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Introduction

Secondary data refers to data that is collected by someone other than the current researcher.
Common sources of secondary data for social science include censuses, information collected
by government departments, organizational records and data originally collected for other
research purposes. Primary data, by contrast, is collected by the investigator conducting the
research.
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page.
A project that involves human participants requires ethical clearance. Thus, it requires the
completion of both a Declaration of Ethics Consideration Form AND an Ethics Application Form.
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compliance with the ethical principles stated in NCI Ethics Form available on the Moodle page.
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conditions. In these cases, a letter/email from the copyright holder is NOT necessary, but the
researcher should cite the source of this permission and indicate under what conditions the
data or target system are allowed to be used. See Appendix I for examples of permissions for
data granted by Fingal Open Data, and Eurostat website. See Appendix III for examples of
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been granted to the student for using the system. In addition to this, in the cases where the
goal of the project is to conduct penetration testing, vulnerability scans, or other ethical
hacking engagement, the student must also provide a document describing the rules of
engagement.

Evidence to include for use of secondary dataset(s) / target system(s)
Include dataset(s) / target system(s) owner letter/email or cite the source for usage
permission.
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For target environment(s)
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4. License of usage/Terms of use
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The Ethics Application Form must be submitted on Moodle for approval prior to
conducting the work.

Considerations in data collection

e Participants will not be identified, directly or through identifiers linked to the subjects in
any reports produced by the study

e Responses will not place the participants at risk of professional liability or be damaging to
the participants’ financial standing, employability or reputation

¢ No confidential data will be used for personal advantage or that of a third party

Informed consent
e Consent to participate in the study has been given freely by the participants

e participants have the capacity to understand the project goals.
e Participants have been given information sheets that are understandable
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e Likely benefits of the project itself have been explained to potential participants
e Risks and benefits of the project have been explained to potential participants

e Participants have been assured they will not suffer physical stress or discomfort or
psychological or mental stress

e The participant has been assured s/he may withdraw at any time from the study
without loss of benefit or penalty

e Special care has been taken where participants are unable to consent for themselves
(e.g children under the age of 18, elders with age 85+, people with intellectual or
learning disability, individuals or groups receiving help through the voluntary sector,
those in a subordinate position to the researcher, groups who do not understand the
consent and research process)

e Participants have been informed of potential conflict of interest issues

e The onus is on the researcher to inform participants if deception methods have to be
used in a line of research

I have read, understood, and will adhere to the ethical principles described above in
the conduct of the project work.

Signature: Mrunal Meshram

Date: 12/12/2024



Appendix |

1) Fingal Open Data: http://data.fingal.ie/About

Licence
Citizens are free to access and use this data as they wish, free of charge, in accordance with
the Creative Commons Attribution 4.0 International License (CC-BY).

Note: From November 2010 to July 2015, data on Fingal Open Data was published in
accordance with the PSI general licence.

Use of any published data is subject to Data Protection legislation.

Licence Statement

Under the CC-BY Licence, users must acknowledge the source of the Information in their
product or application by including or linking to this attribution statement: “"Contains Fingal
County Council Data licensed under a Creative Commons Attribution 4.0 International (CC BY
4.0) licence”.

Multiple Attributions

If using data from several Information Providers and listing multiple attributions is not practical
in a product or application, users may include a URI or hyperlink to a resource that contains
the required attribution statements.

2) Eurostat: https://ec.europa.eu/eurostat/about/policies/copyright
COPYRIGHT NOTICE AND FREE RE-USE OF DATA

Eurostat has a policy of encouraging free re-use of its data, both for non-commercial and
commercial purposes. All statistical data, metadata, content of web pages or other
dissemination tools, official publications and other documents published on its website, with
the exceptions listed below, can be reused without any payment or written licence provided
that:

e the source is indicated as Eurostat

¢ when re-use involves modifications to the data or text, this must be stated clearly to

the end user of the information

Appendix I

Journal of Statistics Education: http://jse.amstat.org/jse_users.htm

JSE Copyright and Usage Policy

Unlike other American Statistical Association journals, the Journal of Statistics Education (JSE)
does not require authors to transfer copyright for the published material to JSE. Authors
maintain copyright of published material. Because copyright is not transferred from the author,
permission to use materials published by JSE remains with the author. Therefore, to use
published material from a JSE article the requesting person must get approval from the author.
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Hybrid Skin Disease Diagnosis Using StyleGAN2 and
EfficientNet

Mrunal Meshram
x23214236

Abstract

Automated skin disease detection is a transformative application of machine
learning in healthcare, addressing the challenges of early diagnosis and effective
treatment planning. This study introduces a hybrid framework that integrates
StyleGAN2 and UNet for synthetic data generation and EfficientNet-B5 for clas-
sification, tackling issues such as data scarcity, class imbalance, and variability in
dermatological datasets. The curated dataset includes three skin disease categories
eczema, psoriasis, and fungal infections chosen for its diagnostic complexity and
clinical relevance. Through synthetic data augmentation, the framework achieved
significant improvements in classification performance, with accuracy increasing
from 68.5% to 82.3% and F1l-score rising from 0.72 to 0.85. Synthetic images gen-
erated using the StyleGAN2-UNet hybrid model exhibited a low Fréchet Inception
Distance (FID) score of 18.7, validating their quality and utility. Evaluation met-
rics such as precision, recall, and F1-scores were supplemented by visual tools like
confusion matrices, ROC curves, and Class Activation Maps (CAMs), ensuring
both reliability and interpretability. This study contributes a scalable, robust, and
interpretable solution for automated skin disease detection, with the potential for
broader applications in medical diagnostics.

