~

"'—-
\ National
College

Ireland

Configuration Manual

Practicum
M.Sc. in Artificial Intelligence

Utsav Pataskar
Student ID: 23195398

School of Computing
National College of Ireland

Supervisor: Kislay Raj

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Utsav Pataskar
Student ID: 23195398
Programme: M.Sc. in Artificial Intelligence
Year: 2024
Module: Practicum
Supervisor: Kislay Raj
Submission Due Date: 12/12/2024
Project Title: Configuration Manual
Word Count: 1340
Page Count: Ol

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Utsav Pataskar

Date: 12" December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Utsav Pataskar
23195398

1 Introduction

This study highlights the dataset description, hardware and software specifications and
deployment steps in Jupyter Notebook and related python files executions in order to
recreate the results put forth done in the research of "Depth Estimation for indoor en-
vironments using Augmented and Regularized Data through Knowledge Distillation”

2 Project Overview

The project uses teacher student knowledge distillation framework to utilize the capab-
ilities of outdoor depth estimation model - monodepth2 (Kumar et al.; 2024)) to instill
it’s learning into the student model (DenseNet) when worked with monocular indoor im-
ages. Various implementation phases like pre-processing, feature extraction using auto-
encoders, modeling DenseNet with auto-encoder and evaluating depth prediction output
put forth my the student model.

3 System Requirements

3.1 Hardware Specification

The following is minimum hardware requirement for code execution:
e Processor: 11" Gen Intel(R) - i7 11800H @ 2.30GHz, 2304Mhz

e Cores: 8

Logical Processors: 16

RAM: 16GB or more

GPU Specs: 6GB - NVIDIA GeForce RTX 3060, Driver Version - 566.03 with
CUDA 12.7 support

Machine Harddisk: 1TB SSD

3.2 Software Specification

Listed below are the software used in the project execution:

e Programming Language:
Python - The primary language used for programming the model and it’s execution

e Python Libraries:

NumPy: For numeric operations when images are converted into numeric ar-
rays

— PIL(Pillow): For Image manipulation and enhancements

— TorchVision: Ensures pre-processing consistency and normalization to a scale

of0to1l

— MatPlotLib: For Visualization and plotting graphs of loss function and side

by side comparison of expected and actual results.

— hbpy: To read the .mat (MATLAB) file containing NYU-DepthV2 indoor

dataset.

— TensorFlow.keras: To aid in constructing neural network, data feed creation

for model training, creating different layers, feature extraction on each layer
and merging different feature maps for complex learning mappings.

— cv2: for image reading, processing and saving operations

— mono_640x192: ResNet pre-trained weights on outdoor images and related

libraries as teacher model and related files.

— os: for path related operation to remove dependencies on Linux path slash and

Window path slash.

— logging: To log the process information into various log files.

e Development Environment:
Jupyter Notebook 6 or above (Notebook Environment package details added in the
Code Artifacts)

e Library installation:
A requirement.txt file has been shared with the Code Artifacts. We can use !pip
install -r requirements.txt command within jupyter notebook. The output of
installation looks similar to the following image. Ref

In [16]:

Ipip install -r requirements.txt

Requirement already satisfied: absl-py==2.1.8 in c:\programdata\anaconda3\lib\site-packages (from -r requirements.txt (line
2)) (2.1.8)
Collecting annotated-types==0.6.@ (from -r requirements.txt (line 3))

Obtaining dependency information for annotated-types==8.6.8 from https://files.pythonhosted.org/packages/28/78/d31230046e58

€287284c6b2c4e8d96e6d3cbaa52354721b044d3eleedass/annotated_types-0.6.8-py3-none-any.whl.metadata

Downloading annotated_types-8.6.8-py3-none-any.whl.metadata (12 kB)

Collecting anyio==4.2.@ (from -r reguirements.txt (line 4))

Obtaining dependency information for anyio==4.2.8 from https://files.pythonhosted.org/packages/bf/cd/dedobbldadf73e7afe2d18

