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Critical Analysis of Machine Learning and Deep
Learning Models for Mushroom Classification

Akashdip Neogi
x23218461

Abstract

Accurate mushroom classification is crucial to prevent the consumption of toxic
species. This study compares machine learning and deep learning models, including
Random Forest, MobileNetv2m ResNet50, ResNet101, VGG16 and custom CNNs,
for classifying edible and poisonous mushrooms. MobileNetV2 had achieved the
highest accuracy of (82.14%), followed by ResNet50 (75%), while traditional
methods underperformed. The findings emphasize the effectiveness of deep learn-
ing, particularly with transfer learning and hyperparameter optimization. Practical
applications include real-time identification tools for foragers and researchers. Des-
pite limitations such as a small dataset, this research provides a strong foundation
for future work on more diverse datasets and multi-modal approaches, advancing
sage mushroom classifications.

1 Introduction

1.1 Mushroom importance and nutritional value

Mushrooms have been long valued for their culinary, medicinal, and ecological signific-
ance. They were cultivated approximately 6 million metric tonnes in 2010; among them,
china was the world’s leading producer. Many countries often consume mushrooms as
a delicacy, especially in central and eastern Europe (Kalač; 2012). The consumption of
mushrooms in countries like China is very high compared to other countries. Mushrooms
are rich in nutrients such as digestible proteins, carbohydrates, fibre and certain vitamins,
as well as minerals and antioxidants (Wang et al.; 2014).

1.2 Mushroom foraging and about it

Since mushrooms offer such great nutritional and medicinal benefits, foraging for wild
mushrooms is one such practice that is deeply rooted in various cultures (Procházka et al.;
2023). Mushroom picking in general is the activity of picking wild mushrooms to eat and
is a practice that has recently come back to life at least in part due to concerns over
sustainability, food trends, and experiencing nature. Yet not only the same give a chance
to taste various delicious and healthy mushrooms but also has a wide amount of health
advantages. Engaging in mushroom foraging encourages outdoor activities, improves
blood pressure, improves bone density, and serves as an excellent cardiovascular workout
(Areo; 2024).
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1.3 Challenges in Mushroom Classification

One of the main problems is the ability to identify the edible and poisonous species,
that are dangerous for people’s health of foragers and consumers. The main difficulty is
attributed to several causes. Firstly, most deadly mushrooms in density, form and colour
resemble the edible ones. For instance, one of the deadly mushrooms named Cortinari-
ous rebellus can be easily mistaken for the edible varieties due to its common physical
characteristics. Secondly, other factors like the type of soil, climate and regions influence
the structural change of the mushroom’s appearance and at times the colour, size and
shape and thus the identification is almost impossible. Furthermore, different species of
mushrooms also change their morphological appearance radically as they grow and de-
velop from one stage to the other, a particular species containing nutrients good for the
body at one stage may contain poisons that are bad for the body when fully grown from
another.

Field guides and identification applications are scarce, depending on the country or re-
gion, and may not include all the known species of the area, or consider all possible
variations in morphological features, which can lead to mistakes. The health authorities
have also discouraged data science and policy use from these tools owing to these limit-
ations. First, some of the mushrooms that can be edible have toxic look-alikes that can
only be differentiated by experts. (Kaaronen; 2020).

1.4 Use of ML techniques

More recently as deep learning has improved new avenues for automating and improv-
ing the accuracy of these classifications have emerged. In this paper specific reference
will be made to Convolutional Neural Networks (CNNs) which are very instrumental in
image recognition and mapping in several applications, including in health imaging and
even environmental imaging. As a result of their work, it applies CNNs created a new
systematic way that offers a high level of differentiation and makes it possible to classify
mushrooms as edible or poisonous when using photographic data. (He et al.; 2019).

Mascarenhas and Agarwal (2021) have explored and experimented with several architec-
tures of Convolutional Neural Networks (CNNs) namely VGG16, ResNet, and MobileNet,
and have found out that they are renowned for their effectiveness in handling complex
image classification tasks. In that research, they have found out that each model offers
their unique advantages in terms of computational efficiency, and the ability to gener-
alize across different imaging conditions. VGG16 is known for its simplicity and depth,
ResNet for its ability to train intense networks through the use of residual connections,
and MobileNet for its efficiency in environments with limited computational resources.

1.5 Research Objectives and Goals

1.5.1 Research Objectives

The research objectives of this research were as follows:-

• RQ1: Which model performs the best at classifying edible and poisonous
mushrooms?
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In this study, we have critically analyzed the performance of one machine learning
namely Random Forest and 6 deep learning models, namely Resnet101, Res-
net50, VGG16, MobileNetv2, Custom CNN model implemented using
TensorFlow and PyTorch. These models were applied to a dataset specially
curated for this study, comprising 326 images of mushroom species under diverse
environmental conditions. The goal of RQ1 is to evaluate the classification per-
formance of these models and to determine the most effective one for mushroom
classification.