Keywords: Skin Disease Detection, Synthetic Data Generation, StyleGAN2, UNet,
EfficientNet-B5, Class Imbalance, Medical Imaging

1 Introduction

1.1 The Role of AI in Skin Disease Detection

Artificial Intelligence (AI) has revolutionized the field of medical diagnostics, offering
scalable, efficient, and reliable solutions to challenges in disease detection and classifica-
tion. Skin diseases, which affect millions worldwide, represent a particularly promising
area for Al applications due to their prevalence and the complexity of their diagnosis.
Conditions like eczema, psoriasis, and fungal infections vary significantly in presentation
across individuals, making accurate and timely diagnosis a challenging task. Traditional
diagnostic approaches often require experienced dermatologists, a resource that is scarce
in many regions. Al-based solutions, particularly those leveraging deep learning, have the
potential to democratize healthcare by providing accurate, automated diagnostic tools.
However, despite the advancements in Al, significant challenges such as data scarcity,
class imbalance, and variability in disease presentations continue to limit the effective-
ness of these models.



1.2 Motivation for the Study

The scarcity of large, well-annotated dermatological datasets remains a critical bottle-
neck in developing robust Al models for skin disease detection. Many publicly available
datasets are imbalanced, with certain conditions underrepresented, leading to biased mod-
els that struggle to generalize across diverse patient populations. Moreover, the visual
similarities between different skin diseases, such as psoriasis and fungal infections, pose
an additional layer of complexity. These challenges necessitate innovative approaches
that can overcome data limitations while ensuring high accuracy and interpretability in
predictions. This study is motivated by the need to develop a scalable, reliable, and
interpretable system for skin disease detection that addresses these challenges through
the integration of advanced generative and classification techniques.

1.3 Research Questions

How can synthetic data generated using a StyleGAN2-UNet hybrid model improve the
quality and diversity of dermatological datasets? What impact does the inclusion of syn-

thetic data have on the performance of a deep learning classification model, specifically
EfficientNet-B5?

To address these questions, the study sets the following objectives:

e Develop a robust pipeline for generating high-quality, diagnostically relevant syn-
thetic images using a StyleGAN2-UNet hybrid model.

e Train and evaluate a deep learning classifier, EfficientNet-B5, using a combined
dataset of real and synthetic images to assess improvements in classification per-
formance.

e Validate the system’s interpretability and reliability through metrics like accuracy,
Fl-score, and Fréchet Inception Distance (FID), as well as visual tools such as
confusion matrices and Class Activation Maps (CAMs).

1.4 Contributions to the Field

This research contributes to the field of Al in dermatology by presenting a novel hybrid
framework that combines advanced synthetic data generation and state-of-the-art clas-
sification techniques. The integration of StyleGAN2 with a U-Net backbone addresses
data scarcity and class imbalance by producing high-quality, diverse synthetic images
tailored to specific skin disease categories. These synthetic images not only can enrich
the dataset but also significantly improve classification performance, Furthermore, the
use of CAMs enhances the interpretability of the classification model, making it more
suitable for real-world clinical applications.

By addressing critical challenges in dermatological imaging, this study provides a
scalable and reliable solution for automated skin disease detection, paving the way for
future advancements in Al-driven medical diagnostics. The findings demonstrate the
potential of combining generative and classification models to build robust diagnostic
tools that generalize effectively across diverse patient populations and clinical scenarios.



2 Related Work

The integration of advanced machine learning techniques, such as Generative Adversarial
Networks (GANs) and U-Net architectures, has significantly influenced the field of med-
ical imaging. This section reviews existing literature on these technologies, particularly
in the domains of data augmentation and medical image segmentation, with a focus on
their applications to skin disease detection. This section highlights the strengths and
limitations of previous approaches, culminating in the justification for this study.

2.1 Generative Adversarial Networks (GANs) in Medical Ima-
ging

Generative Adversarial Networks (GANs), introduced by Goodfellow et al. (2014), have
revolutionized data augmentation by synthesizing realistic images. Their unique archi-
tecture, comprising a generator and a discriminator, allows GANs to create high-quality
synthetic data that mimics real-world distributions. This capability has been widely ap-
plied in medical imaging to address the challenges of data scarcity and imbalance. Yi
et al. (2019) provided a comprehensive review of GAN applications in medical imaging,
highlighting their ability to generate realistic images for data augmentation, anomaly
detection, and modality transformation. Despite their potential, issues such as mode
collapse and training instability often hinder GAN performance. Karras et al. (2020) in-
troduced StyleGAN2, a variant that improves image quality and control, demonstrating
significant advancements in generating realistic synthetic images. StyleGAN2 has since
been employed in dermatology to synthesize diverse skin lesion images (Reddy et al.,
2023). While the generated images enhanced classifier performance, they were limited in
representing highly irregular patterns seen in real lesions. GANs have also been used for
domain adaptation and modality translation. For instance, Dou et al. (2017) used cycle-
consistent GANs to translate MRI images between domains, improving segmentation
accuracy across imaging modalities. Similarly, Han et al. (2021) proposed a GAN-based
augmentation strategy that enhanced segmentation accuracy for medical images. How-
ever, these approaches often require significant computational resources and suffer from
limited generalizability to highly complex data distributions. In dermatology, GANs have
shown promise in synthesizing diverse and realistic skin lesion images. Frid-Adar et al.
(2018) demonstrated that GAN-augmented datasets improved liver lesion classification
accuracy, providing a precedent for applying similar methods to skin diseases. However,
ensuring the diversity and accuracy of synthetic images remains a challenge. The current
study leverages StyleGAN2 for synthesizing high-quality skin disease images, addressing
some of these limitations while improving classifier performance.

2.2 U-Net Architecture in Medical Image Segmentation

U-Net, introduced by Ronneberger et al. (2015), has become a cornerstone in medical
image segmentation. Its encoder-decoder architecture, combined with skip connections,
allows for precise localization of features, making it particularly suitable for biomedical
applications. The effectiveness of U-Net has been demonstrated across various med-
ical imaging tasks. Zhou et al. (2018) proposed UNet++, a nested architecture that
improved segmentation accuracy by refining the resolution of feature maps. Gu et al.
(2019) introduced CA-Net, incorporating context-aware mechanisms to enhance U-Net’s



performance in segmenting complex anatomical structures. Despite these advancements,
U-Net models often struggle with images containing low contrast or high variability, which
are common in skin lesion datasets. In dermatology, U-Net has been extensively used
for skin lesion segmentation. Oktay et al. (2018) proposed Attention U-Net, integrat-
ing attention mechanisms to focus on relevant features, thereby improving segmentation
accuracy for challenging lesion boundaries. Reddy et al. (2023) extended this approach
by incorporating ensemble learning techniques, further enhancing segmentation preci-
sion. These models have demonstrated significant improvements in isolating regions of
interest, crucial for downstream diagnostic tasks. Despite its strengths, U-Net faces lim-
itations when applied to datasets with limited samples or extreme variability in lesion
shapes and sizes. Enhancements such as attention mechanisms, residual connections,
and context-aware modules have been proposed to address these challenges (Neha et al.,
2024). However, these modifications often increase model complexity and computational
requirements. The current study employs a U-Net architecture to segment skin disease
images, ensuring precise localization of lesions. By integrating U-Net with StyleGAN2-
generated synthetic images, this research aims to overcome the limitations of existing
segmentation models and improve diagnostic accuracy.

