
Configuration Manual

Practicum

M.Sc. in Artificial Intelligence

Utsav Pataskar
Student ID: 23195398

School of Computing

National College of Ireland

Supervisor: Kislay Raj

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Utsav Pataskar

Student ID: 23195398

Programme: M.Sc. in Artificial Intelligence

Year: 2024

Module: Practicum

Supervisor: Kislay Raj

Submission Due Date: 12/12/2024

Project Title: Configuration Manual

Word Count: 1340

Page Count: 9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Utsav Pataskar

Date: 12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Utsav Pataskar
23195398

1 Introduction

This study highlights the dataset description, hardware and software specifications and
deployment steps in Jupyter Notebook and related python files executions in order to
recreate the results put forth done in the research of ”Depth Estimation for indoor en-
vironments using Augmented and Regularized Data through Knowledge Distillation”

2 Project Overview

The project uses teacher student knowledge distillation framework to utilize the capab-
ilities of outdoor depth estimation model - monodepth2 (Kumar et al.; 2024) to instill
it’s learning into the student model (DenseNet) when worked with monocular indoor im-
ages. Various implementation phases like pre-processing, feature extraction using auto-
encoders, modeling DenseNet with auto-encoder and evaluating depth prediction output
put forth my the student model.

3 System Requirements

3.1 Hardware Specification

The following is minimum hardware requirement for code execution:

• Processor: 11th Gen Intel(R) - i7 11800H @ 2.30GHz, 2304Mhz

• Cores: 8

• Logical Processors: 16

• RAM: 16GB or more

• GPU Specs: 6GB - NVIDIA GeForce RTX 3060, Driver Version - 566.03 with
CUDA 12.7 support

• Machine Harddisk: 1TB SSD

1



3.2 Software Specification

Listed below are the software used in the project execution:

• Programming Language:
Python - The primary language used for programming the model and it’s execution

• Python Libraries:

– NumPy: For numeric operations when images are converted into numeric ar-
rays

– PIL(Pillow): For Image manipulation and enhancements

– TorchVision: Ensures pre-processing consistency and normalization to a scale
of 0 to 1

– MatPlotLib: For Visualization and plotting graphs of loss function and side
by side comparison of expected and actual results.

– h5py: To read the .mat (MATLAB) file containing NYU-DepthV2 indoor
dataset.

– TensorFlow.keras: To aid in constructing neural network, data feed creation
for model training, creating different layers, feature extraction on each layer
and merging different feature maps for complex learning mappings.

– cv2: for image reading, processing and saving operations

– mono 640x192: ResNet pre-trained weights on outdoor images and related
libraries as teacher model and related files.

– os: for path related operation to remove dependencies on Linux path slash and
Window path slash.

– logging: To log the process information into various log files.

• Development Environment:
Jupyter Notebook 6 or above (Notebook Environment package details added in the
Code Artifacts)

• Library installation:
A requirement.txt file has been shared with the Code Artifacts. We can use !pip
install -r requirements.txt command within jupyter notebook. The output of
installation looks similar to the following image. Ref 1

Figure 1: Installing requirements.txt into conda/jupyter/pycharm environment

2



3.3 Dataset

The dataset we used for our study is nyu depth v2 labeled.mat which is a publicly
available dataset and easily accessible through NYU-DepthV2 or can download from my
Google Drive location GoogleDrive-Utsav. The data comes as a .mat file which has the
first image as the RGB image and second image as the depth map. We use the h5py
to read these images and then split them into training and test data. The couplets are
indexed and thus processing these images, train-test split and, model training data needs
to be indexed as well. We cannot have RGB image[0] encoded to be later decoded by
depth map[1].

4 Environment Setup

We follow the following steps to setup our environment. Start the Jupyter Notebook,
Import the project as-is. The following is the expected folder structure for the project to
run smoothly. Ref 2

Figure 2: Expected Folder Structure before Code Execution

3

https://cs.nyu.edu/~fergus/datasets/nyu_depth_v2.html
https://drive.google.com/file/d/13bPIRAlmE6uo5ZvIgiSML1XFlC0d7nMR/view?usp=sharing


4.1 Order Of Execution

4.1.1 Synthesizing Data

Open the command prompt in the preprocessing folder to synthesize the data from
NYU mat file in the following order

• python GeometricTransformationImageFlip.py

– Task: Generate Vertical and Horizontal Flips of RGB and Depth Maps

– Log: logs\SynthesizedData ImageFlippings log.txt file.

– RGBData Stored Location: preprocessing\SynthesizedData\FlippedRGBImage

– Depth Data Stored Location: preprocessing\SynthesizedData\FlippedDepthImage

• python GeometricTransformationImageWarp.py

– Task: Generate X-Sheared and Y-Sheared Images of RGB and Depth Maps

– Log: logs\SynthesizedData ImageWarping log.txt file.

– RGB Data Stored Location: preprocessing\SynthesizedData\XshearedRGB &
preprocessing\SynthesizedData\XshearedDepth

– Depth Data Stored Location: preprocessing\SynthesizedData\YshearedDepth

• python CutFlipDataAugmentation.py

– Task: Generate Cutflips of Mirrored Images of RGB and Depth Maps

– Log: logs\SynthesizedData ImageWarping log.txt file.