• RQ2: How can the accuracy and precision of these models be improved
for real-world applications in mycology and public safety?

Building on RQ1, this research further investigates ways to optimize the accuracy of
the model, this includes implementing hyperparameter tuning, applying advanced
data augmentation techniques, and experimenting with modifications to the model
architectures. By doing so, we aim to adapt the models for practical applications,
ensuring they are robust and reliable for identifying edible and poisonous mush-
rooms in real-world scenarios.

1.5.2 Implications and Goals

In answering these research questions, we aim to fill this gap of mushroom classification
using different machine learning as well as deep learning models in order to overcome the
complex aspects of automated image classification in biology. This work has important
implications for improving the forager risk factor, easing identification, and developing a
reusable solution for other botanical categorization problems.

1.6 Paper Structure

This paper is structured as follows: after it, the authors provide the related work section,
dataset description, models that were employed, training process, as well as evaluation
measures. Next, there is the design specification section in which techniques and the
architecture underlying the implementation have been described. Next, we have the
implementation section which covers the actual technique/architecture that has been
used in this study. The performance analysis section of the evaluation provides a detailed
performance of each of the models presented. In the conclusion, we have also reviewed the
interpretation of these results based on the theoretical and empirical writings identified
earlier, and the conclusion also describes possible future research and uses of our results.

2 Related Work

Using machine learning, especially convolutions of a neural network type for the clas-
sification of edible and poisonous versions of the fungi has received much attention in
the recent past. This review of the literature reviews the main paper, highlighting cer-
tain studies, which use different types of CNN architectures to overcome the difficulties
flowing from the mushroom classification. In other words, it is essential to discuss the
effects of mushrooms on human health, as a component of the exploration. Mushrooms
are amongst the oldest vegetables used by human beings in their diets and system of
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traditional medicine, with numerous nutritional and medicinal values. Temperature reg-
ulation is also a factor, as the author of the research, mushrooms give a special flavour to
dishes and they must be an important part of the human diet since they contain several
useful nutrients.

Some of their nutritional profile includes:-

• Macro nutrients: Mushrooms have got low calories and fats; something that
makes them ideal for those who want to shed a few pounds. It gives a rather
limited quantity of proteins that include the amino acids that are needed by the
body for various processes.

• Vitamins: These contain B vitamins, such as riboflavin, niacin and pantothenic
acid each of which is involved in energy production and synthesis of red blood cells.

• Minerals: L-arginine found in mushrooms provides energy for muscles and cells,
while selenium, potassium and zinc act on the digestive and immune systems, trans-
mitting nerve impulses and enzymes.

2.1 Challenges in Mushroom Classification

Earlier, several researchers tried to classify mushrooms by applying several different tech-
niques for the classification of mushrooms, but the results were not satisfactory. Humans
have been classifying poisonous and edible mushrooms by considering their shape, colour,
odour, and outer skin layer by experience for several years (Fukuwatari et al.; 2001).

The identification process relied heavily on observable trails such as colour, shape, gill
structure and spore print. However, these characteristics can be highly variable and
are subject to interpretation, necessitating significant expertise for accurate assessment.
For instance, the genus Pleurotus encompasses species with overlapping characteristics,
thus complicating the taxonomic classification (Albertó et al.; 2002).

Most cichlid species are cryptic and can therefore be considered as cryptic species,
Overall, the cichlid taxocoenosis can be characterized by a high morphological conver-
gence associated with the formation of the syntopic species.

There are supposed to be some diminutive taxa that are in genetic terms relatively
different, but in the visual sense, they are mostly the same. On the other hand, different
kinds of organisms can also show that they have evolved convergently and may possess
similar adaptation features. These all question the identification methods in this area, as
morphologically based approaches cannot even distinguish between the species in question
(Lücking et al.; 2020).

In addition to learning how to categorize a myriad of subspecies, students will also
learn how the environment has an impact on the morphology of animals.

This makes the identification challenge, complicated by other factors like the geo-
graphical locations of the mushrooms and climate influences like the soil quality that
results in differences in size and shape of the mushrooms. Such variability also affects
identification as an individual of a particular species will have different morphology de-
pending on the condition under which it was exposed to (Yan et al.; 2021).
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2.1.1 Phenotypic plasticity and Development States

Mushrooms pass through many forms in their life cycle and thus have many appearances
distinct from one another. This phenotypical flexibility results in cases of confusion, since
young examples of toxic species may look like typical examples of the edible species, and
vice versa. This rearing observation therefore demands a clear understanding of the
structural form of the species in the development phases.