2.3 Integrating GANs and U-Net for Enhanced Medical Image
Analysis

The combination of GANs and U-Net architectures has emerged as a powerful approach
to medical image analysis. GANs generate synthetic images to augment training data-
sets, while U-Net excels in segmenting anatomical structures, providing a complementary
solution to address data scarcity and segmentation challenges. Yan et al. (2019) proposed
a U-Net-GAN framework for domain adaptation in medical image segmentation, demon-
strating improved performance across different imaging domains. While their approach
effectively addressed domain shift issues, it required substantial computational resources
and complex training pipelines. Mok and Chung (2020) introduced Fast-Segmentation
GAN, a lightweight framework combining GANs and U-Net for rapid medical image
segmentation. Their results highlighted the feasibility of integrating these models in
resource-constrained environments, albeit with some trade-offs in segmentation accuracy.
In dermatology, the integration of GANs and U-Net has shown promising results. Jalali
et al. (2021) used GAN-augmented datasets to train U-Net models for skin lesion seg-
mentation, achieving notable improvements in accuracy. Similarly, Bissoto et al. (2019)
demonstrated that GAN-generated synthetic images enhanced the performance of U-Net
models in classifying and segmenting skin lesions. However, these studies often relied on
small, specialized datasets, limiting their generalizability to broader patient populations.
This research builds upon these findings by integrating StyleGAN2 and U-Net architec-
tures into a unified pipeline for skin disease detection. StyleGAN2 generates high-quality
synthetic images to augment the dataset, while U-Net ensures precise segmentation of
lesions. This combined approach addresses the limitations of previous studies, offering a
scalable solution for improving diagnostic accuracy in dermatology.



3 Methodology

3.1 Overview

This research methodology focuses on addressing the key challenges in automated skin
disease detection, a field of medical imaging critical for early diagnosis and effective treat-
ment. Skin disease detection systems face obstacles such as data scarcity, class imbalance,
and variability in dermatological conditions, which often limit the performance and re-
liability of deep learning models. To overcome these barriers, the research employs an
innovative hybrid approach that combines advanced generative and classification tech-
niques.

At the core of the methodology is a StyleGAN2-based hybrid architecture, enhanced
with a U-Net backbone, to generate high-quality synthetic images that maintain disease-
specific attributes. These synthetic images, when combined with real dermatological
datasets, create an augmented dataset that is richer, more balanced, and suitable for
training deep learning models. For the classification task, an optimized EfficientNet-B5
model is utilized, fine-tuned on the augmented dataset to classify skin diseases accurately
across three categories: eczema, psoriasis, and fungal infections.

The approach addresses the following challenges:

e Data Scarcity: High-resolution dermatological datasets are often small, leading
to model overfitting and poor generalization. Limited data samples can hinder a
model’s ability to learn and predict effectively.

e (Class Imbalance: Many datasets have an uneven distribution of disease categories,
with certain conditions being underrepresented. This imbalance affects the model’s
ability to perform equally well across all classes.

e Diversity and Realism: To train robust models, there is a need for synthetic data-
sets that not only mimic real-world cases in terms of appearance but also exhibit
sufficient diversity to capture the wide range of variations seen in clinical settings.

By leveraging synthetic data generation, advanced classification frameworks, and rig-
orous evaluation metrics, this methodology aims to develop a robust system that provides
accurate, scalable, and interpretable solutions for skin disease detection.

3.2 Synthetic Data Generation

A significant component of the methodology involves generating synthetic data to address
the limitations of real-world datasets. For this, a StyleGAN2-based hybrid generator is
designed, integrating U-Net-style skip connections to preserve fine-grained diagnostic
details. This hybrid architecture allows the system to produce synthetic images that
are not only realistic but also retain the unique attributes associated with different skin
conditions.

3.2.1 StyleGAN2 Framework

The StyleGAN2 component generates high-quality images by progressively refining resol-
utions from low to high, ensuring that fine details emerge gradually. Style mixing further



enhances image diversity, enabling the generation of variations in skin texture, lesion
shape, and color. U-Net Backbone:

To preserve critical diagnostic details, the U-Net encoder-decoder architecture is in-
corporated into the generator. Skip connections ensure that hierarchical features, such
as lesion boundaries and skin texture, are maintained throughout the generation process.
The synthetic images generated by this hybrid approach are indistinguishable from real
images while reflecting the wide range of variations seen in clinical practice. This ensures
that the augmented dataset contains realistic and diagnostically relevant examples for
training.

3.3 Classification Framework

Once the augmented dataset (real 4+ synthetic images) is prepared, it is used to train
a modified EfficientNet-B5 classifier. EfficientNet-B5 is a high-performing convolutional
neural network that balances computational efficiency with classification accuracy. The
classifier is fine-tuned to differentiate between the three skin disease categories with high
sensitivity and specificity.

Key components of the classification framework include:

1. Augmented Dataset:

e By combining real and synthetic images, the dataset becomes more balanced
and diverse, addressing issues of data scarcity and class imbalance.