225cbd2c93f8552e13130484F1cBdcfece292b/anyio-4.2.8-py3-none-any.whl.metadata

Downloading anyio-4.2.8-py3-none-any.whl.metadata (4.6 kB)

Collecting argon2-cffi==23.1.@ (from -r requirements.txt (line 5))

Obtaining dependency information for argon2-cffi==23.1.8 from https://files.pythonhosted.org/packages/a4/6a/e8a841599e78b6b

3752da48e8ebl4cBdle8anideda9c88c714bana7f34f5/argon2_cffi-23.1.8-py3-none-any.whl.metadata

Nownlnadine arcnn? cF£i-22 1 A-nwi_nane_anv whl matadata (S 2 kRY

Figure 1: Installing requirements.txt into conda/jupyter/pycharm environment

3.3 Dataset

The dataset we used for our study is nyu_depth_v2_labeled.mat which is a publicly
available dataset and easily accessible through NYU-DepthV2 or can download from my
Google Drive location GoogleDrive-Utsav. The data comes as a .mat file which has the
first image as the RGB image and second image as the depth map. We use the h5py
to read these images and then split them into training and test data. The couplets are
indexed and thus processing these images, train-test split and, model training data needs
to be indexed as well. We cannot have RGB image[0] encoded to be later decoded by
depth map[1].

4 Environment Setup

We follow the following steps to setup our environment. Start the Jupyter Notebook,
Import the project as-is. The following is the expected folder structure for the project to
run smoothly. Ref

C:\Users\Administrator\Thesis\FinalDraftChangeInThisFolderHenceforth\indoorDepthEstimation_TeacherStudentModel>tree /¥
Folder PATH listing for volume Windows
Volume serial number is 981F-7E5C
C:.
IndoorDepthEstimate_TeacherStudentModel.ipynb
layers.py
mono_6UBx192.zip
nyu_depth_v2_labeled.mat
README . md
requirements.txt
utils.py
——init__.py

logs

models

L —mono_6U8x192
depth.pth
encoder.pth
pose.pth
pose_encoder. pth

networks

depth_decoder.py
pose_cnn.py
pose_decoder.py
resnet_encoder. py
—-init__.py

output

preprocessing
BlockDropoutRegularization.py
CutFlipDataAugmentation.py
GeometricTransformationImageFlip.py
GeometricTransformationImageWarp.py
QuadrantShuffleDataAugmentation. py
ShiftAndRotateAllImages.py
StripeDropoutRegularization.py
—-init__.py

savedStudentModel
student_model_v1_02-10-202u.h5
student_model_v2_03-12-2024.h5
student_model_v3_05-12-2024.h5
student_model_vi_06-12-2024.h5
student_model_v5_07-12-2024.h5

Figure 2: Expected Folder Structure before Code Execution

https://cs.nyu.edu/~fergus/datasets/nyu_depth_v2.html
https://drive.google.com/file/d/13bPIRAlmE6uo5ZvIgiSML1XFlC0d7nMR/view?usp=sharing

4.1 Order Of Execution
4.1.1 Synthesizing Data

Open the command prompt in the preprocessing folder to synthesize the data from
NYU mat file in the following order

e python GeometricTransformationlmageFlip.py
— Task: Generate Vertical and Horizontal Flips of RGB and Depth Maps
— Log: logs\SynthesizedData_ImageFlippings_log.txt file.

— RGB Data Stored Location: preprocessing\SynthesizedData\FlippedRGBImage
— Depth Data Stored Location: preprocessing\SynthesizedData\FlippedDepthImage

python GeometricTransformationlmageWarp.py

— Task: Generate X-Sheared and Y-Sheared Images of RGB and Depth Maps
— Log: logs\SynthesizedData_ImageWarping_log.txt file.

— RGB Data Stored Location: preprocessing\SynthesizedData\ XshearedRGB &
preprocessing\ SynthesizedData\ XshearedDepth

— Depth Data Stored Location: preprocessing\SynthesizedData\ YshearedDepth

python CutFlipDataAugmentation.py

— Task: Generate Cutflips of Mirrored Images of RGB and Depth Maps

— Log: logs\SynthesizedData_ImageWarping_log.txt file.