First, there is a limitation in the applicability of Field Guides and related identification
tools.

Emphasizing some drawbacks inherent in the Field and smart applications like Mush-
room identification, it is also possible to conclude about the general hazards connected
with the misidentification of mushrooms.

2.1.2 Field Guides: Limitation and Cultural Bias

Traditional foraging field guides have turned out to be very robust and serve a great
purpose to the mushroom foragers by describing and even illustrating the given species.
However, they possess inherent limitations such as:-

• Cultural Bias: Research indicated that the field guides may reflect their cultural
biases, thus potentially leading to inconsistent or inaccurate information regarding
the edibility of certain species (Rubel and Arora; 2008).

• Static Information: Printed guides cannot be taken into account for the dynamic
nature of the fungal taxonomy, thus resulting in outdated or incomplete data.

• Regional Limitations: Many guides focus on specific geographic areas, thus lim-
iting their usefulness in diverse or unfamiliar regions.

2.1.3 Mushroom Identification Apps: Accuracy Concerns

The advent use of smartphone applications aimed at identifying mushrooms has intro-
duced new challenges

• Inaccurate Identification: Studies have found out that AI-powered mushroom
identification apps are correct only about 50% of the time, with some instances of
misidentifying deadly mushrooms as safe to eat.

• Overreliance on Technology: Users may develop a false sense of security, which
leads to risky foraging behaviours without proper verification from reliable sources.

2.2 Health Risks Associated with Misidentification

The study published by Schenk-Jaeger et al. (2012) and their team in the year of 2012
analyzed the mushroom exposures in Switzerland reported by the Swiss Toxicological
Information Centre between January 1995 to 2009 has found that the misidentification
of amateur foragers accounted for more than 90% of the mushroom toxicity cases. From
their extensive research it was also found that the impact of the consumption of poison-
ous mushrooms causes various symptoms and signs in our body, such as gastroenteritis
or other chronic illnesses, it can also have a severe impact on the body such as liver
failure which is irreversible or can be as fatal as organ failure, which can only be fixed by
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performing organ transplantation process.

The primary cause of mushroom poisoning is the accidental consumption of toxic species
mistaken for edible ones. For instance, the death capAmanita phalloides is responsible
for the majority of fatal mushroom poisoning that happens worldwide (Ye and Liu; 2018).

The rise in mushroom foraging has been accompanied by an increase in reliance on
identification applications, which have often provided inaccurate information. Health
authorities have warned against the use of these applications due to their potential for
errors, which emphasizes the importance of traditional knowledge and caution in mush-
room foraging.

2.3 Advancement in Mushroom Classification

Recent advancements in machine learning have significantly enhanced mushroom clas-
sification, addressing the challenges that are inherent in traditional methods. Several
studies have explored various machine-learning techniques to improve the accuracy and
efficiency of mushroom classification.

2.3.1 Application of Machine Learning Techniques

Research conducted by Tarawneh et al. (2023) in the year 2023 investigated the use of
machine learning algorithms such as Näıve Bayes, Decision Tree, and Support Vector
Machine (SVM) for classifying mushrooms as edible or poisonous. Their study proposed
an integrated model that combines the decision of the most accurate techniques, thus
achieving an accuracy of 94%.

2.3.2 Deep Learning Approaches

Recent studies have explored the application of machine-learning techniques to improve
mushroom classification accuracy. Such as a study by Liao et al. (2022) in the year of
2022 introduced ”MushroomNet”, a model based on the MobileNetV3 combined with an
attention mechanism. This approach achieved an accuracy of 83.9% on a public dataset
and 77.4% on a local dataset, thus demonstrating the potential of this lightweight net-
work in mushroom recognition tasks.

Research conducted by Zhang et al. (2022) in the year 2022 applied deep convolutional
neural networks (CNNs) to classify poisonous and edible mushrooms that are found in
China. Their model analyzed hundreds of smartphone images, providing a decision-
making basis to reduce the morbidity and mortality that have been caused by consuming
poisonous mushrooms.

2.3.3 Integration of Genetic Information

Xiao et al. (2022) conducted research in 2022 and proposed a multi-branching recogni-
tion framework that integrates genetic information with image recognition. This approach
bridged the gap between macroscopic biological information and microscopic molecular
data, achieving over 90% accuracy in species identification and offering a novel method
for intelligent biometrics.
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The research conducted by Gautam et al. (2022) in the year 2022, developed molecu-
lar techniques such as DNA barcoding to address these limitations, offering more precise
identification by analyzing genetic material. The methods can overcome the challenges
posed by morphological variability and cryptic species, thus providing a more reliable
approach to mushroom identification.

