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Depth Estimation for indoor environments using
Augmented and Regularized Data through Knowledge

Distillation

Utsav Pataskar
23195398

Abstract

Depth Estimation is one of the important applications of computer vision which
are further used in autonomous vehicles, robotics vision and AR/VR world. This
research focuses on increasing generalization capabilities of depth estimation models
on indoor settings which have low lightings, clustered and occluded objects and
overall lack the diversity in terms of texture, has consistent and repetitive structural
geometry. We deployed teacher-student framework to implement a ResNet-based
pre-trained model as the teacher which will generate it’s own pseudo depth maps
from NYU-Depth V2 and Augmentations. The student model DenseDepth-169
based on U-Net learns from the teacher model and it’s predictions. The proposal
addresses overfitting and generalization problem by employing data augmentation
and dropout regularization and increasing overall dataset size significantly. Edge
Detection and contrast adjustment further aid in improving input feed quality. The
research also provides a base for scalable and efficient indoors depth estimation
models that are adaptive to diverse environments.

1 Introduction

Computer Vision with the help of OpenCV libraries has always been a topic of interest
for many robotics enthusiasts. OpenCV allowed developers to explore the field of optics
for Machine to mimic the visual sense of humans. Object Detection found multiple use-
cases in the field of security surveillance and Autonomous Cars. Object Detection also
has a military usage of Object Tracking while working with weaponry. Object Detection
also gives rise to the importance of Depth Estimation. Depth Estimation is the concept
of perceiving 3D structure in the surrounding world from 2D images either images being
monocular or stereo vision. Depth Estimation is usually observed when we are working
with Self Driving cars. We don’t just want to detect obstacles, we also need to understand
how far the obstacle is. Depending on these values, we decide when we start reducing
the speed of the car and how fast the deceleration is expected to be. Depth estimation is
also crucial for 3D reconstruction of images and helps the machine better understand the
surrounding geometry. This understanding leads to enhanced interaction of the machine
with the neighboring world. The Depth Estimation algorithms are broadly classified into
two categories - 1. Monocular and 2. Stereo Depth Estimation.

1. Monocular Depth Estimation : Unlike humans who have biocular image for
understanding depths, monocular images do not have second angled images for
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Figure 1: Current State of Depth Estimation for Monocular Indoor Images

perceiving depth. This makes the task more challenging and thus the sole task
needs to be focused on relative cues. Texture gradient from farthest object towards
the image edges, object size gradient, occlusion, eliminating distortions are some of
the features that are extracted in deep learning models for depth estimation. The
most common use case of Monocular Depth Estimation is using it robotics which
rely on single camera image data feed to process depth information efficiently.

2. Stereo Depth Estimation : In this approach, we have two images to mimic the
stereo vision possessed by humans. The angle of two image is only slightly different.
The goal is the consider this disparity to calculate the depth of the images. The
depth perspection found from these data feed is more accurate than Monocular
Depth Estimation, and thus find its usage in more complex and important tasks
such as autonomous driving and high res 3D mapping

When it comes to indoor settings, depth estimation has a long way to go when com-
pared to outdoor depth analysis. Outdoor settings have a variety of textures to capture
when compared to limited texture variation in large surfaces like wall and ceilings mak-
ing the task comparatively harder. Objects are occluded and cluttered together which
increases the complexity and there is ambiguity in depth estimation. Another restriction
we observe is that the object sizes vary drastically within an indoor setting from knife
on the table to sofa set in the background, which further complicates the task. There
is also limited diversity found for indoor depth estimation. However, despite these dis-
advantages, enhancing the work on indoor depth estimation can lead to many real-life
applications. Older Roomba Vaccuum cleaners used to work on Infrared and/or ultra-
sound object detection mechanism for object avoidance. But now, newer Roombas work
with Deep learning models pre-trained on images fused with traditional object detection
to navigate within the house. Despite the advancements, these struggle while detecting
reflecting and refracting surfaces. They also estimate depths to shorter distances and on
larger objects, much research is being put for avoiding smaller and irregular objects (pet
wastes). The low lighting also pose a challenge to overcome. For visually impaired people,
indoor depth estimation can work miracles which will help them in navigating in enclosed
places. These enclosed places will not only be the house, but malls and transportation
ports as well, which has a lot of objects and bodies in a dynamically moving state. This
goes to show that Depth Estimation plays a critical role in indoor navigation tasks as
well. Meanwhile, exploring the Gaming Industry, in order to interact with virtual objects
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in AR/VR, depth estimates are just as important. AR/VR worlds specifically are built
around close proximity of the user so that the gaming experience is immersive and thus
the need for indoor depth estimates. If the depth calculations are not accurate in the
peripheral, gaming community might not experience the AR/VR to the fullest as mis-
judge causes disjointed experience. The AR/VR is important when it comes to creating
sandbox environments as well. Running simulations within sandbox makes training for
dangerous tasks like search and rescue operations easier for first responders. AR/VR
cannot replace the actual dangers but can help them prepare better. And this training
experience is heavily dependent on accurate interactions with AR/VR environment and
in-turn on the accuracy of depth estimates.

