~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc in Artificial Intelligence

Animesh Kumar Rai
Student ID: x23194545

School of Computing
National College of Ireland

Supervisor:  Dr. Muslim Jameel Syed




National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Animesh Kumar Rai
Student ID: x23194545
Programme: MSc in Artificial Intelligence
Year: 2024
Module: MSc Research Project
Supervisor: Dr. Muslim Jameel Syed
Submission Due Date: 12/12/2024
Project Title: Configuration Manual
Word Count: 1053
Page Count: Ol

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Animesh Kumar Rai

Date: 29th January 2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):




Configuration Manual

Animesh Kumar Rai
x23194545

1 Introduction

The manual has all the important information on system, hardware and software specific-
ations. It also outlines the process for execution of the study done on the ” Safeguarding
Sensitive Data - Detection in Unstructured Text Using Cutting-Edge Trans-
former Architectures”. Section 2 tells about the system specifications like hardware
and software setups which are utlised for the process of research. Section 3 covers how
to set up the environment, import libraries, and do pre-processing. The fourth section
discusses model development and assessment.

2 System Configuration

This section contains the hardware and software requirements necessary for running
BERT-based models, including namely DistilBERT,, RoBERTa, DeBERTa and, Long-
former, for our research. Tthe project is implemented on Google Colab utilizing the a
T4 GPU setup, which provides the compuutational power required for training and the
inference model.

2.1 Hardware Requirements

Table 1: Hardware Requirements

Component Specification

Operating System | Any Operating System

Processor Minimum Intel® Core™ i5

Graphics NVIDIA® Tesla T4 GPU (Google Colaboratory)
GPU Compute Supports CUDA for TensorFlow and PyTorch
Processor Speed 3.2GHz

The hardware setup provided in table [1| ensures smooth execution of transformer-
based models by leveraging Google Colaboratory’s T4 GPU for computationally intensive
operations.

2.2 Software Requirements

The software setup in table 2| allowed efficient training and evaluation of the models.
Utilizing Google Colaboratory’s T4 GPU ensured the project’s computational needs were
met effectively while maintaining compatibility with essential frameworks and libraries.

1



Table 2: Software Requirements
Component Specification
Web Browser Google Chrome
Programming Language | Python (TensorFlow & PyTorch support)
Development Platform | Google Colaboratory (T4 GPU enabled)
Version Control GitHub
Libraries and Tools Transformers (Hugging Face), NumPy, Pandas,
Matplotlib, Torch, TensorFlow

This setup ensures the smooth execution of tasks such as data preprocessing, model-
ling, and inference i.e, extracting result while thee addressing the computational needs
of transformer-based models.

Other Dependencies: Stable Internet connection for upload the dataset and fine-
tuned model on google drive, so to run the notebook on google collaboratory.

3 Setting Environment

For the implementtaion of my project, I have utilised Google colaboratory which is the
really great tool for Python-based works such as data analysis tasks and machine learning
modellings on cloud. I used T4 GPU enabled environment of google colaboratory envir-
onment for the model building and model inferencing. jupyter files can be run through
this.

1. First go to google collab page : with this linkﬂ

2. we have to sign-in google account to use this laboratory. Page will look like this [I}

Google Colaboratory

Colab is a hosted Jupyter Notebook service that

Open notebook

Examples >

and provides free access to computing resource:

Recent >

TPUs. Colab is especially well suited to machine le

Google Drive >

education.
GitHub >
Open Colab New Notebook drtoad ’ 9
Figure 1: Google Colaboratory Figure 2: Collab Upload files

3. Then select open collab and then you get option to upload the files and folder [2]
browse it and upload notebooks (.ipynb files) provided.