2.3.4 Lightweight Models for Mobile Applications

Research published by Peng et al. (2023) in the year 2023, has developed an improved
MobileViT deep learning model for wild mushroom classification. By combining convo-
lutional networks with attention mechanisms, their model achieved accuracies of 96.21%
and 91.83% on two test datasets, respectively, thus highlighting the effectiveness of light-
weight models that are suitable for deployment on mobile devices.

2.3.5 Comparison of different machine learning models for mushroom clas-
sification

Research conducted by Y and Chandrasekhar (2020), in the year 2020 has compared
the performance of two machine learning models that are MobileNetV2 and VGG16 in
predicting the six medicinal mushroom species. In that study, it was found that both the
architecture were effective, with MobileNetV2 offering a balance between the accuracy
and the computational efficiency.

Further, a comparative analysis was done by Bongat et al. (2023), in 2023, their re-
search used transfer learning methods using two CNN models namely ResNetRS50 and
EfficientNetV2B0, which were trained on ImageNet and were used for feature extrac-
tion. From their research, they found out that the EfficientNetV2B0 emerged as the
most effective model with a validation accuracy of it being 90%. And the average testing
accuracy was 92%.

3 Methodology

The methodology involved systematic data collection, preprocessing, model training, and
evaluation to identify the most effective model for the task.

3.1 Dataset

The dataset utilized in this study was a meticulously curated collection of mushroom im-
ages from an online website that is Ultimate Mushroom 1160 Mushroom Identifications
Await Your Discovery — ultimate-mushroom.com (n.d.) and Mushroom Observer Mush-
room Observer — mushroomobserver.org (n.d.), comprising ten species from both edible
and poisonous categories. The dataset provides a comprehensive basis for analyzing and
classifying mushroom species into edible and poisonous categories.

3.2 Data Preprocessing

Data preprocessing is the first and the most crucial step in data analysis, where the data
are obtained from the dataset, cleaned and preprocessed which could be used as an input

7

https://ultimate-mushroom.com
https://mushroomobserver.org)


for the model (Stojnev and Ilic; 2020).

This step in cleaning, transforming, and organizing raw data to ensure it is ready for
analysis and model building. By ensuring that the dataset is clean, consistent and well-
structured. This step lays the foundation for successful machine-learning tasks.

3.3 Machine Learning and Deep Learning Models

3.3.1 VGG16

VGG16 is a deep learning architecture, that is, it is a convolutional neural network
trained Simonyan and Zisserman (2015) at University of Oxford, in the year 2014. This
model is described as simple and highly symmetrical, it consists of 16 layers having the
3×3 convolutional filters. However, it can be made clear that VGG16 has found great
application in most image classification problems due to its simplicity and efficiency
bearing in mind that this is an older model.

3.3.2 ResNet101, ResNet50

ResNet is a hyper-parameter tuned version of Densenet, and thus we also call it Res-
net101 and ResNet50 are professional deep convolutional neural network models that
were developed in 2015 by He et al. (2015) and other authors of Microsoft Research. Res-
net101 and Resnet50 are residual networks containing a hundred and one layers making
it ResNet101 and containing fifty layers hence its name ResNET50.

These models employ this architecture to enhance the training of very deep architec-
tures hence reducing the vanishing gradient problem in order to enhance the network’s
ability to learn complex features from complex data sets.

That is, the Resnet50 model is deeper and more complex than the VGG16. It has
outstanding feature extraction functions. Due to the large number of layers coupled with
more computation and longer train ties, that requires a great amount of hardware. It can
also work for vanishing gradient issues which are typical for deep networks. Unlike the
ResNet101, this model has fewer layers, but it works with a favourable depth-complexity
ratio. With the help of residual connections, ResNet50 allows dragging at the imperfec-
tion of other deeply trained networks making it possible to learn details.

3.3.3 MobileNetV2

MobileNet is a mini convolutional neural networks Model that is specially designed for
devices with low computational power, It has depthwise separable convolution that re-
duces the computational cost while still achieving reasonable accuracy. This architecture
was launched by Google in the year of 2018 and it is still in the same space as the Mobi-
leNetV1 (Sandler et al.; 2018).

This model is particularly useful, because of its high measurability, and the capacity
to work effectively even if the resources are limited. However, due to its small structure,
this model is oriented to the solution of comparatively simple problems and its applica-
tion for analyzing data with more complex patterns could be not very effective. In this
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study, MobileNet was used due to its relatively low training time and overall moderate
mean Average Precision.

3.3.4 Random Forest

Random Forest also known as Random Decision Forest was developed by Ho (1995) in
1995, the researcher is Tin Kam Ho who is a computer scientist, who worked for IBM
research in northern California. This is a breeding clustering learning method that builds
multiple decision trees at the training stage and outputs the mean of the results. This is
somewhat of a very strong approach to overfitting and also can work with different kinds
of data.

