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1 Introduction

This paper presents the explanation of the coding procedure for the red panda behaviours
classification project. The prerequisites and environment setup are also described so that any
researcher who is interested in wildlife conservation can replicate and enhance this research
project. Subsequently, the detailed steps for obtaining the dataset, required libraries, source
codes and scripts, as well as the implementation of the deep learning models are elucidated.

2 Setup and Configuration

2.1. Hardware Configurations

The pre-processing for cropping images is processed on Windows 11 computer that has
specifications of 3.00 GHz and Intel Core i7 processor with 16 GB RAM. Moreover,
preinstalled Microsoft Visual Code version 1.95.3 is utilised.

2.2. Software Configurations

Python programming version 3.10.12 is utilised not only for preprocessing the images to be
cropped and removing the unnecessary parts, such as trees, branches, and walls but also for
building and training CNN models.

2.3. Prerequisites of Cloud Environment for Training Models

Google Colab Pro Version and Google Drive are used for training models and data storage to
be streamlined without interference during training. Moreover, T4 GPUs with 15 GB of
RAM are chosen in Google Colab for model training.

2.4 Libraries Requirements

Not only for checking similar indices while extracting the images from video footage and
cropping the images but also for model training, the following libraries are required.
TensorFlow 2.17.1

Keras 3.5.0

opencv 4.10.0.84

numpy

matplotlib

sklearn

seaborn



3 Dataset Preparation

3.1. Custom Data Collection

As the red panda dataset is not available publicly, both the video footage and images are
recorded in Dublin Zoo as well as collected from the photographers (for red pandas) and from
Japan and Red Panda Network.

3.2. Data Pre-processing

Firstly, calculating the Structural Similarity Index (SSIM) of the images while they are being
extracted from video footage so that the images are not duplicated in the dataset. The source
code is as shown as in Figure 1.

import cv2

import os

from skimage.metrics import structural_similarity as ssim
from google.colab import drive

drive.mount('/content/drive’)

#Set paths for videos and output folders (execute and extract category by category, example below is for Eating category)
panda_videos_path = '/content/drive/MyDrive/Red Panda Project/Japan Zoo (To organize videos)/Eating’

unique_frames_path = '/content/drive/MyDrive/Red Panda Project/RP_Codes/Unique Panda/Eating'

duplicate_frames_path = ‘/content/drive/MyDrive/Red Panda Project/RP_Codes/Duplicate Panda'

os.makedirs(unique_frames_path, exist_ok=True)
os.makedirs(duplicate_frames_path, exist_ok=True)

ssim_threshold = ©.97 #SSIM threshold
desired_fps = @.5 #1 frame per every two seconds

def is_similar(framel, frame2, threshold=0.97):
#Convert to grayscale
grayA = cv2.cvtColor(framel, cv2.COLOR_BGR2GRAY)
grayB = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY)
#Compute SSIM between two frames to check
score, _ = ssim(grayA, grayB, full=True)
return score > threshold

for video_file in os.listdir(panda_videos_path):
video_path = os.path.join(panda_videos_path, video file)

if video_path.endswith(('.mp4', '.avi', '.mov', '.mkv')):
print(f"Processing video: {video_path}")
video = cv2.VideoCapture(video_path)

#0riginal FPS of the videos
original_fps = video.get(cv2.CAP_PROP_FPS)
frame_interval = int(original_fps / desired_fps)

Figure 1: Calculating SSIM from Extracted Images of Video Footage



After the images are extracted, the unnecessary parts from each image are cropped in Figure
2, as well as the images without red pandas are also removed.

import cv2
import os

#Source and destination directories for resting (two other behaviours will be executed separately)
source_dir = r*C:\Users\wutyi\Documents\Red Panda\Japan\Resting"
dest_dir = r"C:\Users\wutyi\Documents\Red Panda\Japan\Cropped\Resting"

os.makedirs(dest_dir, exist_ok=True)