— RGB Data Stored Location: preprocessing\SynthesizedData\CutFlipRGB

— Depth Data Stored Location: preprocessing\SynthesizedData\CutFlipDepth

python QuadrantShuffleDataAugmentation.py

— Task: Generate Quadrants and Shuffles of Images of RGB and Depth Maps

— Log: logs\SynthesizedData_ImageWarping_log.txt file.

— RGB Data Stored Location: preprocessing\SynthesizedData\QuadShufleRGB

— Depth Data Stored Location: preprocessing\SynthesizedData\QuadShuffleDepth

python BlockDropoutRegularization.py
— Task: Drops 4 blocks from 4x4 distributed image matrix from RGB and Depth
Map
— Log: logs\SynthesizedData_BlockDropReg_log.txt file.
— RGB Data Stored Location: preprocessing\SynthesizedData\BlockDropRegRGB
Depth Data Stored Location: preprocessing\SynthesizedData\BlockDropRegDepth

python StripeDropoutRegularization.py
— Task: Drops 2 Stripes from 1x5 distributed image matrix from RGB and Depth
Map
— Log: logs\SynthesizedData_StripeDropReg_log.txt file.
— RGB Data Stored Location: preprocessing\SynthesizedData\StripeDropRegRGB
Depth Data Stored Location: preprocessing\SynthesizedData\StripeDropRegDepth

4

4.1.2 Shifting All Images in an unified location

From the same folder cmd line run the command,
e python Shift AndRotateAlllmages.py

— Task: Shifts all RGB Images and Depth Images consolidated into one folder
each while rotating the image 90 degrees clockwise

— Log: logs\SynthesizedData_ImageTransfer_log.txt file.
RGB Data Stored Location: preprocessing\SynthesizedData\RGB
— Depth Data Stored Location: preprocessing\SynthesizedData\Depth

Once all the scripts have ran, we should get the following image count in each folder
within SynthesizedData folder. Ref

C:\Users\Administrator\Thesis\FinalDraftChangeInThisFolderHenceforth\indoorDepthEstimation_TeacherStudentModel\preprocessing\SynthesizedData>for /d %i in (*) do @echo %i & dir "%i" /a:-d /s /b | find /c /v "
BlockDropRegDepth

1449
BlockDropRegRGB
9

CutFlipDepth

2898

CutFLipRGB

Depth

13041
FlippedDepthInage
FlippedRGBImage
2898
QuadshuffleDepth
QuadShufF1eRGB
1449

RGB

13041
StripeDropRegDepth
1449
StripeDropRegRGB
1449
XshearedDepth
1449

XshearedRGB

YshearedDepth
1u49

Figure 3: Expected Data Count after Scripts Run

It is advised to delete all other folders except Depth and RGB as we will be using
this folder for further operations.

5 Depth Estimation Algorithm

We now start executing the main code for depth estimation.

Open the IndoorDepthEstimate_TeacherStudentModel.ipynb file in configured jupy-
ter notebook.

Run the import block (Ref

In [2]: from _ future import absolute_import, division, print_function
Zmatplotlib inline

import os

import numpy as np

from PIL import Image,ImageFilter

import matplotlib.pyplot as plt

from torchvision.transforms import ToTensor
import torch

from torchvision import transforms

import cv2|

import tensorflow as tf

from tensorflow.keras.utils import Sequence

from tensorflow.keras.layers import Input, Conv2D, UpSampling2D, Concatenate, Multiply, GlobalAveragePooling2D, Dense, Reshape
from tensorflow.keras.models import Model

from tensorflow.keras.applications import DenseNet169

import tensorflow as tf

from tensorflow.keras.callbacks import EarlyStopping

import networks
from utils import download model if doesnt exist

Figure 4: Import Block

We get all the necessary imports to run our code
Second we load the pre-trained model as the teacher, the encoder.pth and depth.pth files
should be in "models/mono_640x192” path to load properly. Ref