3.3.5 Hyperparameter tuning

Hyperparameter tuning is another crucial factor whereby the hyperparameter that is in
the model is modified to enhance the model performance on data (Yu and Zhu; 2020).
Hyper-parameter is a type of parameter that cannot be trained within the course of
the improvement of the machine learning model but they can be incorporated into the
construction of the model as a part of its architecture or into the efficiency and accuracy
of the learning and optimization process of the model, respectively.

3.4 Training Accuracy

Training accuracy in this study concluded that deep learning yielded the best perform-
ance in helping architects to successfully train neural networks. Of the four measures of
accuracy: training accuracy, cross validation accuracy, prediction accuracy, and overall
accuracy, it is possible to explain training accuracy as follows: Training accuracy is the
level of accuracy exhibited by training data that are used in training the model. It depicts
the capacity of the model in terms of how well it has learned patterns from the train data.
The formula for Training Accuracy is as follows:-

Training Accuracy =
Number of Correct Predictions on the Training Data

Total number of training instances

3.5 Confusion Matrix

Confusion matrix is a tabular representation that is used to evaluate the performance
of the machine learning model on the test dataset. It provides a detailed breakdown of
the model’s predictions, categorizing them into accurate and inaccurate instances across
different classes. This matrix is particularly used for classification tasks, where the goal
is to assign a categorical label to each of the input instances.
With the help of the confusion matrix, various performance metrics are derived such as:-

3.5.1 Accuracy

Accuracy represents the proportion of correctly predicted instances compared to the total
number of instances in the dataset.
The formula for accuracy is as follows:-

Accuracy =
True Positives + True Negatives

True Positive + True Negative + False Positive + False Negative
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3.5.2 Precision

Precision quantifies the accuracy of the model’s positive predictions by calculating the
proportion of the true positive instances among all the instances predicted as positive. A
high precision score reflects that the model makes fewer false positive errors.
The formula for precision is as follows:-

Precision =
TruePositives

True Positives + False Positives

3.5.3 Recall

Recall also referred to as sensitivity or the true positive rate is a measure of the proportion
of actual positive instances that the model correctly identifies. It indicates how well the
model captures all of the positive instances in the dataset.
This formula for recall is as follows:-

Recall =
TruePositives

TruePositives + FalseNegative

3.5.4 F1 Score

F1-score is a key metric for assessing the overall performance of a classification model,
particularly in situations where there is an imbalance between classes. It combines two
metrics that are precision and recall together into a single score, providing a balanced
measure of the model’s accuracy on positive predictions.
The formula for calculating F1-Score is as follows:-

F1 = 2× precision× recall

precision + recall

4 Design Specification

Figure 1, shows the Research Framework that has been used in this study.

Figure 1: Research Framework
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4.1 Preprocessing Techniques

In the first step, preprocessing of the data was performed, to eliminate the noise and
irrelevant features such as grass, leaves, and hands, each image was manually cropped,
ensuring only the mushroom remained in focus. This step was completed using a free
open-source tool named GIMP (GIMP — gimp.org; n.d.). In this step the images of
the mushroom were manually cropped to remove the extraneous elements such as grass,
leaves, and hands, to focus solely on the mushrooms. Later the images were stored in
the train, test and val folders respectively. The pixel values were normalized to the [0,1]
range to accelerate the model convergence the to improve the training stability.

The input data consisted of the image files from the data which were adjusted to a
uniform size of 64×64 pixels so that it doesn’t take too much computational power to
run all the models. To increase the robustness of the model image augmentation tech-
niques were used in which the images were rotated randomly up to 20 degrees, to simulate
the real-world variations. To make the data even more diverse it was flipped in both ho-
rizontal and vertical ways. For better accuracy of the model, the brightness and contrast
were also adjusted to handle varying lighting conditions.

4.2 Machine Learning and Deep Learning Architectures

The number of epochs for the models was set to 30, to have a base for comparison.

4.2.1 Custom CNN Models

Two custom Convolutional Neural Network models were developed using both Tensor-
Flow and PyTorch frameworks.

The model which was designed using the TensorFlow library consisted of 11 layers
and total as the table Table 4.2.1 shows the detailed architecture of the model.

Layer Name No of layers present
Convolutional layer 3
Pooling layer 3
Dense layer 3
Dropout layer 1
Flatten layer 1

Table 1: Model Architecture, CNN TensorFlow

The model which was designed using the PyTorch Model consisted of 21 layers in
total as the table Table 4.2.1 shows the detailed architecture of the model.
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Layer Name No of layers present
Convolutional layer 10
Batch normalization layer 1
Pooling layer 5
Dense layer 4
Flatten layer 1

Table 2: Model Architecture, CNN Pytorch

4.2.2 Pre-Trained Deep Learning Models

The use of pre-trained models was done which involved the use of 4 models namely, Res-
Net101, ResNet50, VGG16 and MobileNetV2.