#Downscale factor
scale_factor = @.5

#Function to manually crop an image with ROI selector of OpenCV
def manual_crop(image):

downscaled_width = int(image.shape[1] * scale_factor)
downscaled_height = int(image.shape[@] * scale_factor)
downscaled_img = cv2.resize(image, (downscaled_width, downscaled_height), interpolation=cv2.INTER_AREA)

r = cv2.selectROI("Select ROI is (Press Enter to skip)", downscaled_img, fromCenter=False, showCrosshair=True)

if r[2] == @ or r[3] == @:
return None

X, ¥, W, h = [int(coord / scale_factor) for coord in r]
#Using the adjusted coordinates

cropped_image = image[y:y+h, x:x+w]
return cropped_image

for filename in os.listdir(source_dir)
if filename.endswith(('.png', '.jpg', '.Jjpeg', '.bmp', '.tiff')):
img_path = os.path.join(source_dir, filename)
image = cv2.imread(img_path)

if image is None:
print(f"Failed to load {img_path}")
continue

cropped_image = manual_crop(image)

if cropped_image is not None:
save_path = os.path.join(dest_dir, filename)
cv2.imwrite(save_path, cropped_image)
print(f"Saved cropped image to {save_path}")

else:
print(f"Skipping {filename}, no crop was made.")

Figure 2: Cropping Unnecessary Parts from the Extracted Images

3.3. Pre-processed Dataset

The images are labelled into three classes (eating, resting and walking) and prepared as a
dataset to utilize for model training.

The following link is the pre-processed dataset stored on Google Drive.
https://drive.google.com/drive/folders/1RxYg28QIODTOviptQt3tdkpaA3f6-0c_?usp=sharing

4  Data Modelling

There are three Convolutional Neural Network (CNN) models that are trained and compared
their accuracy and efficiency. The first two pre-trained CNN models are EfficientNetB0 and
ResNet50 that are being customised and trained with the red panda dataset using the transfer
learning method. The third CNN model is self-trained from scratch and named as "CNN-
RedPanda.” All models are trained using Google Colab on cloud environment.

4.1. Pre-trained CNN Models (EfficientNetB0 and ResNet50) with transfer learning

Although EfficientNetBO and ResNet50 are trained individually, they have the same pre-
processing and data transformation steps as well as the same architecture style. The following
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steps are the detailed process of training EfficientNetBO and ResNet50 using the transfer
learning method.
In Figure 3, the necessary libraries are imported for EfficientNetB0 and ResNet50.

import tensorflow as tf

from tensorflow.keras import layers, models

from tensorflow.keras.preprocessing import image_dataset_from_directory
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import callbacks

from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from sklearn.utils.class_weight import compute_class_weight

from tensorflow.keras.regularizers import 12

import numpy as np

import matplotlib.pyplot as plt

from google.colab import drive
drive.mount('/content/drive")

Mounted at /content/drive

Figure 3: Importing Library for Pre-trained Models

After that, the dataset is split into two, training and validation with 80\% and 20\% in Figure
4,
data_dir = "/content/drive/MyDrive/Red Panda Project/RP_Codes/Extracted and Checked"

image_size = (256, 256)
batch_size = 32

#Split red panda dataset into training and validation as 80% and 20%
train_dataset = image_dataset_from_directory(

data_dir,

validation_split=6.2,

subset="training",

seed=123,

image_size=image_size,

batch_size=batch_size,

)

validation_dataset = image_dataset_from_directory(
data_dir,
validation_split=6.2,
subset="validation",
seed=123,
image_size=image_size,
batch_size=batch_size,

)

Found 4801 files belonging to 3 classes.
Using 3841 files for training.
Found 4801 files belonging to 3 classes.
Using 96@ files for validation.

Figure 4: Splitting Dataset Before Training Pre-trained Models



In Figure 5, data augmentation is applied before building and training the EfficientNetBO and
ResNet50 models with transfer learning.

train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.1,
horizontal flip=True,
rotation_range=20,
width_shift_range=0.1,
height_shift_range=0.1,
brightness_range=[0.8, 1.2],
channel_shift_range=20.0,
fill_mode='nearest'

train_generator = train_datagen.flow_from_directory(
data_dir,
target_size=(256, 256),
batch_size=32,
class_mode="sparse'

#To reduce the taken time to fetch data from memory
AUTOTUNE = tf.data.experimental.AUTOTUNE

train_dataset = train_dataset.prefetch(buffer_size=AUTOTUNE)
validation_dataset = validation_dataset.prefetch(buffer_size=AUTOTUNE)

Figure 5: Data Augmentation for training data

In Figure 6 and 7, the model architectures of EfficientNetB0 and ResNet50 are shown.