Research Question:
How can advanced Deep Learning techniques be used to improve the existing depth es-
timation algorithms when used in indoor environment which have low lighting, object
clustering and occasional occlusions and overall lack of texture and geometric diversity ?

2 Related Work

Monocular depth Estimation or Single Image Depth Estimation has always been a diffi-
cult task to achieve. The chances of losing the context information of occluded objects or
occluded angles of visible objects is what makes this task error prone. And thus the need
for more contextual information like stereo images was used for gauging depths. With
the advancements in deep learning models, we started working with zero shot depth es-
timations, wherein we train our models on stereo images or semantically labeled dataset
but the predictions on depth estimation is done on unseen images which are monocular
in nature.
A simple undistorted image feed works with Depth Anything models, wherein we get
the resultant depth estimation maps with precision. However with change in image feed
changes the output. (Zhang, Juzheng et al.; 2024) worked on fisheye images. The fisheye
images are taken with ultra wide angle having the capabilities to take panoramic views
of 180 degrees or more. In case of circular fisheye lens, the camera can capture 360 de-
grees surrounding view,typically used in surveillances and AR/VR games. The images
are heavily distorted such that straight lines are curved away from the center of the image
(The barrel distortion). The bubble effect describes this distortion in images. (Zhang,
Juzheng et al.; 2024) removed the distortion by deep learning models wherein the model
was trained on left stereo images overlapped with right stereo counterparts and decoded
against fisheye images. The curves with straightened out and then the straightened out
images were feed to the second model of Depth Anything to get the depth estimations.
This chained model resulted in depth estimation of fisheye images.
Another unique experimentation with Depth Anything model was performed by (Zhou,
Keyu et al.; 2024). They used the powerful Depth Anything tool to depth estimate un-
derwater objects. The experiment was not a huge success but they did concluded that
the error in depth estimates was constant throughout the image. The error in depth
maps did not spread exponentially as we moved in-depth into the images. They tried to
eliminate this error by offsetting the weights but were only able to improve the results
by 0.3%.
Over the years, many AI researchers and developers have tried to find more experiments
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and research in the field of depth estimation and how to improve the existing technolo-
gies. One of the known issues is the loss of contextual information for occluded objects or
in simple terms - the hidden side of fore-bearing objects is neglected in depth estimation.
This creates a cascading problem for one of the real-life application of depth estimation,
i.e., 3D reconstruction. (Bhat, S.F. et al.; 2023) faced the same challenge. ZoeDepth
Algorithm used MiDaS algorithm trained NYU-Depth v2 dataset that was augmented
with KITTI dataset for depth estimation. Furthermore, after acquiring the depth maps,
the output was feed to reconstruct 3D mesh using Zephyr. Although they were able to
reconstruct 3D mesh from Monocular images in their research, there were some inform-
ation loss for occluded objects. Still their research drawbacks can be considered to be
filled by (Jo, Seong-Uk et al.; 2024). Although not directly related, (Jo, Seong-Uk et al.;
2024) worked on reconstructing those occluded or partially occluded objects by splitting
the images into multiple sets of images each of which contained independent objects.
Occluded objects did not have any other object apart from background. And thus, it
allowed for independent reconstruction of the occlusions with the help of iterative amodel
depth estimations. This helped with recovering the contextual lose of information and
the occluded object were already regenerated while they were in 2D format itself.
Second issue with depth estimation algorithm is its applicability on higher definition im-
ages. As we increase the resolution, so does the exponential increase in time taken while
creating depth maps. (Li, Z. et al.; 2024) proposed on image segmentation. They used
pre-trained models on low resolution images and targeted it for high resolution images.
The way, this would work is to deploy a patch by patch depth estimation on each ”patch”
of the high resolution images. Numerous such patches would be targeted for depth estim-
ation and then finally all the resultant depth maps will be collated (or fused) to create
one high definition depth map. Thus the name PatchFusion. Therefore there experiment
also consisted of creating a Global-Scale Awareness so that the relative depth estimation
would match up with its neighboring ”patches”.
The most commonly referred known issues with depth estimation issues is that of the
overfitting. Depth Estimations are work exceptionally well on the type of environment
(indoor or outdoors) they are trained on. However, they perform poorly when exposed
to others. This limits the generalization and adaptability to new images, and even the
sensitivity to lighting conditions. Some known techniques to avert overfitting scenarios
is by deploying regularization techniques such as data augmentation and data dropout
and training models on different balanced (data distribution per class) settings. (Khanal
and Sheshappanavar; 2024) proposed data augmentation enhancements via pre-trained
models to enhance the image quality. These reduced the mis-classification of objects.
The super-resolved enhancements were were passed to a U-Net after a series of linear
transformation. The before mentioned diffusion takes place through a Variational Au-
toencoder (VAE). This step further aids in feature extraction. The super-resolving objects
of objects are resulted in better visibility of shinier or more transparent objects which
are easily missed in depth maps.
Alternatively, (Yoo et al.; 2024) explored Conventional as well as Synthetic data aug-
mentations techniques. Flipping (or Mirroring) data, Resizing after Cropping, Adding
Gaussian Noising to create new data and adjusting brightness are some of the conven-
tional methods. On the other hands, Synthetic-based data augmentation techniques use
Masking - where the images are segmented into multiple different regions and put un-
der spot light, and these masks are overlapped onto original images to create new data.
Secondly, Mark-scale is similar to what Masking combined with Resizing and rescaling
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can do. Mark-scale essentially masks regions of interests and re-attaches it to image
with different scale and original. Smaller objects can be used as an indicative of distant
objects. These are some great methods for generalizing the model and reducing over-
fitting scenarios. Although (Yoo et al.; 2024) experiment did not show much significant
improvement, but it still was an improvement.
(Jun et al.; 2024) proposed a new methodology for data augmentation by synthesizing
more data using a combination of Masking, Mark-scaling and using CutFlips. They got
a pair of left sided and right sided images and then they flipped the Cutflips L to get
symmetric images. Same going for Cutflips. This process essentially doubled the training
dataset. Now this process is repeated for respective Depth maps as well, resulting in
corresponding depth maps of newly created dataset. They concluded that using multiple
combinations of data augmentations techniques generated the best results for training.
Another Methodology that is widely used to avoid over-fitting extreme machine learning
scenarios is to use data dropout regularization process. Few such strategies are (firstly)
Random Pixel Dropout, forcing model to divert the focus from individual pixels and
onto the overall structure. Secondly approach is to drop random spatial squares from
the images for it to simulate black dropped out patches as occlusions. This will train
the model to understand and predict depth maps when partial views are present. And
lastly, selecting those features which are too complex and consider them to be noises, will
allow the model to focus on significant areas. (Zhao et al.; 2024) pointed out depending
on dataset with small size, information cannot be extracted beyond few layers. Thus
emphasizing on the need of data dropout regularization techniques to improve generaliz-
ation on image feed that is smaller in size. (Martinho et al.; 2024) also deployed dropout
regularization while experimenting with depth estimation on underwater images. They
randomly dropped out image units while training to avoid the situation of co-adaptation
and thus reduce over fitting as well.
Critical Analysis and Limitations:

• Advancements in Monocular Depth Estimation:
Even with the advancements in Monocular Estimations, it still facing many prob-
lems due to context information loss and occluded or partially visible objects, is
crucial task to work on. The Zero-shot estimation that uses semantic label is a
noteworthy technical leap. ZoeDepth and MiDas are some great examples that
showcased the potential for depth estimation in different settings. Still an holistic
contextual information loss remains a problem when reconstruction of occluded
or partially visible objects is concerned. Even though works like (Jo, Seong-Uk
et al.; 2024), provided remediate for depth estimation in occluded objects, the task
remains to be computationally heavy.

• Distorted and Specialized Image Depth Estimates:
With advancements in variations of camera and their respective photographs, we
observed more complex system to depth decode these complex images. (Zhang,
Juzheng et al.; 2024) applying chain modeling, one for correcting the barrel effect
and second for depth estimation, allowed us to explore the real-life application of
AR/VR surveillence which uses fisheye images. (Zhou, Keyu et al.; 2024) explored
complex domain of underwater depth estimation which can be considered as an spe-
cialized area. However, their project findings still need further refinement to handle
complex visual cues. We infer that pre-processing steps remain domain specific and
cannot be extensively generalized. Specialization also applies to Evaluation metrics
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as no one metrics are fit to evaluate generalized model

• Overfitting and Generalization Challenges:
Depth estimation models are notoriously known for their ability to exhibit overfit-
ting behavior and their lack of ability to adapt. Depth Model work particularly well
for the environment they are trained on, but give face challenges when models try
to generalize, it is specially observed when indoor train model are generalized on
outdoor testing dataset and vice-a-versa. (Khanal and Sheshappanavar; 2024) en-
hanced shiny object detection for handling the uneven lighting indoor settings and
(Martinho et al.; 2024) work on dropping the same shiny objects from depth estim-
ation increased the accuracies. (Zhao et al.; 2024) dropout also showed robustness
post data dropout of smaller objects.

• Data Augmentation Challenges:
Even though we are able to synthesize complex data, we fail to mimic the real
world indoor simplicities. The Data Augmentation can introduce more diversity in
terms of unstructured geometry, it can also introduce biases. And even though we
observe increase in generalization capabilities of the model, the gain is incremental.
We observe the trade-off here as well, synthesizing data can help us better generalize
the model, but we stray away from real-life scenarios resulting in difficult testing
phase, but if we do not augment the data, we face data shortage issue for indoor
settings and fail to more generalize the model.