Resnet101 consisted of a total of 101 layers in total and the table Table 4.2.2 shows the
detailed architecture of the model.

Layer Name No of layers present
Convolutional layer 1
Residual layer 99
Fully connected layer 1

Table 3: Model Architecture, Resnet101

Res50, on the other hand, is comprised of 50 layers in total and the table Table 4.2.2
shows the detailed architecture of the model.

Layer Name No of layers present
Convolutional layer 1
Residual layer 48
Fully connected layer 1

Table 4: Model Architecture, Resnet50

For the VGG16, the base model architecture which consisted of a total of 29 layers,
in which the VGG16 model had 16 layers and 13 custom layers were added to the model
for better feature extraction, and the table Table 4.2.2 shows the detailed architecture of
the model.
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Model Name Layer Name No of Layers Present
VGG16 (Base Model) Convolutional Layer 13
VGG16 (Base Model) Fully Connected Layer 3
Custom Layers Conv2D 2
Custom Layers BatchNormalization 2
Custom Layers MaxPooling2D 1
Custom Layers GlobalAveragePooling2D 1
Custom Layers Fully Connected Layer 4 (3 Dense + 1 Output)
Custom Layers Dropout 3

Table 5: Model Architecture, VGG16

This model followed a straightforward architecture with consecutive convolutional lay-
ers followed by a pooling layer, converging into a connected layer for classification.

MobileNetV2 is a lightweight model, which consists of 55 layers in total, and the table
Table 4.2.2 shows the detailed architecture of the model.

Layer Name No of layers present
Convolutional layer 1
Residual Blocks 51
Final Convolutional layer 1
Global Average Pooling layer 1
Fully Connected layer 1

Table 6: Model Architecture, MobileNetV2

4.2.3 Machine Learning Model

Random forest which is a machine-learning model was used, it consisted of several
decision trees together, which are typically built using CART (Classification Re-
gression Tree).

This model uses the bagging technique to train the individual decision trees. At each
split of the decision tree, a random subset of features is considered rather than using all
the available features. The final predictions are made through majority voting, where
each tree casts a vote for the predicted class, thus the final output is generated which is
the average of the predictions from all the trees.

4.3 Equipment and Setup

The models were trained and tested on an Apple Macbook Pro. The system had an Apple
M3 Pro chip that included an 11-core processing unit (CPU) with a maximum clock speed
of up to 3.6 GHz. It also has an integrated 18-core graphics processing unit (GPU), which
operates at a clock speed of up to 1.2 GHz. The system used was equipped with 18 GB
of unified memory, which efficiently handles the loading of large datasets, execution of
complex operations and simultaneously running of multiple processes without significant
slowdowns.
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5 Implementation

The implementation of this research focused on the comparative analysis of machine learn-
ing and deep learning models for the classification of edible and poisonous mushrooms.
A structured and methodical approach was followed to ensure the models’ successful de-
velopment, training, and evaluation. This section outlines the key processes, tools, and
outputs generated during the implementation phase. Figure 1, shows the implementation
of the architecture.

5.1 Dataset Preparation

The dataset consists of images of 10 species of edible and poisonous classes, and it consists
of a total of 235 images out of which there were 194 images in the train directory, 28 images
in the val directory and 13 images in the test directory. It has 2 classes of mushrooms
that are edible and poisonous. The data is divided the data into train and val folders, and
in each of them, folders consist of images of mushrooms. The dataset was split into 80%
for training and 20% for testing. The test folder consisted of images of mushrooms from
both the edible and poisonous classes which consisted of images, that were not shown
while training the model to check the accuracy of the model based on new images from
the same class. The images were resized to 64×64 to standardize the model training
process for all the models. Figure 2, you can see an example of an image contained in
the dataset. In Table 5.1 is the name of the author and the respective images taken from
the Ultimate Mushroom webpage.

Figure 2: Some sample mushroom image data contained in the dataset

Image Name Author Name
Agaricus abruptibulbus Σ64
Agaricus augustus Dick Culbert
Agaricus bitorquis Nathan Wilson
Agaricus campestris Rick Farwell
Agaricus moelleri Zonda Grattus
Agaricus xanthodermus Tomasz Sobczak
Agrocybe pediades leschampignons
Amanita crocea Alan rockefeller

Table 7: Image Name and Author Name
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5.2 Model Development

For this study, we have implemented in total of seven models, comprising of both machine
learning and deep learning approaches. For all the models accuracy, confusion matrix,
precision, recall and f1-score were printed using the scikit-learn python library.

Below are the model’s architecture explanations of all the models used in this research.