Alternative: As shown in figure [3] you can click on github option and upload
.ipynb notebook from my publicly available github repository . H

'https://colab.google/
Zhttps://github.com/animesh-rai/x23194545_Sensitive_data_detection/tree/main


https://colab.google/
https://github.com/animesh-rai/x23194545_Sensitive_data_detection/tree/main

| Open notebook

Examples

Recent

Google Drive

GitHub

Upload

+ New notebook

Figure 3: Open notebook through Git-

>

— Enter a Github URL or

animesh-rai

Repository: [

animesh-
rai/x23194545_Sensitive_data_detection

Path

() sensitve Deta Detection - EDAoynd

©) pildetection using.distilbertipynb

) il detection using_distilert Sep outputipynb

) pildetection_with_Longformer ipynb

Hub option

Branch: [}

main

Q | [ Include private repos

Cancel

Change runtime type 1

Runtime type

Python 3 v

Hardware accelerator (%)

O cru @ TaGPU

QO v28TPU

Want access to premium GPUs? Purchase additional compute units

Cancel Save

Figure 4: Selecting T4 GPU for acceler-
ation

4. After notebook gets opened, before running the each shell for execution, make
sure to enable T4 GPU setup by selecting T4 option from right side connect drop
down and then save it and click connect option to notebook will run with GPU
configuration.

5. Fined-tuned models for sensitive data detection project is uploaded in my shared
google drive E| which can be downloaded and upload in folder named 'PII_models’
under MyDrive of google account where google collab notebook is running, so it
will be easier to load the model without any hussel for inferencing with notebook
named ”sensitive_data_inference_using_all_models.ipynb”

4 Implementation Steps

4.1 Data Load: Learning Agency Lab - PII Data Detection

The project relies on a dataset available on Kaggle E| which comprising close to 22,000
essays created by students engaging in a massively open online course. User can easily
download the dataset from kaggle website or use it from available google drive E[ first
upload the file in 'Dataset’ folder under your drive and then run the below command.

import datasets
# Load dataset
dataset = datasets.load_dataset('json', data_files='/content/drive/MyDrive/Dataset/pii-detection-removal-from-educational-data/train.json")

# Convert to DataFrame and preprocess

df = dataset['train'].to_pandas()

Figure 5: Dataset Load from Drive

3https://drive.google.com/drive/folders/10hDmogP-g6Xn2DqGkGqSx2zTEXrDQa00g?usp=
sharing
“https://www.kaggle.com/competitions/pii-detection-removal-from-educational-data/

data

°https://drive.google.com/drive/folders/112Zw_ySDtL0Ot5dQ-TuZfgr6WSK4vRGOT ?usp=
drive_link


https://drive.google.com/drive/folders/1OhDmoqP-g6Xn2DqGkGqSx2zTErDQa0Og?usp=sharing
https://drive.google.com/drive/folders/1OhDmoqP-g6Xn2DqGkGqSx2zTErDQa0Og?usp=sharing
https://www.kaggle.com/competitions/pii-detection-removal-from-educational-data/ data
https://www.kaggle.com/competitions/pii-detection-removal-from-educational-data/ data
https://drive.google.com/drive/folders/112Zw_ySDtL0t5dQ-TuZfgr6WSK4vRGOT?usp=drive_link
https://drive.google.com/drive/folders/112Zw_ySDtL0t5dQ-TuZfgr6WSK4vRGOT?usp=drive_link

4.2 Importing Libraries

Importing libraries (packages) is easier since its google collab notebook and all the import
and pip statement already integrated with the code blocks. snippet of code blocks are
given below.

#Import packages

import torch

from torch.utils.data impert Dataloader

from transformers import AutoTokenizer, AutoModelForTokenClassification, TrainingArguments, Trainer, DataCollatorForTokenCl
from sklearn.metrics import classification_report, precision_recall fscore_support
from collections import Counter

import datasets

from sklearn.model selection impert train_test split

from sklearn.utils.class_weight import compute_class_weight

import pandas as pd

import numpy as np

import torch.nn as nn

import torch.nn.functional as F

import gc

import re

import random

from itertools import chain

Figure 6: Libraries Used Development

4.3 Exploratory Data Analysis

”Sensitive_Data_Detection - EDA.ipynb” jupyter notebook contains functions and exper-
imentations for data exploration step. below is code snippet in figure

plot_label distribution(df)