– RGB Data Stored Location: preprocessing\SynthesizedData\CutFlipRGB

– Depth Data Stored Location: preprocessing\SynthesizedData\CutFlipDepth

• python QuadrantShuffleDataAugmentation.py

– Task: Generate Quadrants and Shuffles of Images of RGB and Depth Maps

– Log: logs\SynthesizedData ImageWarping log.txt file.

– RGBData Stored Location: preprocessing\SynthesizedData\QuadShuffleRGB

– Depth Data Stored Location: preprocessing\SynthesizedData\QuadShuffleDepth

• python BlockDropoutRegularization.py

– Task: Drops 4 blocks from 4x4 distributed image matrix from RGB and Depth
Map

– Log: logs\SynthesizedData BlockDropReg log.txt file.

– RGBData Stored Location: preprocessing\SynthesizedData\BlockDropRegRGB

– Depth Data Stored Location: preprocessing\SynthesizedData\BlockDropRegDepth

• python StripeDropoutRegularization.py

– Task: Drops 2 Stripes from 1x5 distributed image matrix from RGB and Depth
Map

– Log: logs\SynthesizedData StripeDropReg log.txt file.

– RGBData Stored Location: preprocessing\SynthesizedData\StripeDropRegRGB

– Depth Data Stored Location: preprocessing\SynthesizedData\StripeDropRegDepth

4



4.1.2 Shifting All Images in an unified location

From the same folder cmd line run the command,

• python ShiftAndRotateAllImages.py

– Task: Shifts all RGB Images and Depth Images consolidated into one folder
each while rotating the image 90 degrees clockwise

– Log: logs\SynthesizedData ImageTransfer log.txt file.

– RGB Data Stored Location: preprocessing\SynthesizedData\RGB

– Depth Data Stored Location: preprocessing\SynthesizedData\Depth

Once all the scripts have ran, we should get the following image count in each folder
within SynthesizedData folder. Ref 3

Figure 3: Expected Data Count after Scripts Run

It is advised to delete all other folders except Depth and RGB as we will be using
this folder for further operations.

5 Depth Estimation Algorithm

We now start executing the main code for depth estimation.
Open the IndoorDepthEstimate TeacherStudentModel.ipynb file in configured jupy-
ter notebook.
Run the import block (Ref 4)

Figure 4: Import Block

5



We get all the necessary imports to run our code
Second we load the pre-trained model as the teacher, the encoder.pth and depth.pth files
should be in ”models/mono 640x192” path to load properly. Ref 5

Figure 5: Import Block

Third, we execute the below block so that the teacher pre-trained on outdoor images
can generate it’s predictions (or pseudo depth maps). Ref 6,7

Figure 6: Generating .npy files by teacher model

The folder v5 path to teacher predictions is generated with pseudo depth map pre-
diction by the teacher .npy files

6



We also get the .npy files dumped as follows. Note that this step is a checklist and we
need to be verified that files are created. This step will take a long time.

Figure 7: Teacher Prediction Folder Content

We can co-relate which RGB-Depth Map pairs up with which prediction npy file from
the logs\process log v5.txt. Ref 8

Figure 8: RGB-Depth Mapping with prediction.npy

We then build the student model.

Figure 9: Student Model Building

The model is so designed that each encoder layer shrinks the image and each decoder
upscales the image to it’s original resolution. Filter count changes with the need of the

7



smoothness requirements. Each decoder takes input from it’s preceding decoder layer
and encoder layer having the same image resolution. Ref 9
Now, we generate indoor predictions data from these .npy files generated by teacher
model.

Figure 10: Data Generation from.npy file

This data generated will be crucial for the student model to recreate (Teacher-student
framework principle). This data will not be stored in any physical location on the device
and thus is memory consuming. Ref 10
With this, we are ready for training our student model.

Figure 11: Fit the student model from the teacher learning/predictions

This is the highest time consuming step, as depending on the filter count, image
resolution and image quantity, the model training can take anywhere from 12 hrs to 18
hrs. We save the model as .h5 file so that we can load the model for prediction whenever
instead of training the model again. Ref 11
And we can load the model in the following manner. Ref 12

8



Figure 12: Loading .h5 file as model to predict

And finally we predict the depth map from the image feed. It is imperative to know
that we need to normalize the test image before it can be used for prediction. If the
image is taken from the .mat file, the steps have been shown in 13. The steps will be
different if we are using a png, jpeg or jpg images and have not been demonstrated in
this code snippet.

Figure 13: Test Image Pre-processing and Student Model Prediction

6 Conclusion

With this Configuration Manual, users should be able to execute the indoor depth estim-
ations smoothly. The order of execution is important as without pre-processing, there
will be no data synthesized and with no image feed, there nothing to train the teacher
and student model.

References

Kumar, T., Brennan, R., Mileo, A. and Bendechache, M. (2024). Image data augmenta-
tion approaches: A comprehensive survey and future directions, IEEE Access .

9


	Introduction
	Project Overview
	System Requirements
	Hardware Specification
	Software Specification
	Dataset

	Environment Setup
	Order Of Execution
	Synthesizing Data
	Shifting All Images in an unified location


	Depth Estimation Algorithm
	Conclusion