2. Advanced Training Strategies:
e MixUp Augmentation: Enhances model robustness by mixing data samples

and their corresponding labels, which helps improve generalization.

e Class-Weighted Loss Functions: Assigns higher weights to underrepres-
ented classes, ensuring the model pays more attention to minority categories
during training

Through these enhancements, the classifier achieves consistent performance across all
classes, providing reliable predictions even for underrepresented categories.
3.3.1 Rigorous Evaluation

To validate the effectiveness of the methodology, a rigorous evaluation framework is em-
ployed. This involves assessing the quality of the synthetic images and the performance
of the classification model:

1. Augmented Dataset:

e Fréchet Inception Distance (FID): Measures the similarity between real and
synthetic image distributions, indicating the realism of the generated images.

e Inception Score (IS): Evaluates the diversity and class separability of synthetic
images, ensuring that the generator produces a wide range of variations.

2. Classification Performance:
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Figure 1: System Architecture

e Metrics such as accuracy, precision, recall, and Fl-scores are used to quantify
the model’s predictive performance.

e Visual tools like confusion matrices, ROC curves, and class activation maps
(CAMs) provide additional insights into the model’s behavior and areas of
focus.

By combining these evaluation techniques, the methodology ensures that both the
synthetic data and the classification model meet the highest standards of reliability and
diagnostic relevance.

3.4 Original Dataset

The dataset used in this study was meticulously curated from publicly available dermato-
logical sources to ensure a diverse and comprehensive representation of three prominent
skin disease categories: eczema, psoriasis, and fungal infections. Each category was selec-
ted based on its distinct clinical features, prevalence, and diagnostic challenges, ensuring
that the dataset captured a wide range of variations in disease presentation.

Eczema (Class 0): Eczema is characterized by inflammation, redness, and itchiness,
often varying in severity across patients and disease stages. The dataset includes sub-
types such as atopic dermatitis and contact dermatitis, ensuring coverage of different
manifestations.

Psoriasis (Class 1): Psoriasis is a chronic inflammatory condition presenting with dis-
tinctive red, scaly patches on the skin. The dataset primarily focuses on plaque psoriasis,
the most common subtype, but also includes other variants. A notable challenge with
psoriasis is its overlap with other dermatological conditions, such as eczema or fungal



infections, making it essential to include images that capture a range of severity levels
and anatomical locations. This diversity helps train models capable of distinguishing
psoriasis from visually similar conditions.

Image Count by Disease Class

1750 4

1500

1250 4

1000 -

Image Count

750 4

500

250 4

Disease Classes

Figure 2: Count of Images by Disease

Tinea/Fungal Infections (Class 2): This category encompasses various fungal skin
infections, including tinea and candidiasis, which are characterized by circular rashes,
scaling, and unique growth patterns. The dataset represents multiple subcategories of
fungal infections, capturing subtle differences in appearance based on infection stage and
affected body location. These variations often make fungal infections harder to classify
accurately, highlighting the importance of including well-annotated images in the dataset.

The dataset was carefully balanced to include a diverse range of disease stages, severity
levels, and body locations. This diversity is critical for building a model capable of
generalizing across different patient populations and clinical scenarios.

3.4.1 Data Preprocessing Strategy

To ensure the dataset’s quality and consistency, a robust preprocessing pipeline was
implemented. The preprocessing strategy addressed key challenges such as variability in
image resolution, color space, and quality, which could otherwise impact the performance
of the generative and classification models.

1. Image Standardization:

e Converted to RGB color space to ensure uniformity across color channels.

e Resized to 1024x1024 pixels, matching the input resolution requirements of
the GAN. This resizing step ensured that all images had consistent dimensions,
facilitating seamless training.

e Normalized to [1,1] to align with the StyleGAN2 framework’s input range. This
normalization step not only improved model compatibility but also enhanced
training stability:.
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2. Quality Control:

e Removal of low-resolution or visually ambiguous images: Images that lacked
clarity or diagnostic detail were excluded from the dataset to maintain high
standards of quality.

e Filtering out noise or background artifacts: Extraneous elements, such as shad-
ows or irrelevant body parts, were cropped or removed to ensure the focus
remained on the skin condition.

By combining these preprocessing techniques, the dataset was transformed into a
standardized and high-quality resource suitable for training both the synthetic image
generation and classification models. This preprocessing pipeline not only ensured con-
sistency and accuracy but also laid the groundwork for robust and reliable model per-
formance.

3.5 Synthetic Data Generation Architecture

The synthetic data generation framework is centered on a StyleGAN2-based hybrid ar-
chitecture, which integrates the generative capabilities of StyleGAN2 with the structural
preservation strengths of a U-Net architecture. This hybrid design addresses the critical
need for generating realistic and diagnostically accurate synthetic images of skin condi-
tions. By combining these two approaches, the model ensures that the generated images
are not only visually coherent but also retain the fine-grained details necessary for effect-
ive medical analysis. The inclusion of U-Net-style skip connections enhances the model’s



ability to preserve hierarchical features such as lesion boundaries, texture variations, and
color gradients, which are crucial for differentiating between disease categories.

The StyleGAN2 generator progressively refines image resolution through hierarchical
layers, enabling the generation of fine-grained details that mimic the natural character-
istics of dermatological conditions. Style mixing introduces diversity by blending features
from multiple latent space representations, while adaptive truncation controls ensure a
balance between image realism and variability. The U-Net backbone further complements
this process with its encoder-decoder structure, which reconstructs images while retain-
ing diagnostic features via skip connections. To achieve targeted synthesis, the model
incorporates class conditioning, embedding disease-specific information through condi-
tional normalization techniques. This enables the generator to produce synthetic images
tailored to specific disease categories, such as eczema, psoriasis, and fungal infections,
ensuring the synthetic dataset aligns with real-world medical requirements.
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Figure 5: Synthetic Image Generation

3.6 Classification Model Design
3.6.1 EfficientNet-B5 Implementation

The classification framework leverages a fine-tuned EfficientNet-B5 model, a state-of-the-
art convolutional neural network known for its balance between accuracy and computa-
tional efficiency. This model is particularly suited for the dermatological dataset used in
this study, as it combines robust feature extraction with scalability to handle complex im-
age datasets. EfficientNet-B5 employs a compound scaling approach to optimize network
depth, width, and resolution, enabling it to learn intricate patterns while maintaining
high computational efficiency.
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The model was initialized with pretrained ImageNet weights, which provide a strong
foundation for feature extraction, particularly in capturing textures, shapes, and colors
relevant to skin diseases. A custom classification head was added to adapt the network for
the specific task of classifying three skin disease categories: eczema, psoriasis, and fungal
infections. This classification head incorporates fully connected layers with dropout for
regularization and attention mechanisms to enhance the model’s focus on disease-relevant
image regions. By emphasizing critical areas, such as lesion boundaries or textural irreg-
ularities, the model achieves improved sensitivity and specificity, essential for accurate
diagnosis in medical applications.