# Print the percentage of "0" labels

total_labels = sum(label_counts.values())

o_percentage = (label_counts['0'] / total_labels) * 1ee
print(f"'0" label (in percentage): {o_percentage:.2f}")

Distribution of Labels (Excluding "0")

HID_NUM 1
FURL_PERSONAL 1
B-STREET_ADDRESS 2
B-PHONE_NUM -6
B-USERNAME {6

-PHONE_NUM 4 15

Label

-STREET_ADDRESS 4 20

B-EMAIL 4 32

BID_NUM - 78
B-URL_PERSONAL - 110
IFNAME_STUDENT - 1096
B-NAME_STUDENT - 1365
0 200 400 600 800 1000 1200 1400

Count

Figure 7: EDA On Sensitive detection Dataset

4.4 Dataset Split for Training and Testing

Each jupyter notebook contains step to split the dataset into training and testing for
modelling. below is code snippet in figure



# Split Dataset

train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
train_dataset = datasets.Dataset.from_pandas(train_df)

test_dataset = datasets.Dataset.from_pandas(test_df)

dataset_dict datasets.DatasetDict({'train': train_dataset, 'test': test_dataset})

Figure 8: Train-Test Split

4.5 Tokenization and Label Alignment

Below code in figure [J] taken from ’pii_detector_using_deberta_b.ipynb’ file which converts
input tokens and their associated labels into a format suitable for the deBERTa modelling.
Similarily, all the other models such as roberta, longformer and distilbert have this step
too.

#Define function to tokenize and align labels
def tokenize and_align_labels(examples):
tokenized inputs = tokenizer(

examples["tokens™],
is_split_into_words=True,
truncation=True,
padding="max_length"',
max_length=1024,
return_offsets_mapping=True

)

batch_original_tokens = []
batch_tokenized tokens = []
batch_label_ids = []
batch_input_ids = []
batch_attention_masks = []
batch_token_type_ids = []

for i, label in enumerate(examples["labels"]):
word_ids = tokenized_inputs.word_ids(batch_index=i)
original_tokens = examples["tokens"][i]
tokenized_tokens = tokenizer.convert_ids_to_tokens(tokenized inputs["input_ids"][i])

previous_word_idx = None
label_ids = []

original_token_list = []
tokenized_token_list = []

Figure 9: Tokenize and Align

4.6 Initialize Tokenizer and Model

Below code in figure[10|taken from "pii_detector_using_deberta_b.ipynb’ file which initialize
tokens and model for the deBERTa modelling. Similarily, all the other models such as
roberta, longformer and distilbert have this step too.

# Tokenizer and Model

tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-hase")

model = AutoModelForTokenClassification.from_pretrained("microsoft/deberta-v3-base"”, num_labelsznum_labels, id2label=id2labe
device = torch.device("cuda™ if torch.cuda.is_available() else "cpu")

print(device)

model.to(device)

Figure 10: Model and Token Initialization



4.7 Handle Label Imbalance Script

Below code in figure [L1| taken from ’pii_detector_using_deberta_b.ipynb’ file which is build
to computes weights for each class to handle label imbalance during training.

# Calculate class weights
class_weights = compute class weight('balanced', classes=np.unique(all labels), y=all labels)
class_weights = torch.tensor(class_weights, dtype=torch.float).to(device)

Figure 11: Handle Label Imbalance function

4.8 Custom Compute Metrics Script

Below code in figure 12| taken from 'pii_detector_using_deberta_b.ipynb’ file which is cus-
tom build to computes metrics for model performance.

def compute_metrics(p):
predictions, labels = p
predictions = np.argmax(predictions, axis=2)

true_labels = [[id2label[label] for label in doc if label 1= -108] for doc in labels]
true_predictions = [
[id21label[pred] for pred, label in zip(doc, labels[i]) if label I= -16@]

for i, doc in enumerate(predictions)

]

# Flatten the lists
true_labels_flat = [item for sublist in true_labels for item in sublist]
true_predictions_flat = [item for sublist in true_predictions for item in sublist]