In [2]: model name = "mono_64ex192"

download_model if doesnt_exist(model_ name)
encoder_path = os.path.join("models”, model_name, “encoder.pth")
depth_decoder_path = os.path.join("models”, model_name, “"depth.pth”)

encoder = networks.ResnetEncoder(18, False)
depth_decoder = networks.DepthDecoder(num_ch_enc=encoder.num_ch_enc, scales=range(4))

loaded_dict_enc = torch.load(encoder_path, map_location="cpu’)
filtered dict enc = {k: v for k, v in loaded dict enc.items() if k in encoder.state dict()}
encoder.load_state_dict(filtered_dict_enc)

loaded dict = torch.load(depth_decoder path, map_location="cpu")
depth_decoder.load_state_dict(loaded dict)

encoder.eval ()
depth_decoder.eval();

C:\ProgramData\anaconda3\Lib\site-packages\torchvision\models\ utils.py:135: UserWarning: Using ‘weights' as positional paramet
er(s) is deprecated since ©.13 and may be removed in the future. Please use keyword parameter(s) instead.

warnings.warn(
C:\ProgramData\anaconda3\Lib\site-packages\torchvision\models\ utils.py:223: UserWarning: Arguments other than a weight enum or
“None™ for ‘weights' are deprecated since ©.13 and may be removed in the future. The current behavior is equivalent to passing
“weights=None .

warnings.warn(msg)

Figure 5: Import Block

Third, we execute the below block so that the teacher pre-trained on outdoor images
can generate it’s predictions (or pseudo depth maps). Ref @E

In [7]: log_fil

“/logs/process_log v5.txt"

def generate_teacher predictions_from_png(rgb_folder, depth_folder, output_folder, feed height, feed width, encoder, depth_deceod
os.makedirs(output_folder, exist_ok=True)
rgb_files = sorted([f for f in os.listdir(rgb_folder) if f.endswith(".png")])
depth_files = sorted([f for f in os.listdir(depth_folder) if f.endswith(".png")]1)

with open(log_file, "w") as log:
log.write("Processing log for RGB and depth files\n")
log.write("=" * 48 + "\n")
for idx, (rgb_file, depth_file) in enumerate(zip(rgb_files, depth_files)):

rgb_image path = os.path.join(rgb_folder, rgb_file)
rgb_image = Image.open(rgb_image_path).convert("RGB")

rgb_image resized = rgb_image.resize((feed_width, feed_height))
rgb_tensor = ToTensor()(rgb_image_resized).unsqueeze(®)

with torch.no_grad():
features = encoder(rgb_tensor)
outputs = depth_decoder(features)
disp = outputs[(“disp"”, @)]
disp_resized = torch.nn.functional.interpolate(
disp, (rgb_image.height, rgb_image.width), mode="bilinear", align_corners=False

)

disp_np = disp_resized.squeeze().cpu().numpy()

output_path = os.path.join(output_folder, f"prediction_{idx}.npy")

np.save(output_path, disp_np)

log.write(f"Processing RGB: {rgb_file} with Depth: {depth_file}\nCreated prediction file: {output_path}\n")

print(f"Processed {len(rgb_files)} images and saved predictions to {output_folder}")
print(f"Processing log saved to {log file}")
log.close()

In [8]:
generate_teacher_predictions_from_png(

rgb_folder="preprocessing/SynthesizedData/RGB",
depth_folder="preprocessing/SynthesizedData/Depth”,
output_folder="v5_path_to_teacher predictions”,
feed_height=192,
feed_width-54a,
encoder=encoder,
depth_decoder=depth_decoder

Figure 6: Generating .npy files by teacher model

The folder v5_path_to_teacher_predictions is generated with pseudo depth map pre-
diction by the teacher .npy files

We also get the .npy files dumped as follows. Note that this step is a checklist and we
need to be verified that files are created. This step will take a long time.