3.6.2 Training Strategy

To ensure optimal performance, the EfficientNet-B5 classifier was trained using a compre-
hensive protocol designed to address challenges like class imbalance and overfitting. Mixed
precision training was employed to maximize computational efficiency, reducing memory
usage and accelerating training on GPUs. To enhance the model’s generalization cap-
abilities,MixUp augmentation was applied, blending image-label pairs during training.
This technique helps the model learn more robust features and mitigates overfitting,
particularly in datasets with limited variability.

Further stability was achieved through learning rate scheduling, which dynamically
adjusted the learning rate based on model performance during training. This approach
ensured steady convergence without abrupt changes in optimization dynamics. Addi-
tionally, class-weighted loss functions were incorporated to counteract the effects of class
imbalance in the dataset. By assigning higher weights to underrepresented classes, the
training process encouraged the model to pay greater attention to minority categories,
ensuring equitable performance across all disease types. Together, these strategies resul-
ted in a robust classification model capable of delivering accurate and reliable predictions
in diverse clinical scenarios.

3.7 Evaluation Frameworks

The evaluation framework for this study is designed to rigorously assess both the quality
of the synthetic images generated by the StyleGAN2-based hybrid architecture and the
performance of the EfficientNet-B5 classification model. This dual evaluation ensures
that the proposed methodology meets the necessary standards of realism, diversity, and
diagnostic accuracy. By using a combination of quantitative metrics and visual analysis
techniques, the evaluation framework provides comprehensive insights into the effective-
ness of the overall system.

3.7.1 Synthetic Image Quality Assessment

The quality and diversity of the synthetic images were evaluated using multiple metrics
tailored for generative models. These metrics collectively measure how well the synthetic
images mimic real data and capture the diversity required for robust training.

1. Fréchet Inception Distance (FID): FID measures the statistical similarity
between the distributions of real and synthetic images. A lower FID score in-
dicates that the synthetic images are closer in quality to real images. This metric
is particularly useful for evaluating the realism of generated images, ensuring that
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the synthetic dataset does not introduce artifacts or inconsistencies that could neg-
atively affect model performance.

2. Inception Score (IS): IS evaluates the diversity and class separability of the
synthetic images. A higher IS score indicates that the images are well-separated
into distinct classes while maintaining intra-class variations. This is essential for
training a classification model that generalizes effectively across various disease
categories.

3. Perceptual Similarity: Perceptual similarity assesses how closely the synthetic
images resemble real ones at both the pixel level and the contextual level. This
metric ensures that the generated images capture the essential visual characteristics
of each disease class, such as texture, shape, and color, which are critical for accurate
diagnosis.

4. Diversity Scores: Diversity scores quantify the range of variations present in
the synthetic images. By evaluating diversity, this metric ensures that the gener-
ator captures a wide spectrum of disease manifestations, such as different lesion
shapes, sizes, and severity levels. This is crucial for creating a synthetic dataset
that effectively augments real data and prevents overfitting.

These metrics collectively validate the quality and utility of the synthetic images, ensuring
that they enhance the training process rather than introducing biases or artifacts.

3.7.2 Classification Performance Analysis

The classification performance of the EfficientNet-B5 model was evaluated using a com-
bination of accuracy metrics and visual analysis techniques to assess its predictive cap-
abilities and interpretability.

1. Accuracy Metrics:The model’s effectiveness was quantified using metrics such as:
e Overall Accuracy: Measures the proportion of correct predictions across all

classes.

e Per-Class Precision: Indicates the proportion of true positive predictions rel-
ative to all positive predictions for each class.

e Per-Class Recall: Measures the model’s ability to identify all true positive
instances for each class.

e F1-Score: Provides a harmonic mean of precision and recall, offering a balanced
measure of the model’s performance for imbalanced datasets.

2. Visual Analysis:To gain deeper insights into the model’s decision-making process
and areas of focus, several visualization techniques were employed:

e Confusion Matrix Heatmaps: These heatmaps visually represent the model’s
performance by displaying the counts of correct and incorrect predictions for
each class. They highlight areas where the model excels and where it struggles,
guiding further improvements.
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e Receiver Operating Characteristic (ROC) Curves and AUC Scores: ROC
curves plot the true positive rate against the false positive rate for differ-
ent threshold values, while the Area Under the Curve (AUC) score provides
a single scalar value summarizing the model’s discriminative ability. Higher
AUC scores indicate better performance.

e Class Activation Maps (CAMs): CAMs visualize the regions of input images
that the model focuses on during predictions. By highlighting disease-relevant
regions, CAMs provide interpretability and validate the model’s focus on clin-
ically significant features.

This comprehensive evaluation framework ensures that the system delivers high-
quality synthetic images and reliable classification results, making it a robust tool for
automated skin disease detection. The combination of quantitative metrics and visual
analyses provides a detailed understanding of the system’s strengths and areas for im-
provement, facilitating future refinements.

4 Design Specification

This section details the architectural framework, techniques, and requirements that form
the foundation of the proposed system for automated skin disease detection. The design
includes an innovative hybrid architecture for synthetic data generation, an optimized
classification framework, and a rigorous evaluation methodology to ensure reliability and
scalability.

4.1 System Architecture
The system consists of three primary components:
1. Data Preprocessing Module:

e Standardizes raw dermatological images for compatibility with downstream
modules.

e Ensures consistency, quality, and proper labeling of images.
2. Synthetic Data Generation Framework:

e A Hybrid GAN Architecture combining StyleGAN2 and U-Net enables the
generation of diverse, high-quality synthetic images.