# Calculate metrics
results = precision recall fscore support(true labels flat, true predictions flat, average='weighted')

# Compute classification report
class_report = classification_report(
true_labels_flat, true_predictions_flat, labelszall_labels, zero_division=e # Explicitly set Labels and handle zerc

)

print("Classification Report:\n", class_report)
return {

"precision”: results[@],

"recall”: results[1],

"f1": results[2],

"accuracy": (results[2] * results[1])

Figure 12: Custom Compute Metrics Function

4.9 Training Argument Function

Below code in figure [13|taken from ’pii_detector_using_deberta.ipynb’ file which is custom
build to computes metrics for model performance. Similarily other models codes are there
in their respective ipynb file.



# Define training arguments with optimizations
training_args = TrainingArguments(

output_dir="./results’,
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
metric_for_best_model="loss",
greater_is_better=False,
learning_rate=le-5,
per_device_train_batch_size=2,
per_device_eval_batch_size=2,

R OH R R W W

Use eval_strategy to avoid deprecation warning
Save model at each epoch

Load the best model after training

Use loss to identify the best model

Lower loss is better

Reduced learning rate for smoother convergence
Adjust batch size as needed

gradient_accumulation_steps=4, # Simulate Larger batch size
num_train_epochs=5, # Set the desired number of epochs

weight decay=8.81, # Regularization to avoid overfitting
fpl6=True, # Mixed precision for memory optimization
max_grad_norm=1.8, # Gradient clipping to stabilize training
logging_strategy="steps”, # Log at each step

logging dir="./logs’, # Directory for lLogging (optional)
logging_steps=1@, # Adjust Logging frequency as needed

report_to="none’,

# Disable external logging tools

)

# Add an early stopping callback
early_stopping_callback = EarlyStoppingCallback(early_stopping_patience=2)

# Initialize the trainer with the callback
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized datasets['train'],
eval dataset=tokenized datasets['test'],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,

callbacks=[early_ stopping_callback, loss_logger] # Include early stopping and lLoss Logger

Figure 13: Training Argument Script for DeBERTa modelling

4.10 Model Training and Evaluation

Below code in figure [TI4] taken from ’pii_detector_using_deberta.ipynb’ file which is used to
train and evaluate model performance. Similarily, other models codes are there in their
respective ipynb file which is used for fine tuning models for sensitive data detection and
the result of function are in figure [15| and figure

# Train the model
trainer.train()

# Evaluate the model
eval_results = trainer.evaluate()
print(eval_results)

# Plot the loss per epoch
plt.figure(figsize=(10, 5))
plt.plot(loss_logger.epoch_losses, marker='oc')
plt.xlabel("Epoch")

plt.ylabel('Loss")

plt.title('Training Loss per Epoch’)
plt.show()

Figure 14: Model Training and Evaluation Script

4.11 Confusion Matrix Script

Below code in figure [17| taken from ’pii_detector_using_deberta.ipynb’ file which is used
to draw confusion metrixand evaluate model performance. Similarily, other models codes



Classification Report:

precision recall fl-score support

B-EMATL 9.80 9.00 @.ee 7

T-URL_PERSONAL 0.00 6.00 0.00 0

B-STREET_ADDRESS 0.00 ©.00 0.00 e

I-PHONE_NUM 9.80 9.00 @.ee 9

[750/750 32:49, Epoch 5/5] B-USERNAME 0.00 6.00 0.00 0

B-ID_NUM 8.080 9.00 8.00 34

Epoch Training Loss Validation Loss Precision Recall F1 o 1.80 1.00 1.e0 204733

1 0.014100 0.016093 0.996007 0.998001 0.997003 T-NAME_STUDENT 0.41 e.14 6.2 =1

: : : : i B-URL_PERSONAL 0.64 1.00 0.78 16

2 0.012100 0.014089 0.997356 0.99807¢ 0.997280 I-STREET_ADDRESS .80 @.00 @.ee @

B-NAME_STUDENT 0.42 8.13 0.20 190

3 0.010000 0.013920 0.997231 0.998070 0.997386 B -PHONE_NUM 9.00 6.00 8.00 3

4 0.007200 0.013520 0.997159 0.998055 0.997447 accuracy 1.00 205143

macro avg 0.21 8.19 @.18 205143

5 0.008600 0.013534 0.997105 0.998001 0.997431 weighted ave 1.00 1.00 1.00 295143
Figure 15: Train- Eval Result Figure 16: Classification Report