Our Project will focus on handling generalization problems for which we will be using
an outdoor pre-trained model to infer depth information from indoor settings which can
then be instilled into another model for depth predictions.

3 Methodology

3.1 Teacher-Student Framework

We are deploying Teacher-Student model that will be used to train our model on the
basis of a pre-trained model weights presented by (Kumar et al.; 2024). They presented a
multitude of approaches for Data Augmentation techniques and Data dropout techniques
which helped them in generalization of depth estimation models and handled the lack of
diversity issues with exterior images. We are going to add data augmentation techniques
to enhance depth estimation techniques to increase the algorithms scalability on the
student model. Since we are working towards the same goal/task of depth estimation, we
are transferring knowledge between teacher-student model and thus has an advantage over
transfer learning. We are more concerned with the model compression and refinement
tasks on student model, rather than focusing on domain adaptation task. The way this
”learning” works is that the results that are produced by teacher (pseudo depth maps
in our case). Need to be duplicated by student model as well. Considering the teacher
model did not misproduced the results, student model will learning without significant
amount of performance loss.
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3.2 Pre-trained ResNet Model

We are using the pre-trained model with pre-trained weights of resNet ”as-is” to generate
pseudo depth maps on the augmented indoors data. The teacher generated depth maps
will be used as training input for the student model. The predictions created by teacher
model are saved in an .npy (Numpy) file. Here-in teacher student model, the above
mentioned .npy will serve for supervised learning of the student. It is imperative to
note down that this process will not fine-tune or re-tune the teacher model. Teacher
model has 2 purposes in this process, firstly to use it’s experience to extract features and
secondly to predict or generate pseudo-depth maps. We resize the data augmented RGB
images’ resolution to feed that of teacher’s accepted input resolution. The images are
then converted into tensor suitable format for inferencing results. The inferencing steps
comprises of features extraction and decoding for generating imitations of depth maps.
For post-processing we use bilinear interpolation to resize the image back to it’s original
resolution.

3.3 Student Model Architecture

The student model is a DenseNet model which is based on U-Net structure with attention
mechanism (The Squeeze and Excitation block) . DenseNet is known to avoid vanishing
gradient-problems, can strengthen the propagation and re-usage of features that are ex-
tracted and all of this can be performed over much lesser number of training parameters
(as compared to resNet).

• Backbone: DenseNet-169:
This acts as the encoder that is responsible to extract multi scale features from
the image feed. The DenseNet-169 is pre-trained on ImageNet. We draw skip con-
nections from in-between feature/depth maps from the image feed. The conv1 relu
handles low-level features, conv2 block6 concat for Early intermediate features,
conv3 block12 concat for Deeper intermediate features and conv4 block6 concat for
high-level semantic features. The Image feed expects the shape to be 320x320

• Decoder:
The task of decoder is to reconstruct depth maps from feature maps that were en-
coded DenseNet-169 encoder.
First Upsampling Block takes High-level features from conv4. We double the spa-
tial resolution here and combine features having skip connection that derive from
conv3. This layer has 512 filters, ReLU as the activation function with a kernel size
of (5,5). We introduced an SE block to focus on attentions channel-wise and then
dilated thee convolution to have 256 fiter with kernel size of (3,3)
Second Upsampling Block takes input from the first block. The Upsampling pro-
cess is repeated with double the resolution and combines features from conv2 skip
connection now. In this block, we further reduce the filter count and kernel siz from
256, (5,5) to 128, (3,3).
Third Upsampling Block is feed for second block output and we repeat the Up-
sampling again with conv1 skip connection, the filter count is still halved to 64 but
the kernel size is kept constant in this block.
Final Upsampling Block has only doubling task of the resolution so that it matches
the input image size of 320x320.
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Throughout the initial testing, the dilation rate is kept at 2 and the activation
function is ReLU.

• Output Layer:
This layer has only 1 filter and works with sigmoid activation function. This layer
produces a single channel depth map scaled from 0 to 1.

• Attention Mechanism:
The SE block enhances the model’s capabilities to focus on informative features to
establish channel-wise relations. It summarizes the spatial information.

• Loss and Optimization:
we used RMSE, The which inflicts even more penalty of outlier but still is receptive
to interpretations derived from deviations. In RMSE, we see the errors in the same
unit to that of depth values.

RMSE =

√√√√ 1

N

N∑
i=1

(di − d̂i)2 (1)

– N : number of pixels or observations.

– di : the actual ground truth value of the ith pixel.

– d̂i : the observed, model predicted value of the same pixel

We utilized the Adam optimizer because it can adjust the learning rates for each
trainable parameters in the encoder and decoder based on the mean and the variance
of the gradients of the feature maps. The learning rate adjustment is crucial to
depth estimation domain. Certain regions within the image require more focus and
precision to learning rate updates than other regions. Depth Estimation is also
a processing heavy task thus Adam optimizer is known to converge faster than
other optimizer. We reduce the training time while maintaining the accuracy of the
model.