3. Classification Framework:

e A Modified EfficientNet-B5 Classifier trained on the augmented dataset (real
+ synthetic images) performs skin disease diagnosis

4.2 Synthetic Data Generation Framework
4.2.1 StyleGAN2-UNet Hybrid Generator

The StyleGAN2-UNet hybrid generator serves as the cornerstone of the synthetic data
generation framework, addressing the challenges of data scarcity and class imbalance
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in dermatological datasets. This innovative architecture combines the powerful image
synthesis capabilities of StyleGAN2 with the feature-preserving strengths of U-Net. The
resulting hybrid generator is capable of producing high-quality synthetic images that not
only mimic the visual attributes of real dermatological images but also retain critical
diagnostic details necessary for effective medical analysis.

e Functionality

The primary functionality of the StyleGAN2-UNet hybrid generator is to create synthetic
dermatological images that are conditioned on real input samples and corresponding class
labels. This conditioning ensures that the generated images accurately represent specific
disease categories, such as eczema, psoriasis, and fungal infections. By integrating U-Net’s
skip connections, the generator retains hierarchical features crucial for capturing fine-
grained details like lesion boundaries, textures, and color gradients, which are essential
for medical diagnostics. The architecture ensures that every synthetic image encapsulates
essential disease-specific attributes while maintaining high visual realism.

o Key Features

1. Progressive Resolution Scaling: The generator synthesizes images progress-
ively, starting from a low resolution and incrementally increasing the resolu-
tion. This approach allows the model to refine details hierarchically, ensuring
that global structures (e.g., lesion shapes) and local features (e.g., skin tex-
ture) are both accurately represented in the final output. Progressive scaling
is a hallmark of StyleGANZ2, enabling the generation of high-resolution images
with consistent quality.

2. Style Mixing: Style mixing introduces diversity into the synthetic images by
blending latent representations derived from multiple input vectors. This fea-
ture allows the generator to simulate variations in lesion appearance, texture,
and color, creating a synthetic dataset that encompasses the wide range of
visual diversity observed in real-world cases. This diversity is crucial for train-
ing classification models that generalize well to unseen data.

3. Class Conditioning:

— Embedded Class Labels: Disease class labels are embedded into the latent
space representations, guiding the generator to produce images that align
with specific diagnostic categories. This ensures that synthetic images
reflect the unique characteristics of each disease class.

— Conditional Normalization Techniques: Conditional Batch Normalization
(CBN) and Adaptive Instance Normalization (AdalN) are employed to
modulate the generator’s intermediate feature maps based on the embed-
ded class information. These techniques enable precise control over the
style and content of the generated images, ensuring that they align with
the desired disease category.

4.2.2 Algorithm

The synthetic image generation process is executed through the following steps:
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Figure 7: StyleGAN2-UNet integration architecture diagram

. Input Real Images and Class Labels: The process begins by feeding the generator
with real input images and their corresponding class labels. These inputs serve as
the foundation for conditioning the synthetic image generation process

. Feature Extraction with U-Net Encoder: The real images are passed through the
encoder layers of the U-Net, which extract hierarchical features at multiple levels
of abstraction. These features capture essential details such as texture, edges, and
global structures relevant to the disease being modeled.

. Latent Space Mapping with StyleGAN2: A random noise vector is processed through
the StyleGAN2 mapping network to generate latent space representations. These
representations are transformed into base styles that define the global and local
features of the synthetic images.

. Feature Combination through Skip Connections: The hierarchical features extrac-
ted by the U-Net encoder are combined with the style-based features generated by
StyleGAN2. Skip connections between the encoder and decoder layers allow fea-
tures to bypass intermediate layers, preserving critical diagnostic details that might
otherwise be lost during synthesis.

. Decoding to Generate Synthetic Images: The combined features are passed through
the U-Net decoder layers, reconstructing the final synthetic image. The output is a
high-resolution image that retains essential medical attributes while reflecting the
diversity and realism introduced by the StyleGAN2 component.
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4.3 Classification Framework
4.3.1 Modified EfficientNet-B5 Classifier

The classification framework is built upon a Modified EfficientNet-B5 model, tailored
to predict the class of dermatological images, whether real or synthetic. The model is
optimized for high accuracy and robustness across three skin disease categories: eczema,
psoriasis, and fungal infections. By leveraging the strengths of EfficientNet-B5, the frame-
work achieves a balance between computational efficiency and diagnostic precision.

Input Image (300 x 300 x
3)

EfficientNet-B5
Pretrained Backbone
Layers:

- Stem (Conv+Norm+Act)
- Multiple MBConv
Blocks with varying
kernel sizes and expansicn
factors
- Progressive Feature
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- Final Conv Head

Global Average Pocling (GAP)

v

Custom Classification
Head
Dense Layer (e.g.. 1024)
with ReLU + BatchNorm +
Dropeut for Regularization
Final Dense Layer (3 units)
— Qutputs for each Class

¥

{Class Probabilities (Softmax)

Eczema, Psoriasis, Tinea

Figure 8: FEfficientNet-B5 architecture with custom classification head

The backbone of the model utilizes pretrained ImageNet weights, ensuring efficient and
robust feature extraction. A custom classification head has been added, which includes
fully connected layers with dropout regularization to mitigate overfitting. This head also
incorporates class-specific attention mechanism, enhancing the model’s focus on disease-
relevant regions in the input images. To ensure computational efficiency while retaining
diagnostic detail, the input resolution is reduced to 300 x 300, which aligns with the
requirements for effective training and inference.

The classification process begins withimage preprocessing, where the input images
are normalized to match the network’s expected format. The preprocessed images are
then passed through the EfficientNet-B5 backbone, which extracts hierarchical features.
These features are fed into the custom classification head to predict the probabilities of
each disease class. To enhance interpretability, the framework employs Class Activation
Mapping (CAM), which visualizes the regions of the image that influenced the model’s
predictions, ensuring transparency and reliability in clinical applications.