are there in their respective ipynb file which is used for fine tuning models for sensitive
data detection and the result of function are in figure [I5] and figure [16]

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
import numpy as np
import matplotlib.pyplot as plt

# Step 1: Get predictions from the trainer
predictions, labels, _ = trainer.predict(tokenized datasets['test'])

# Step 2: Convert predictions to Label IDs
predicted label ids = np.argmax(predictions, axis=2)

# Step 3: Map IDs to actual label names
true_labels = [
[id21abel[label] for label in doc if label != -180] # Ignore padding tokens
for doc in labels
]
pred_labels = [
[id2label[pred] for pred, label in zip(doc, labels[i]) if label != -108]
for i, doc in enumerate(predicted_label_ids)

]

# Step 4: Flatten the lists for confusion matrix
true_labels_flat [label for sublist in true_labels for label in sublist]
pred_labels flat [label for sublist in pred_labels for label in sublist]

# Step 5: Generate confusion matrix

unique_labels = list(set(true_labels_flat + pred labels_flat)) # Get all unique labels
cm = confusion_matrix(true_labels_flat, pred_labels_flat, labels=zunique_labels)

# Step 6: Plot the confusion matrix

plt.figure(figsize=(12, 1@))

disp = ConfusionMatrixDisplay(confusion_matrix=cm, display labels=zunique_ labels)
disp.plot(cmap="viridis", xticks_rotation=45)

plt.title("Confusion Matrix for NER (DeBERTa)")

plt.show()

Figure 17: Confusion Metrics Script

4.12 Model Inference

Below code in figure [18|is taken from ’sensitive_data_inference_using_all models.ipynb’ file
which is used to inference the Longformer fine-tuned model and the figure|19|is the output
of the same. Similarily, other models’ codes are there in that file too for inference and
fined-tuned model for DistilBERT, DeBERTa, RoBERTa, and Longformer are available
on shared google drive E] to get download and upload in ones drive to access the model
inference result too.

Shttps://drive.google.com/drive/folders/10hDmogP-g6Xn2DqGkGqSx2zTErDQa00g7usp=
sharing


https://drive.google.com/drive/folders/1OhDmoqP-g6Xn2DqGkGqSx2zTErDQa0Og?usp=sharing
https://drive.google.com/drive/folders/1OhDmoqP-g6Xn2DqGkGqSx2zTErDQa0Og?usp=sharing

Model and tokenizer loaded successfully!

123194545 Sensitve data detection / sensitve_dat inference_using all models pynls Cleaned Predictions:
((Preview | Gode  Blame  52¢ tines (324 1oc) - 22.7 K3 ) Code 55% aser with Githu Copiot =@ Sensitive: O
) data: 0O
Inference with Longformer like: O
credit: O
card: 0

numbers,: O
addresses,: 0
or: 0
personal: O
emails: O
such: 0

as: 0
john.doe@gmail.com: B-EMAIL
should: O

be: O
protected.: O

Figure 18: Longformer Model Inference
Code Sample Figure 19: Inference Result



	Introduction
	System Configuration
	Hardware Requirements
	Software Requirements

	Setting Environment
	Implementation Steps
	Data Load: Learning Agency Lab - PII Data Detection
	Importing Libraries
	Exploratory Data Analysis
	Dataset Split for Training and Testing
	Tokenization and Label Alignment
	Initialize Tokenizer and Model
	Handle Label Imbalance Script
	Custom Compute Metrics Script
	Training Argument Function
	Model Training and Evaluation
	Confusion Matrix Script
	Model Inference