#lLoad EfficientNetB@

base_model = tf.keras.applications.EfficientNetBe(
include_top=False,
weights="'imagenet’,
input_shape=(256, 256, 3)

)

#Unfreeze the last 1@ layers to be in training and freeze the rest
base_model.trainable = True
for layer in base_model.layers[:-18]:

layer.trainable = False

model = models.Sequential([
base_model,
layers.GlobalAveragePooling2D(),
layers.Dense(256, activation='relu', kernel_regularizer=12(2.81)),
layers.BatchNormalization(),
layers.Dropout(©.5),
layers.Dense(3, activation='softmax') #3 classes(eating, resting, walking) of red pandas

D

model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
loss="sparse_categorical_crossentropy"’,
metrics=["accuracy'])

model.summary ()

Figure 6: Model Architecture of EfficientNetB0



#lLoad pre-trained ResNet5@ model

base_model = tf.keras.applications.ResNet5@(
include_top=False,
weights="imagenet’,
input_shape=(256, 256, 3)

#Unfreeze the last 18 layers to be in training and freeze the rest
base_model.trainable = True
for layer in base_model.layers[:-18]:

layer.trainable = False

model = models.Sequential([
base_model,
layers.GlobalAveragePooling2D(),
layers.Dense(256, activation="relu’, kernel_regularizer=12(0.01)),
layers.BatchNormalization(),
layers.Dropout(@.5),
layers.Dense(3, activation='softmax') #for eating, resting, walking behaviours of red pandas

1

model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
loss="sparse_categorical_crossentropy’,
metrics=["'accuracy'])

model.summary ()

Figure 7: Model Architecture of ResNet50

Subsequently, model training of EfficientNetB0O and ResNet50 are shown in Figure 8 and 9.

early_stopping = tf.keras.callbacks.EarlyStopping(
monitor="val_loss', patience=3, restore_best_weights=True, verbose=1

history = model.fit(
train_dataset,
validation_data=validation_dataset,
epochs=2@,
class_weight=class_weights_dict,
callbacks=[early_stopping]

loss, accuracy = model.evaluate(validation_dataset)
print(f“validation accuracy: {accuracy*1ee:.2f}%")

Epoch 1/2@

121/121 —— 30@0s 2s/step - accuracy: 8.6455 - loss: 5.3951 - val_accuracy: ©.9385 - val_loss: 4.49@8
Epoch 2/2@

121/121 ————————————— 108s 626ms/step - accuracy: ©.9043 - loss: 4.3177 - val_accuracy: 8.9708 - val_loss: 4.8267
Epoch 3/20

121/121 - 685 563ms/step - accuracy: ©.9464 - loss: 3.9408 - val_accuracy: ©8.9760 - val_loss: 3.6846
Epoch 4/20

121/121 ——————— 90s 629ms/step - accuracy: ©.9657 - loss: 3.6528 - val_accuracy: @©.9729 - val_loss: 3.413@
Epoch 5/2@

121/121 ——————————— 68s 561ms/step - accuracy: ©.9736 - loss: 3.3673 - val_accuracy: ©.9771 - val_loss: 3.1610
Epoch 6/20

121/121 ———  89s 618ms/step - accuracy: ©.9838 - loss: 3.8949 - val_accuracy: ©.9792 - val_loss: 2,9176
Epoch 7/20

121/121 ——— 81s 60@8ms/step - accuracy: ©.9839 - loss: 2.8401 - val_accuracy: ©.9771 - val_loss: 2.6676
Epoch 8/2@

121/121 ——————————— B84s 623ms/step - accuracy: ©.9880 - loss: 2.5937 - val_accuracy: ©.9833 - val_loss: 2.4360
Epoch 9/20