Name Date modified Type Size
| prediction_0.npy 7-12-2024 15:53 NPY File 1,201 KB
| prediction_1.npy 7-12-2024 15:53 NPY File 1,201 KB
| prediction_2.npy 7-12-2024 15:53 NPY File 1,201 KB
| prediction_3.npy 07-12-2024 15:53 NPY File 1,201 KB
| prediction_4.npy 7-12-2024 15:53 NPY File 1,201 KB

Figure 7: Teacher Prediction Folder Content

We can co-relate which RGB-Depth Map pairs up with which prediction npy file from
the logs\process_log_v5.txt. Ref[§]

T) | [l iudent process Jog vt B process Jog viot 1]l student. model.v1.02-10-2004.15 3] Butispy || = AT 1]
ng log for RGB and depth files |

x|
Processi.

Processing RGB: cutflip 0_l.png with Depth: cutflip 0_1.png
Created prediction file: v5_path_to_teacher_predictions\prediction_0.npy
Processing RGB: cutflip 0_10.png with Depth: cutflip 0 10.png

6 Created prediction file: v5_path to_teacher predictions\prediction_ 1l.npy
Processing RGB: cutflip 0_100.png with Depth: cutflip 0 100.png
Created prediction file: v5_path_to_teacher_predictions\prediction_ 2.npy
Processing RGB: cutflip_0_1000.png with Depth: cutflip 0_1000.png

Figure 8: RGB-Depth Mapping with prediction.npy

We then build the student model.

In [10]:

def SE_Block(input_tensor, reduction=16):

channels = input_tensor.shape[-1]

= GlobalAveragePooling2D()(input_tensor)
se = Dense(channels // reduction, activation='relu’)(se)
= Dense(channels, activation="sigmoid')(se)
se = Reshape((1, 1, channels))(se)
return Multiply()([input_tensor, se])

def DenseDepth(input_shape-(32@, 328, 3)):
backbone = DenseNet169(weights="imagenet’, include_top=False, input_shape-input_shape)

convd = backbone.get_layer(“convd_block6_concat™).output
conv3d = backbone.get layer(“"conv3_block12 concat™).output
conv2 = backbone.get layer("conv2_block6_concat™).output
convl = backbone.get layer(“"convl_relu™).output

upl = UpSampling2D()(convd)

upl = Concatenate()([upl, conv3])

upl = Conv2D(128, (5, 5), activation="relu’, padding='same’)(upl)

upl = SE_Block(upl)

upl = Conv2D(64, (3, 3), activation="relu’, padding-'same’, dilation_rate=2)(upl)
up2 = UpSampling2D()(upl)

up? = Concatenate()([up2, conv2])

up? = ConvaD(64, (5, 5), activation='relu’, padding='same')(up2)

up? = SE_Block(up2)

up2 = Conv2D(32, (3, 3), activation="relu’, padding-'same’, dilation_rate-2)(up2)
up3 = UpSampling2D()(up2)

up3 = Concatenate()([up3, convi])

up3 = Conv2D(32, (5, 5), activation="relu’, padding="same’)(up3)

up3 = SE_Block(up3)

up3 = Conv2D(16, (5, 5), activation="relu’, padding-'same’, dilation_rate=2)(up3)
up4d = UpSampling2D()(up3)

up4 = Conv2D(16, (5, 5), activation="relu’, padding="same’)(up4)

up4 = SE_Block(up4)

output = Conv2D(1, (5, 5), activation-'sigmoid', padding="same’)(up4)

model = Model{inputs=backbone.input, outputs=output)
model .compile(optimizer="adan’, loss="mean_squared_error")

return model

model = DenseDepth(}
model. summary ()

Figure 9: Student Model Building

The model is so designed that each encoder layer shrinks the image and each decoder
upscales the image to it’s original resolution. Filter count changes with the need of the

7

smoothness requirements. Each decoder takes input from it’s preceding decoder layer
and encoder layer having the same image resolution. Ref[J)

Now, we generate indoor predictions data from these .npy files generated by teacher
model.