3.4 Exploratory Data Analysis

3.4.1 Dataset Description

We intend to use the NYU-Depth V2 dataset which is most frequently used when working
with indoor depth estimation models. The dataset also contains semantic labels. It is a
very high quality depth map collection specialized to capture indoor settings. The dataset
contains 1449 labeled images which will be used for supervised learning. The dataset is
represented in a triplet format - An RGB Image, A Depth Map and Semantic Labels (ref
2). The Depth The images (RGBs and Ground Truths) are in the resolution of 640x480
pixels and the images are stored in as a .mat file (MATLAB file format), we choose the
1449 image dataset over the raw image dataset of over 220,000 image dataset due to lack
of computation power accessible at the moment. Another reason to skip raw dataset is it
requires even higher level of pre-processing on removing the noise and handling lighting
conditions. The challenges that we encountered with using this dataset is the lack of
diversity in geometry, occlusion of objects and lighting conditions. This dataset is also
not useful towards application which expects outdoor images.
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Figure 2: Extract from NYU dataset website

3.4.2 Pre-Processing

We propose incorporating a pipeline for normalizing, to adjust the brightness levels within
the indoor settings and enhancing edge detection capabilities. Each of these steps will
help us to extract meaningful features for depth estimation tasks. Normalizing the depth
images makes the depth maps (ground truth) to a 8-bit scale i.e. 0 to 255 range. This
ensures compatibility with further pre-processing for images. The normalized images
then are fed to adjusting brightness, so that shiny reflecting surface do not disturb the
neighboring depth map density while predicting depths. On the other hand, adjusting
contrast allows us to detect edges much more distinctly. Once we have prominent edges to
detect, we can apply segmentation and work towards enhancing the depth map predictions

3.4.3 Data Augmentation and Data Dropout Regularization Techniques

The limitation of indoor dataset is the lack of diversity of unstructured geometry to help
train the model generalize better depth maps as well as the lack of quantity of images we
are using from NYU-Depth dataset,it is imperative to create more diverse dataset using
Augmentation and Dropout techniques. We will apply geometric transformation like
shearing and advance techniques like cutFlip and block & stipe dropouts to unstructure
the geometry from RGB and it’s corresponding depth maps.

3.4.4 Feature Analysis

One of the key features which are visually perceived from ground truth depth maps from
NYU-Depth V2 is the map has a sharp transition in shades when it crosses an edge.
Within the boundary of an object (edge bound objects) there is only a monotonous
smooth gradient observed.
When considering spatial and statistical properties of the images. In any average indoor
setting, The depth varies within 0 to approximately 10m. Majority of the images have
a maximum depth of 5m and very few images have deeper settings. This cannot be
considered as an imbalanced dataset because the aim is to work the depth estimation
within the room itself.
It is also noteworthy that the encoder feed have varying intensities of RGB with suffi-
ciently noticeable differences in brightness and contrast.

3.4.5 Data-Driven Model Selection

Based on the above mentioned feature characteristics, we concluded on the following
model selection.
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• Teacher Model : We scoured for a model which has was pretrained on outdoor
settings and came across monodepth2 (Kumar et al.; 2024). ResNet is robust and
scalable in nature when it comes to capturing structural patterns within depth
maps. The monodepth2 (Kumar et al.; 2024) was trained on huge dataset which
made it an ideal candidate from the knowledge distillation onto our DenseDepth-169
student model.

• Student Model : We selected DenseDepth-169 model for it’s capabilities of efficient
learning and reusing features through a series of layers which are densely connected
(the encoder-decoder mesh). For depth estimation, we need to extract multi-scale
features and the DenseNet can efficiently resuse these. To Student Model, we
also added Squeeze-Extraction block which further allowed the model to focus on
relevant feature blocks.

3.4.6 Data Challenges

One key challenge while working with NYU-Depth is that the images with near depth
objects are over-represented, meaning we have a huge chunk of dataset which has objects
within 5m range. On the other hand, the images with further distances are under-
represented. And this problem cannot be entirely solved with our proposed data aug-
mentation techniques. NYU is also inherently noise polluted due to the limitations of
capturing depth indoor precision with the kinnect sensor.

4 System Architecture

Figure 3: Student Model DenseNet Encoder-Decoder Architecture

10



Figure 4: Teacher Model - Knowledge Distillation

5 Implementation

We divided the project into following tasks.

