer.from pretrained(model name)

def tokenize function(texts):
return tokenizer(texts, padding=True, truncation=True, max_length=128)

train_encodings = tokenize function(train_texts)
test_encodings = tokenize function(test texts)

Figure 23: Load the DistilledBERT

6 Deployment

6.1 Streamlit Deployment

Save the streamlit_app.py file in the local project folder. Run the app using the command
streamlit run streamlit_app.py Input sample text to get predicted emotions.

Emotion Detection App

Detect emotions in text using FLAN-T5!

Enter text for emation detection:

she is very nervous about her career

Predicted Emotion: Fear

Figure 24: Emotion Detection App

6.2 Gradio Deployment

Purpose: To provide an accessible web-based interface for emotion detection using Gradio.
Steps: Upload the Gradio deployment notebook (Gradio_Deployment.ipynb) to Google
Colab. Install Gradio using pip install gradio. Run the notebook to launch a Gradio
interface with a public URL for real-time interaction.

13



Emotion Predictor

Enter comment to detect the corresponding emotion (Joy, Sadness, Anger, Fear, Surprise, Disgust)

Figure 25: Emotion Predictor using Gradio

7 Evaluation

Metrics Used: Accuracy, Precision, Recall, F1-Score, Confusion Matrix.

7.1 Logistic Regression

[16]
y_pred = 1r_clf.predict(X

print({classification_report(y_test, y pred))

precision recall fl-score  support

©
o
o

2819
2738
2889
2839
2792
2795

anger 8.89
fear 8.86

=]
(A
w

=]

joy 8.85
love 6.87
sadness 8.98
surprise 8.88

]
=~
=~

0o 0O 0o 0O oo
-y

o e
=~
o

u
©
o

accuracy .8 16792
macro avg . .8 16792
weighted avg . : 16792

Figure 26: Logistics Regression Evaluation Metrics
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Figure 27: Logistic Regression Confusion Metrics

7.2 Support Vector Machine

svm_model = SVC(kernel='rbf', random_state=42, gamma=0.1)

svm model.fit(X train vectors, y train)

y_pred = svm model.predict(X test vectors)

print(classification report(y test, y pred))

accuracy = accuracy score(y_test, y pred)

print(f"Accur ‘accuracy:.2f}")

Accuracy: 8.23

Figure 28: SVM Evaluation Metrics
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7.3 LSTM

recall +1-score

anger . .0 .93
fear . .88 .98

Jjoy . .89 =]
lowve . . 01
sadness . .9 .94

surprise . . .04

accuracy .92
macro aveg . . 92
weighted avg . . .92

Figure 29: LSTM Evaluation Metrics

Confusion Matrix
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Figure 30: LSTM Confusion Metrics
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lassification Report:
precision recall fl-score

anger
fear
Joy

love
cadness
surprise

accuracy
macro avg 8.91 8.91 a.
weighted avg 2.91 2.91 B.

(' ./bert-emotion/tokenizer config.json’,
'./bert-emotion/special tokens map.json’,
* . fbert-emotion/vocab.txt",

' . /bert-emotion/added_tokens.json’,
' . /bert-emotion/tokenizer.json’)

Figure 31: LLM Evaluation Metrics
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i ] I
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Figure 32: LLM Confusion Metrics
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8 Conclusion

The project was accurately able to show how emotion detection can be done through
classical, deep learning as well as transformer models. There were real-life use cases
demonstrated through Streamlit and Gradio apps with regards to customer feedback
analysis, sentiment management, and mental health. The future work includes the col-
lection of more diverse datasets, the scaling up of the transformer model, and the addition
of methods for explaining the model to the user.
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