1n [35]
log_file_student-"student_process_log_v5.txt"

class NvUDataGenerator(Sequence):

def _init_(self, rgb_folder, depth_folder, prediction_folder, batch_size, input_shape):
Self.rgb_folder - rgb_folder
self.depth_folder - depth_folder
self.prediction_folder = prediction_folder
self.batch_size - batch size
self.input_shape - input_shape
self.rgb_files = sorted([f for f in os.listdir(rgb_folder) if f.endswith(".png’)])
self.depth_files - sorted([f for f in os.listdir(depth_folder) if f.endswith(’.png’)])
assert len(self.rgb files) - len(self.depth files), "Mismatch betueen RGE and depth map counts."

def _len_(self):
return len(self.rgb_files) // self.batch_size

def _getitem_(self, idx):
batch_images = []
batch_predictions -
with open(log file student, "a") as log:
log.urite("Student Learning \nProcessing log for RGB and depth files\n")
log.write("=" * 48 + "\n")
for i in range(self.batch_size):
img_idx - idx * self.batch_size + i
rgb_path = os.path.join(self.rgb_folder, self.rgh_files[img idx])
rgb_image = Image.open(rgb_path).convert("RGa")
rgb_image - rgb_image.resize(self.input_shape[:2])
rgb_image - np.array(rgb_image) / 255.0
batch_inages. append(rgb_image)
pred_path - os.path.join(self.prediction_folder, f"prediction_{img_idx}.npy")
teacher_pred - np.load(pred_path)
teacher_pred - np.expand_dims(teacher_pred, axis--1)
teacher_pred = tf.image.resize(teacher_pred, self.input_shape[:2]).numpy()
batch_predictions.append(teacher_pred)
log.urite(f"Student Processing RGB: {rgb path} with Teacher Prediction: {pred path}\n")
return np.array(batch_images), np.array(batch_predictions)

Figure 10: Data Generation from.npy file

This data generated will be crucial for the student model to recreate (Teacher-student

framework principle). This data will not be stored in any physical location on the device
and thus is memory consuming. Ref

With this, we are ready for training our student model.

In [38]: def root_mean_squared_error(y_true, y_pred):
return tf.sqrt(tf.reduce_mean(tf.square(y_pred - y_true)))

In [39]: student_model = DenseDepth()
student_nodel.compile(optimizer='adan’, loss-root_mean_squared_error)

In [48]: log_dir = "logs/student_model v5_@7-12-2024"
tensorboard_callback = tf.keras. callbacks.TensorBoard(log_dir-log_dir, histogram freg-1)

In [41]: history - student_model.fit(data_gen, epochs-10)
model_save_path = "student_model_v5_07-12-2024.hs"
student_nodel . save(model_save_path
print(f"Hiodel saved to {model_save_path}")

Epoch 1/10

C:\Users\Administrator\AppData\Roaming\Python\Python311\site-packages\keras\src\trainers\data_adapters\py_dataset_adapter.py:12
2: UserWiarning: Your "PyDataset” class should call “super()._init_ (**kwargs)® in its constructor. ~**kwargs’ can include “wor

kers®, “use_multiprocessing’, max_queue_size'. Do not pass these arguments to “fit()", as they will be ignored.
self._warn_if_super_not_called()

1086/1086 21025 35/step - loss: 0.1760
Epoch 2/10

1086/1086 —————————— 31425 3s/step - loss: 0.1406
Epoch 3/10

1086/1086 ————————— 31395 3s/step - loss: 0.1298
Epoch 4/10

1086/1086 31345 35/step - loss: 0.1249
Epoch 5/10

1086/1086 —————————— 31235 3s/step - loss: 0.1207
Epoch 6/10

1086/1086 ————————— 31285 3s/step - loss: 0.1148
Epoch 7/10

1086/1086 31455 3s/step - loss: 0.1129
Epoch 8/10

1086/1086 ————————— 31275 3s/step - loss: @.1099
Epoch /10

1086/1086 —————————— 31295 3s/step - loss: 0.1057
Epoch 10/16

1086/1086

—————————— 31405 3s/step - loss: 0.1019

WARNING: absl:You are saving your model as an HDFS file via “model.save()' or “keras.saving.save_model(model)™. This file format

is considered legacy. We recommend using instead the native Keras format, e.g. “model.save('my_model.keras')™ or keras.saving.
save_model(model, 'my_model.keras')".