5.1 Raw Image Dataset Pre-processing

• Building Depth Estimation Models on following Libraries: U-Net, DenseDepth and
ResNet-18 without most pre-processing. This did not yield us even remotely sat-
isfactory results. We only adjusted the brightness of the images before predicting
the depth map of the test image. By leveraging the capabilities of PIL (Python
Imaging Library), we adjusted the brightness of the image by using ImageEnhance
to multiply the image with a constant factor. Having the factor 1 indicates the
image in original lighting. Reducing the value below 1, will decrease the brightness
and eventually we get a pitch black image at 0. Similarly increasing the value above
1 will add brightness and eventually will white-wash the depth maps. As evident

Figure 5: Output with Pre-processing -
Reducing brightness

Figure 6: Output with Pre-processing -
Increased brightness

from the images, the brightness of the image distorts the depth map prediction. It
became evident that we need to tone down the brightness in order to get better
results on our predictions. The brightness within the original images can also be
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indicative of the presence of shiny objects which reflect high intensity lights back
onto the camera and thus can lead to even more distortions while predicting depth
maps. We observed U-Net gave us good results with darker images. And thus we
proceed with that model for further processing.

• Edge Detection trained on U-Net: After adjusting the brightness of the images, we
turned to enhancing the edge detection within the image. The more identifiable and
detectable the images are, the more easier it will be for model to train. The Edge
Detection algorithm is applied on both the images - the RGB image and the Depth
image (Ground Truth) Images. By visualizing clear boundaries in the depth images,
we make the model detect objects which are smaller or occluded from vision to be
considered for depth estimation. We deployed the Canny library which performs
really well when it comes to edge detection.

Figure 7:
Top - Preprocessing without Gaussian Filter - Less clarity output,
Middle - Preprocessing with Gaussian Filter - Slightly Better results,
Bottom - Preprocessing with Edge Detection with Contrast Adjusted
and Gaussian Filter - much better results

The top layer shows raw edge detection with no change in brightness, which results
in less edge being detected. In the bottom row, we applied Gaussian filter to reduce
noise in the image by smoothening pixel density. We get better edge detection
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and more robust image feed for depth estimation. We also decide the threshold for
minimum and maximum intensity which can be considered for a line being an edge
in the image.

Gaussian Filter gave better results for our dataset and experiments as compared
to Bilateral filtering. As we can see, standalone Edge Detection do not provide us
with necessary results, it also is insufficient in detecting edges in the ground truth.

• Thirdly we applied contrast adjustment to refine the boundaries which further aid
the cause of depth estimation. Ref Figure 7. Contrast works similar to adjusting
brightness, by adjusting thresholds in the ImageEnhance function, we can create
sharper or duller images. For Sharp contrast, we see vibrant colors and distinct
borders, and results in better edge detection but it also amplifies noise thus we
see random borders within the images which are not true edges. Conversely, low
contrast can cause us to reduce noise but consequently miss out some important
edge. The resultant edge detection is somewhat closer to what we want in depth
estimation maps. By Adjusting contrast within the RGB image, we get sharper
features that can be extracted by our U-Net student model.

We need to balance out contrast, Gaussian Filter threshold and brightness factors to
achieve better results.

5.2 Data Augmentation Techniques

Data Augmentation Techniques are frequently used when there is a quantity shortage for
any image processing tasks as well as when there is a dataset imbalance. For our task of
depth estimation, the teacher model has been extensively trained on outdoor or exterior
images. Outdoor images are scaled widely (in terms of meters to kilometers), have ma-
jority of non-structured geometric environments and have less controlled lighting. When
such a model is used to train our U-Net student model trained on indoor settings, the
model has a limitation of overfitting when it comes to indoor images. Indoor settings
also have a limitation on quantity of repetitive geometric structures (rooms and corridors)
and thus harder to train. We increase our odds on model training by using Data Aug-
mentation Techniques such as geometric transformations and synthetic data generation
for increasing the existing already limited dataset. NYU-Depth v2 dataset which is being
used to train has only 1449 image x 2 (RGB image and Ground Truth Depth maps) for
training purpose. We apply the following techniques:

5.2.1 Geometric Transformations

• Image Rotations and Image Flipping: Even though the task is simple, it effect-
ive to introduce generalization of the real-world images. We remove the orientation
dependency while training the model by introducing mirrored and rotated versions
of the same images.

• Shearing,Elastic Stretching and Cropping: Image Shearing is responsible for
simulating perspective distortions in monocular images. Cropping helps us the focus
(or defocus) from certain regions of interest. In indoor settings, if there are shiny
reflective surfaces, the depth estimation model distorts the ground truth and needs
to be considered noise. On the other hand, if have larger volume of noise, but some
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Figure 8: Rotation Geometric Trans-
formation

Figure 9: Flipping Geometric Trans-
formation

regions of the image are infact useful, we focus only on those images. Training the
model to omit or view certain regions only is another model itself. Ref 10

Figure 10:
Top row - Shearing Along Axes
Bottom row - Cropping and Elastic Transformation

The new dataset we get from Geometric data transformation is saved in host location
which will further be used as training material for teacher as well as student model.