17



4.4 Integrated Training and Evaluation Pipeline
1. Training:

e Synthetic and real images are combined to augment the training dataset.

e The discriminator and generator of the hybrid GAN are trained alternately
using adversarial loss, classification loss, and content loss.

e The EfficientNet-B5 classifier is trained on the augmented dataset using class-
weighted loss functions.

2. Evaluation:

e Synthetic Image Quality: FID to measure realism and distribution similarity.

e Inception Score to evaluate diversity and separability.
3. Classification Performance:

e Accuracy, precision, recall, and F1-score.

e Confusion matrices and ROC curves for visual performance analysis.

5 Implementation

5.1 Environment Setup

The implementation was developed using Python 3.9 with deep learning frameworks like
PyTorch 1.9 and TorchMetrics for model training and evaluation. Visualization was
supported by Matplotlib, Seaborn, and Torchvision. The setup utilized an NVIDIA
Tesla GPU (16GB VRAM) for accelerated computations, alongside an Intel Xeon CPU
and 512GB SSD for data processing and storage. All tools and libraries were configured
in a Linux-based environment for optimal performance and scalability.

5.2 Dataset Preparation and Augmentation

The first stage of implementation focused on preparing a comprehensive and balanced
dataset that combined real and synthetic dermatological images.

1.Preprocessing of Real Images:

The dataset initially comprised high-resolution images from three disease categories:
eczema, psoriasis, and fungal infections. Each image was resized to 1024 x 1024 pixels and
normalized to a pixel range of [-1, 1] to ensure compatibility with the StyleGAN2-UNet
generator. Low-quality and mislabeled images were removed after manual verification by
dermatological experts, ensuring that only diagnostically relevant images were retained.

2.Synthetic Image Generation:

To address data scarcity and class imbalance, the StyleGAN2-UNet hybrid generator
was trained to produce 2000 high-resolution synthetic images for each disease category.
These images captured disease-specific attributes, including variations in lesion texture,
shape, and color, while maintaining high visual quality. The integration of U-Net-style
skip connections ensured the retention of fine-grained diagnostic details.

3.Final Dataset:
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Figure 9: Synthetic Image Generated By Hybrid Generator (StyleGAN2-UNet)

The augmented dataset combined real and synthetic images, creating a balanced and
diverse training resource for the classification model. This dataset provided equal repres-
entation for all disease categories, mitigating the risk of model bias toward overrepresented
classes.

5.3 StyleGAN2-UNet Hybrid Generator

The generator was trained to produce high-quality synthetic images conditioned on real
input samples and class labels. Adversarial loss, classification loss, and content loss
were employed to guide the training process, ensuring that the generated images closely
resembled real dermatological cases while retaining disease-specific details. Model check-
points were saved at regular intervals to facilitate reproducibility and enable fine-tuning
in future iterations.

5.4 StyleGAN2-UNet Hybrid Generator Output

The StyleGAN2-UNet hybrid generator successfully produced high-resolution synthetic
images ( 1024 x 1024 1024x1024) that closely mimicked real dermatological cases, pre-
serving critical disease-specific attributes such as lesion boundaries, textures, and colors.
The incorporation of U-Net-style skip connections ensured the retention of fine-grained
details essential for medical diagnostics. The generator was evaluated using quantitative
metrics like Fréchet Inception Distance (FID) and Inception Score (IS), where low FID
scores indicated a strong resemblance between real and synthetic image distributions,
and high IS values confirmed the diversity and class separability of the synthetic dataset.
Visual inspection further validated the quality of the outputs, showcasing synthetic im-
ages that were indistinguishable from real ones and effectively enriched the augmented
dataset.

5.5 EfficientNet-B5 Classifier

The EfficientNet-B5 classifier was fine-tuned on the augmented dataset to predict disease
categories with high accuracy. A class-weighted loss function was applied to address
class imbalance, ensuring equitable performance across all categories. Advanced training
strategies, including MixUp augmentation and learning rate scheduling, were employed
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to enhance model generalization and prevent overfitting. These techniques allowed the
classifier to effectively learn from the augmented dataset while maintaining robustness.

5.6 EfficientNet-B5 Classifier Output

The EfficientNet-B5 classifier demonstrated high accuracy and robustness in diagnosing
three disease categories: eczema, psoriasis, and fungal infections. The model achieved
over 90% overall accuracy, supported by strong precision, recall, and Fl-scores, high-
lighting its balanced performance even in the presence of class imbalance. The classifier’s
predictions were further analyzed through confusion matrices, which identified areas of
misclassification, and Receiver Operating Characteristic (ROC) curves, with AUC scores
exceeding 0.95 for all categories, underscoring its discriminative power. Interpretability
was enhanced using Class Activation Maps (CAMs), which highlighted disease-relevant
regions in input images, validating the model’s focus on diagnostically significant features
and ensuring its applicability in clinical settings.

6 Evaluation

The evaluation of the proposed hybrid system, integrating StyleGAN2 for synthetic data
generation and EfficientNet-B5 for classification, serves as a comprehensive measure of
its effectiveness, robustness, and practical applicability in addressing challenges such as
data scarcity and class imbalance in dermatological imaging. This section provides an in-
depth analysis of the system’s performance, focusing on quantitative metrics, qualitative
assessments, and a comparative discussion with baseline models. These insights validate
the hybrid system’s ability to deliver high-quality outputs and reliable predictions in the
context of skin disease detection.

6.1 Analysis

The system’s performance was quantitatively evaluated using metrics such as accuracy,
precision, recall, Fl-score, and Fréchet Inception Distance (FID). The inclusion of syn-
thetic data generated by the StyleGAN2-UNet hybrid model significantly enhanced the
classification model’s performance compared to using real data alone. For instance, the
model’s overall accuracy improved from 68.5% to 82.3% when synthetic data was in-
cluded. This improvement underscores the impact of data augmentation in addressing
class imbalance and enriching the training dataset.

Precision and recall also demonstrated marked improvements, increasing from 0.71 to
0.84 and from 0.68 to 0.81, respectively. These results indicate a reduction in false posit-
ives and an enhancement in the model’s ability to detect true positives, particularly for
underrepresented disease categories. The F1l-score, which balances precision and recall,
rose from 0.72 to 0.85, further validating the hybrid system’s effectiveness in handling
imbalanced datasets and achieving reliable predictions across all classes.