5.2.1 ResNet50 and ResNet101

For both deep learning models, ResNet101 and ResNet50 initially, the models were loaded
with their pre-trained weights from the ImageNet dataset to leverage the knowledge
already embedded in them. Subsequently, the classifier layers of both architectures were
modified to align with the number of classes in the mushroom dataset, ensuring com-
patibility with the specific classification task. For both models, the CrossEntropyLoss
function was set as the loss metric, and the optimizer was set to Stochastic Gradient
Descent (SGD) to facilitate effective optimization during training. Both models were
implemented using the PyTorch python library.

The ResNet50 model was performed using the Optuna framework to identify the op-
timal set of hyperparameters. The learning rate was searched over a logarithmic scale
between 1×10−5 and 1×10−2, while the momentum was varied between two values, 0.7
and 0.99. The batch size was evaluated across three options: 16, 32, and 64.

On the other hand, the in ResNet101 model, the learning rate was fixed at 0.001,
and the momentum parameter was set to 0.9, which helped maintain stability and
improve convergence during training.

5.2.2 VGG16

This deep CNN model was implemented using the TensorFlow python library. The
model was loaded using the imagenet weights.

Hyperparameter tuning was conducted on this enhanced VGG16 model to further optim-
ize its performance. The choice of optimizer was narrowed down to SGD (Stochastic
Gradient Descent) or Adam, and the loss function was set to categorical crossen-
tropy, given the multi-class nature of the problem.

5.2.3 MobileNetV2

This lightweight model was implemented using the TensorFlow python library with its
pretrained weights, setting the pretrained parameter to True. The classifier layer was
modified to accommodate the binary classification task, corresponding to the two classes
of edible and poisonous mushrooms. The Binary Cross-Entrpy as loss function was
utilized for training, along with the optimizer set to Adam and the learning rate was set
to 0.001 for efficient convergence.
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5.2.4 Custom CNN models

Hyperparameter tuning for both the custom CNN models was performed as follows.

Hyperparameter tuning for the TensorFlow model was performed using the Keras and
Keras Tuner libraries, leveraging the HyperModel class to optimize the architecture.
The kernel size for convolutional layers was chosen between 3 and 5, with ReLU
set as the activation function. The number of filters for the convolutional layers
was tuned as follows: 32–128, 64–256, and 128–512, all in increments of 16. For the
dense layer, the number of neurons was tuned between 128 and 512 in increments
of 32. The Adam optimizer was used, with the learning rate logarithmically selected
between 1e-4 and 1e-2.

Hyperparameter tuning for the PyTorch model was performed using theParameterGrid
utility from the sklearn.model selection library in Python to systematically generate
all possible combinations of parameter values. The learning rate was tested at 0.0001,
0.001, and 0.01, while the dropout rate were varied at 0.3, 0.5, and 0.7 to mitigate
overfitting. Additionally, batch size of 16, 32, and 64 were evaluated to identify the
optimal configuration. The model’s loss function was set to CrossEntropyLoss, and
the hyperparameter tuning aimed to maximize validation accuracy.

5.2.5 Random Forest

In this research, the model was implemented using the scikit-learn library. To ensure
consistency, the random state value was set to 42.

6 Evaluation

In this section, the performance of various machine learning and deep learning models
was systematically, evaluated based on the validation accuracy, confusion matrices and
training accuracy curves. The models are discussed in ascending order of their accuracy,
highlighting their strengths and weaknesses.

Figure 3: VGG16, Training Accuracy
Curve Figure 4: VGG16, Confusion Matrix

VGG16 had achieved the lowest accuracy of 39.28%, with a training accuracy of
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71.14% which can be inferred from this figure 3. Despite the rapid increase in train-
ing accuracy, the validation accuracy remained much lower, which indicated a potential
overfitting issue. The confusion matrix, which can be referred to in this figure 4 high-
lighted the misclassification across all classes, which further reinforces its inability to
capture complex image features. This poor performance, suggests that this model, des-
pite its historical success in simpler datasets, was not suitable for the complexities of this
mushroom classification task.

Figure 5: CNN TensorFlow, Training
Accuracy Curve

Figure 6: CNN TensorFlow, Confusion
Matrix

The custom CNN Model which was designed using the TensorFlow, showed slightly
improved performance and had achieved 42.85% of accuracy, and 56.22% in training
accuracy. The model struggled to converge during the training, as evidenced by the flat
accuracy curve, which can be seen in figure 5. Statistical analysis of the confusion matrix
also revealed poor class separation, with the majority of predictions skewed towards the
specific classes, which can be seen in figure 6. These findings suggest the need for more
sophisticated architectural improvements or additional regularization techniques.