5.2.2 Synthetic Data Generation

As stated earlier, we do have a quantitative limitation on the training set when it comes
to indoor images. And even if we overcome this challenge by adding more and more
data points, we eventually are faced with repetition of content of the same geometrical
structures (room, furniture, corridors, cabinets, etc). Thus reducing the ability of the
model to generalize depth estimates.

• Slicing and reconstructing Images: One approach we used was to slice and
dice the images and depth maps into 4 quadrants and reconstruct the images using
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geometric alterations to create a new image. In order to slice, we convert the
images into numpy array, halved the width and height and stored the image in an
object. Since we are working with numpy arrays, we can easily shuffle the indices

Figure 11: Initial Split (640x480) into 4 (320x240) images
Figure 12: Resolution out-
put

to concatenate a new image. A sample of programmatically synthesized images is
presented below We see that by deconstructing a single image, we created atleast

Figure 13: Shuffle Quadrants
Figure 14: CutFlips Vertical

3 more images, first my shuffling the quadrants, second and third by mirroring and
combining top half with top half and bottom half with bottom half. The more we
play around with it the more dataset that can be generated.

5.2.3 Data Synthesizing by Data Dropout

Figure 15: Data Dropout Techniques

Data Dropout techniques are used to dropping out or blacking out specific blocks of
within the original image and it’s corresponding depth maps. By Dividing the image into
X,Y matrix and then setting certain numpy blocks to zero makes the dropout easy. By
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Dropping out we get the above results. This technique is specifically used when we have
shiny or reflective object which cause distortions in machine learning. By dropping those
objects (or in some cases reducing brightness of those blocks) we increase our chances of
getting more accurate depth maps.

In order to save the generated images into the local machine, we use the PIL libraries
for the save function and os library for generating the relative path to indicate the store
location.

This way, we introduce unstructured geometry into our dataset to add diversity for
better generalization on indoor settings. From the evidence presented above, we observed
that a single RGB image with it’s corresponding depth map can generate atleast 15 new
images. With 1449 RBG-D images from NYU-Depth-v2, we can easily have over 20,000
images with their generated respective depth maps. We are currently not deploying
Cut-Mix techniques where-in we apply the above mentioned operations with 2 different
images. We slice the images into halves and combine two different halves.

5.3 Experimentation

5.3.1 Without Pre-processing and Without Data Augmentation Techniques

Our Initial approach was to implement the teacher-student model as-is using NYU-Depth
V2 dataset without any data augmentation, or any data pre-processing. The teacher
model was pre-trained on multiple data points for generating outdoor depth maps (Kumar
et al.; 2024).

Figure 16: Teacher-Student Model baseline(without pre-processing) results

Now we exposed the teacher model to learn from current 1449 base images and ex-
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pected it to produce the pseudo results. This results were supposed to be replicated by
the student model. The first experiment was done without any pre-process as we need to
present a baseline of depth maps that were generated out of the box. This will also be
used to compare side by side the improvement we observed with more pre-processing we
did with the images, as well as the impact of increasing data points by data augment-
ation and data dropout techniques would have on the depth estimation scenarios. The
illustrated images in 16 indicates that pre-processing was of the essence. The student
model was barely able to predict depth maps. It displayed only 2 regions of interest, the
closest with bright red light, and black (dark blue) as the furthest points. The regions
identified with current but were not smooth. Thus we started training our models with
augmented dataset and data pre-processing.

5.3.2 With Pre-processing and Data Augmentation Techniques

We did not pre-process the NYU-Depth V2 dataset on the fly. Due to the project being
processing intensive and us lacking the resources to train the entire model in one go, we
pre-processed, created a new dataset and stored it into the local for future usage. This
way, we reduced the burden of single click execution.

6 Evaluation & Discussion

The Knowledge Distillation by teacher student framework succeeded in concluding our
study on how to address the generalization problems from outdoor pre-trained model
to help estimate depths in indoor environments. This following section gives valuable
insights on the model performance for the experiments and implementations.

6.1 Experiment 1

We implemented the teacher student framework with pre-trained ResNet model on out-
door environment and knowledge distillation onto student model with NYU-DepthV2
dataset with no pre-processing and no augmentation techniques. We observed that with
limited dataset, the model lacks capabilities to completely generalize our DenseDepth
model as 1449 images have repeated structures and limited diversity (Ref 17 ). This
showcased that we need to pre-process the data before it is ready for depth estimation.
Thus we turned to experiment 2.

6.2 Experiment 2

After realizing the need for pre-processing, and keeping the input count the same, we
normalized the data, implemented Gaussian filter, reduced the brightness and adjusted
the contrast according to images before feeding the dataset to pre-trained as well as our
DepthDense model. We noticed that we have a slightly better results when it came to
generalization and to the overfitting situation (Ref 18). The problem for lack of diversity
and structural geometry still posed a problem and we could not improve the model beyond
a certain limit.
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Figure 17: Performance without Pre-
processing

Figure 18: Performance with Pre-
processing

Figure 19: Performance with Data Aug-
mentation

Figure 20: Performance with Augment-
ation and Pre-processing

6.3 Experiment 3

We synthesized more data by simple geometric transformations which increased our data
count, we also deployed data augmentation and data dropout techniques so as to insert
a certain degree of unstructured geometric complexities into out training set. mirrored
flips and blocks and stripes droput made the structure feature seem complex enough
for the models to learn from. While we experimented with Augmentations, we did not
pre-process the images and thus we observed much more improvement for the model to
generalize compared to slight improvement in overfitting scenario (Ref 19).