Model saved to student_model vS_87-12-2624.h5

Figure 11: Fit the student model from the teacher learning/predictions

This is the highest time consuming step, as depending on the filter count, image
resolution and image quantity, the model training can take anywhere from 12 hrs to 18
hrs. We save the model as .h5 file so that we can load the model for prediction whenever
instead of training the model again. Ref
And we can load the model in the following manner. Ref

In [5]: from tensorflow.keras.models import load_model
model_path = "student_model_v5_87-12-2824.h5"
custom_objects = {
‘optimizer®:*adam’, 'loss’:’root_mean_squared_error’

model = load_model("student_medel_v5_87-12-2624.h5", compile=False)
print(f"Model loaded from {model path}"}

Hodel loaded from student model v5_87-12-2824.h5

Figure 12: Loading .h5 file as model to predict

And finally we predict the depth map from the image feed. It is imperative to know
that we need to normalize the test image before it can be used for prediction. If the
image is taken from the .mat file, the steps have been shown in The steps will be
different if we are using a png, jpeg or jpg images and have not been demonstrated in
this code snippet.

In [255]: test_rgb_image - np.transpose(test_rgb_image, (1, 2, @))
test_depth_mapsl_image - ((test depth_image - test depth_image.min()) /
(test_depth_image.max() - test_depth_image.min()) * 255).astype(np.uint8)
test_rgh_image - ((test_rgb_image - test rgb_image.min()) /
(test_rgb_image.max() - test_rgb_image.min()) * 255).astype(np.uint8)

In [256]: test_rgb_image pil - Image.fromarray(test_rgb_image)
resized_rgb_image_pil - test_rgb_image_pil.resize((228, 228), Image.LANCZOS)
resized_rgb _image pil - np.rot9@(resized rgb_image pil, k-=-1)
resized_rgb_image - np.array(resized rgh_image pil)
test_depth_mapsi_image_pil = Image.fromarray(test_depth_mapsl_image)
test_depth_mapsl_image pil - test_depth_maps1l_image pil.resize((32e, 32@), Image.LANCZOS)
test_depth_mapsl_image_pil = np.rot98(test_depth_mapsl_image pil, k=-1)
test_depth_mapsi_image_resized - np.array(test_depth_mapsl_image_pil)

In [257]: test_rgh_image - np.rotd8(test_rgb_image, k--1)
output_path = "test_rgb_image.png”
image - Image.fromarray(test rgh_image)
image.save(output_path)

In [258]: def preprocess_image(image, input_shape):
image - image.resize(input_shape[:2])
image - np.array(image) / 255.8
image = np.expand_dims(image, axis-9)
return image

input_shape = (320, 320, 3)

preprocessed_image = preprocess_image(image, input_shape)
predicted_depth_map - model.predict(preprocessed_image)
print(predicted_depth_map.shape)

1/1 ——
(1, 320, 320, 1)

@s 26ms/step

Figure 13: Test Image Pre-processing and Student Model Prediction

6 Conclusion

With this Configuration Manual, users should be able to execute the indoor depth estim-
ations smoothly. The order of execution is important as without pre-processing, there
will be no data synthesized and with no image feed, there nothing to train the teacher
and student model.

References

Kumar, T., Brennan, R., Mileo, A. and Bendechache, M. (2024). Image data augmenta-
tion approaches: A comprehensive survey and future directions, IEEE Access .

	Introduction
	Project Overview
	System Requirements
	Hardware Specification
	Software Specification
	Dataset

	Environment Setup
	Order Of Execution
	Synthesizing Data
	Shifting All Images in an unified location

	Depth Estimation Algorithm
	Conclusion