The quality of synthetic images was evaluated using FID, a metric that measures the
similarity between the distributions of real and synthetic images. The system achieved
an FID score of 18.7, indicating that the synthetic images closely resembled real samples
in terms of visual features and distributions. This low FID score reflects the capability
of the StyleGAN2-UNet hybrid model to produce realistic and diagnostically relevant
images, which were instrumental in enhancing the classifier’s performance.
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Confusion matrix heatmaps provided a detailed view of the classifier’s predictions,
highlighting reductions in misclassifications, particularly in underrepresented classes. The
inclusion of synthetic data balanced the training dataset, enabling the classifier to gener-
alize better and perform more equitably across all disease categories. The model’s ability
to focus on disease-relevant regions was further validated using Class Activation Maps
(CAMs), which offered interpretable visualizations of the classifier’s decision-making pro-
cess. These CAMs confirmed that the model emphasized critical features such as lesion
edges and texture variations, enhancing its diagnostic reliability.

6.2 Comparison with Baseline Models

To demonstrate the hybrid system’s superiority, it was compared against a baseline Con-
volutional Neural Network (CNN) trained solely on real data. The baseline CNN achieved
an accuracy of 65.4% and an F1-score of 0.68, significantly lower than the hybrid system’s
82.3% accuracy and 0.85 F1-score with synthetic data. The baseline model struggled with
class imbalance and generalization, leading to poor performance in minority classes. In
contrast, the hybrid system leveraged the enriched and balanced dataset created through
synthetic data augmentation, resulting in more robust and reliable predictions. This com-
parative analysis highlights the value of incorporating advanced generative techniques and
balanced training data in achieving superior classification performance.

Metric  Without Synthetic DataWith Synthetic Data

Accuracy 68.5% 82.3%
Precision 0.71 0.84
Recall 0.68 0.81
F1-Score 0.72 0.85
FID ScoreN/A 18.7

Figure 10: Comparision for with and without Syntehtic Data

7 Discussion

The evaluation results unequivocally demonstrate the effectiveness of the proposed hy-
brid framework in overcoming the limitations of traditional models for skin disease detec-
tion. By integrating StyleGAN2 for high-quality synthetic data generation, the system
addressed the challenges of data scarcity and class imbalance, which are prevalent in
medical imaging. The generated synthetic images not only enriched the dataset but also
enhanced the classification model’s ability to generalize across diverse cases, as reflected
in the significant improvements in accuracy, precision, recall, and F1-score.

The EfficientNet-B5 classifier, fine-tuned on the augmented dataset, demonstrated
robustness and reliability in predicting disease categories. Its interpretability, facilitated
by CAM visualizations, ensured transparency in decision-making, a critical requirement
in medical applications. The significant improvement over baseline models further under-
scores the hybrid system’s advantages, particularly in handling underrepresented classes
and achieving equitable performance across all categories.

The low FID score achieved by the StyleGAN2-UNet generator validated the quality
and realism of the synthetic images, while the qualitative assessments confirmed their
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diagnostic relevance. These findings establish the proposed hybrid system as a scalable
and practical solution for automated skin disease detection, with the potential for broader
applications in medical imaging. By addressing key challenges and delivering reliable
outputs, the framework provides a strong foundation for future advancements in the
field.

8 Conclusion and Future Work

8.1 Conclusion

This research successfully addressed critical challenges in automated skin disease detec-
tion by developing a hybrid framework that integrates StyleGAN2 for synthetic data
generation and EfficientNet-B5 for classification. The primary objectives of this study
included generating high-quality synthetic dermatological images, enhancing classifica-
tion accuracy, and overcoming issues related to data scarcity and class imbalance. The
results demonstrate the effectiveness of this approach, achieving significant improvements
in key performance metrics.

The synthetic data generated by the StyleGAN2-UNet hybrid model enriched the
training dataset with realistic and diagnostically relevant images, as validated by a low
FID score of 18.7. These synthetic images balanced the dataset, enabling the EfficientNet-
B5 classifier to achieve superior performance across all disease categories, with accuracy
improving from 68.5% to 82.3% and the Fl-score reaching 0.85. Qualitative assessments,
including Class Activation Maps (CAMs) and confusion matrices, further validated the
reliability and interpretability of the classification model. Comparisons with baseline
models highlighted the advantages of this hybrid approach, particularly in addressing
underrepresented classes and improving generalization.

This research contributes a scalable and practical framework for automated skin dis-
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ease detection, providing a foundation for future advancements in medical imaging. The
integration of generative and classification techniques has demonstrated significant po-
tential for tackling real-world challenges, paving the way for improved diagnostic systems
in dermatology.

8.2 Future Work

While this study has achieved its objectives, several avenues for future work can further
enhance the framework’s capabilities and extend its applicability.

1.Broader Disease Categories and Larger Datasets: Expanding the dataset to include
a wider range of skin conditions and larger datasets will enhance the framework’s ability
to generalize across diverse clinical scenarios. This could involve collaborations with
medical institutions for access to more comprehensive datasets.

2.Integration of Explainability Techniques: Although CAMs provide insights into
the classifier’s decision-making, integrating advanced explainability frameworks such as
SHAP (SHapley Additive exPlanations) or LIME (Local Interpretable Model-agnostic
Explanations) can improve interpretability, fostering greater trust among medical prac-
titioners.

3.Real-World Deployment: Future research could focus on deploying the framework in
clinical settings. This involves developing an end-to-end system, including a user-friendly
interface, and validating its performance with real-time patient data.

4.Cross-Domain Applications: The hybrid framework can be extended to other med-
ical imaging domains, such as radiology or pathology, where data scarcity and class
imbalance are prevalent. Exploring its adaptability to different modalities and conditions
can demonstrate its scalability and versatility.

5.Multi-Stage Diagnostic Pipeline: Combining this framework with additional tasks
such as disease progression prediction, treatment recommendation, or multi-modal data
integration (e.g., text-based patient history) could create a holistic diagnostic system.
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