6.4 Experiment 4

The final experiment combined our work of pre-processing and data synthesizing to offer
us much better results than the preceding experiments. Data Augmentation and Dropout
Regularization handled the generalization problems by reducing overfitting the student
model. Pre-processing further aided in achieve better generalization of model (Ref 20).
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6.5 Computational Comparison

6.5.1 Experimental Computational Time Comparison

Experiment
Name

Experiment Description
Filter Count
(Each Layer)

Training
Time
(hrs)

RMSE
(metres)

Experiment 1

NYU-DepthV2 (1449 pairs)
no pre-processing,
data augmentation or
dropout regularization

512,256,128,64 8 0.16

Experiment 2

1449 NYU-Depth V2 pairs,
Gaussian filter, Brightness
& Contrast Adjustment and
Edge Detection

512,256,128,64 11 0.14

Experiment 3

Synthesized 20K+ data by
Geometric Transformation,
Data Augmentation & Dro-
pout Regularization
No Preprocessing

256,128,64,32 17 0.13

Experiment 4
Synthesized Data
with Pre-processing

128,64,32,16 15 0.12

Table 1: Computational Comparison Across Experiments

From table 1, we see that the dataset count, pre-processing count and filter count
all have significant impact on the computational time of the student model. All these
experiments hav been performed on Intel i7 - 11th Gen, NVIDIA GeForce RTX 3060 GPU
(Driver Vrsion 566.03) and Cuda version 12.7

6.5.2 Performance Comparison with SOTA Indoor Depth Estimation

Model/Approach RMSE (meters)

DenseNet-169 Model (with aug-
mentation + post-processing)

0.12

SOTA DenseDepth 0.12-0.14

SOTA Monodepth2 0.10-0.13

SOTA DeepLabV3+ with depth es-
timation

0.12-0.16

Table 2: Comparative RMSE values for different indoor depth estimation models

From table 2, our results are competitive with SOTA, but still needs fine-tuning
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to achieve better results. Exploring multi-scale prediction can further aid our cause of
reducing RMSE.

7 Conclusion

While we worked on reducing the overfitting situation while working with pre-trained
model on outdoor images, the pre-trained weights were used to create pseudo depth
maps as numpy files for the student model to learn from. We established that accuracy of
teacher model caps the limits of student model. Teacher has to deliver better predictions
for the student to mimic those results in this kind of transfer learning. We also need huge
sample set to address the overfitting situation and to proceed with generalization of the
DenseDepth model. Data Augmentation and Dropout plays a crucial part in synthesizing
couplet of RGB and depth maps which introduces unstructured geometry. It is observed
that neglecting the object clutter that are smaller in size also reduces the burden on
the model for complex depth maps. The filters within the Student model should be
kept similar to what the pre-trained teacher model has. The filter count needs to be
changed according to the goal of the estimation. If we need to have deeper more complex
features, if we are working with high resolution images and have the necessary computing
environments, it is beneficial to increase the filter count. If wee need to prevent overfitting
and have smoother spatial generalization in the predictions, we choose to decrease the
filter count. It is also noteworthy, when working with augmented data, when we wish
to reduce the memory usage and promote efficiency, decreasing the filter count is the
way to go. Adjusting the filter counts in the student model smoothened the maps.
The Squeeze and Extract blocks proved to be critical in address the loss issue. The
study does acknowledge the computational restraints and the dataset biases limit the
performance. Pre-processing in terms of edge detection, varying contrast are also vital
steps to smoothen the prediction maps. The pre-processing remains domain specific and
is difficult to generalize for all environments. Implementing Post-processing as an when
required also helps smoothen the predictions. Reducing the noise, smoothening the map
while preserving the edges is achieved by Bilateral Filtering.

8 Future Work

The Research has still a long way to go, which is currently limited by computational
power possessed by us. Here are the list of future scope for this study.

• The work on identifying domain adaptive techniques like Domain-Adversarial Neural
Networks can help the model classify the domains which then can learn more about
domain-independent features which can work towards unrestricted generalization
of the model.

• Integrating More data augmentation techniques like cut-mix where we cut and
combine two different images to synthesize even diverse data can help us better
generalize the model. This step however still put burden on the computation.

• Another drawback that was observed during this study was the lack of benchmark
evaluation metrics. We need to develop some unified evaluation model that can
assess the performance across the board for multiple datasets and environments.
This will measure the generalization capabilities better.
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