Figure 7: Random Forest, Model Stats
Figure 8: Random Forest, Confusion
Matrix

Random Forest was the only machine learning model that was implemented in this
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research, and it had achieved an accuracy of 46.43% that can be seen from figure 7.
Although it had performed slightly better than the Tensorflow-based CNN, it fell short
because this model is inherently limited in its ability to capture hierarchical features from
the image data, which explains its lower performance. From the confusion matrix shown
in figure 8it can be seen that it shows consistent misclassification across both the classes.
However, this model’s simplicity and interpretability were useful for feature selection
tasks.

Figure 9: CNN PyTorch, Training Ac-
curacy Curve

Figure 10: CNN PyTorch, Confusion
Matrix

The PyTorch-based custom CNN model had achieved an accuracy of 53.57%, and
a training accuracy of 93.33%, which can be also seen in this figure 9. These results
show that the model was able to learn from the training data effectively but struggled
to generalize to the test set, as revealed by the confusion matrix, in figure 10. This
result emphasizes the importance of regularization techniques such as dropout and data
augmentation to improve generalization. While the model demonstrated its potential,
its performance lagged behind the pre-trained architectures, underscoring the value of
transfer learning in complex classification tasks.

Figure 11: Resnet101, Training Accur-
acy Curve Figure 12: Resnet101, Confusion Matrix

In the case of the Resnet101 model the achieved 67.86% for the accuracy and 95%
for training accuracy, which can be seen in figure 11. Its deeper architecture enabled this
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model to capture complex features effectively. From the confusion matrix, from figure
12 it can be inferred that the model had done moderate misclassification, particularly
in edge cases. Although ResNe101 had outperformed the custom CNNs and Random
Forest, its accuracy is slightly lower than the ResNet50 model which suggests that the
deeper model may be more prone to overfitting on relatively small datasets.

Figure 13: Resnet50, Training Accuracy
Curve Figure 14: Resnet50, Confusion Matrix

The Resnet50 has outperformed the ResNet101, by achieving an accuracy of 75%
with a training accuracy score of 95%, which can be seen from figure 13. Due to the
model’s residual connections, it effectively mitigated the vanishing gradient problem and
enabled a robust feature extraction. From the confusion matrix, figure 14, it can be seen
that it has fewer misclassifications compared to the models discussed earlier, indicating
better generalization. This result validates the effectiveness of this model in handling
complex image classification tasks, particularly when paired with careful hyperparameter
tuning,

Figure 15: MobileNet, Training Accur-
acy Curve

Figure 16: MobileNet, Confusion Mat-
rix

The MobileNetV2 model had achieved the highest accuracy of 82.14%, with a
training accuracy of 95.36% which can be seen in figure 15, making it the best perform-
ing model in this research. Its lightweight architecture combined with its ability to ex-
tract the features efficiently contributed to its superior performance. From the confusion
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matrix, figure 16, it can be seen that this model has minimal misclassification, and the
model demonstrated exceptional generalization capabilities. These results emphasize the
practicality of this model for real-world applications, especially in resource-constrained
environments where computational efficiency is crucial.

7 Conclusion and Future Work

The purpose of this study was to compare machine learning and deep learning models in
the classification of edible and poisonous mushrooms. This study aimed at assessing the
performance of different models such as Random Forest, MobileNetv2, ResNet50, Res-
Net101, and VGG16 and also customized CNN models and the study was able to fulfil
the research objectives by presenting statistically viable results on their efficiency.

This study also found that the deep learning models showed the best performances com-
pared to other machine learning models, such as Random Forest to be 75% with the
accuracies of 82.14%, for MobileNet V2 and ResNet50, respectively. The MobileNetV2
because of its lightweight accuracy and strong generalization, makes it the most suitable
one that should be used in real-world applications. Outcomers such as Random Forest
as well as previous architectures like VGG16 perform worse, suggesting that advanced
deep learning is useful. This calls for the use of enhanced deep learning approaches and
transfer learning such as shown in the research.

The consequences can be measured as the difference between a deadly outcome of con-
suming toxic mushrooms or a successful identification of edible mushrooms. Through
this work, it positions itself for the future application of deep learning models into usable
products such as smartphone/mobile applications, or physical computer systems to aid
foragers and researchers.

However, the study had its weaknesses which include having a small number of images
and using images that have been manually cropped meaning they do not represent close
to real environments. The same can be done in future work and concerns the collection
of larger, diverse datasets and the use of more sophisticated data augmentation methods.
Expanding upon the fine-tuning of VL models, as well as introducing the integration of
image data with chemical or environmental metadata are also areas of enhancement.

The study also shows how the knowledge can be commercialized in the form of real
time identification tools for mushroom foragers, scientists as well as farmers. In this
regard, by employing deep learning methods, this study enables more accurate and safe
mushroom distinction and defines promising research and innovation avenues.
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