121/121 ————— 78s 649ms/step - accuracy: ©.9931 - loss: 2.3646 - val_accuracy: ©.9854 - val_loss: 2,2211
Epoch 18/28

121/121 ———  78s 617ms/step - accuracy: ©.9916 - loss: 2.1526 - val_accuracy: ©.9833 - val_loss: 2.8194
Epoch 11/2@

121/121 —— 765 573ms/step - accuracy: ©.9944 - loss: 1.9467 - val_accuracy: ©.9875 - val_loss: 1.8283

Epoch 12/2@
121/121 - 885 620ms/step - accuracv: ©.9926 - loss: 1.7653 - val accuracv: 0.9833 - val loss: 1.6531

Figure 8: Model Training of EfficientNetBO



early_stopping = tf.keras.callbacks.EarlyStopping(
monitor="val loss', patience=3, restore_best_weights=True, verbose=1
)

history = model.fit(
train_dataset,
validation_data=validation_dataset,
epochs=20,
class_weight=class_weights_dict,
callbacks=[early_stopping]

)

loss, accuracy = model.evaluate(validation_dataset)
print(f"validation accuracy: {accuracy*1ee:.2f}%")

Epoch 1/28

121/121 —————— 480s 4s/step - accuracy: 0.7262 - loss: 5.3283 - val_accuracy: @.9719 - val_loss: 4.3259
Epoch 2/28

121/121 —————————— 12@s 728ms/step - accuracy: 8.971@ - loss: 4.2064 - val_accuracy: 8,974@ - val_loss: 3,8822
Epoch 3/2@

121/121 —————————— B7s 716ms/step - accuracy: 8.9909 - loss: 3.7296 - val_accuracy: @.9906 - val_loss: 3.4885
Epoch 4/28

121/121 ——————— B84s 697ms/step - accuracy: ©.9957 - loss: 3.2876 - val_accuracy: @.9875 - val_loss: 2.9887
Epoch 5/20

121/121 —————————— 83s 688ms/step - accuracy: ©8.9971 - loss: 2.8749 - val_accuracy: ©.9844 - val_loss: 2.6147
Epoch 6/20

121/121 ——————— 145s 71@ms/step - accuracy: ©.9952 - loss: 2.5007 - val_accuracy: ©.9875 - val_loss: 2.2558
Epoch 7/20

121/121 ———————— 9@s 738ms/step - accuracy: ©.9988 - loss: 2.1542 - val_accuracy: @.9927 - val_loss: 1.9365
Epoch 8/2@

121/121 ———————— 133s 668ms/step - accuracy: ©.9972 - loss: 1.8558 - val_accuracy: ©.9917 - val_loss: 1.6626
Epoch 9/2@

121/121 —————  89s 731ms/step - accuracy: 8.9992 - loss: 1.5814 - val_accuracy: @.9917 - val_loss: 1.4246
Epoch 18/20

121/121 ———————  81s 666ms/step - accuracy: 8.9986 - loss: 1.3498 - val_accuracy: @.9927 - val_loss: 1.2161
Epoch 11/20

121/121 ————— 82s 668ms/step - accuracy: ©.9999 - loss: 1.1432 - val_accuracy: @.9948 - val_loss: 1.8191
Epoch 12/20

121/121 ———————— B7s 713ms/step - accuracy: 8.9995 - loss: ©.9655 - val_accuracy: ©.9927 - val_loss: 0.8671
Epoch 13/20

121/121 —————— 86s 713ms/step - accuracy: 8.9993 - loss: 0.8140 - val_accuracy: @.9948 - val_loss: 0.7360
Epoch 14/20

121/121 —————— 87s 717ms/step - accuracy: 8.9967 - loss: 8.6923 - val_accuracy: 8.9948 - val_loss: ©.6357
Epoch 15/20

121/121 ————— 865 714ms/step - accuracy: ©8.9964 - loss: ©.5994 - val accuracv: @.9885 - val loss: @.5546

Figure 9: Model Training of ResNet50

4.2. Self-trained CNN Model (CNN-RedPanda)

In this subsection, the steps of data splitting, augmentation, model architecture and model
training of CNN-RedPanda will be explained step by step with figures.

In Figure 10, the necessary libraries are imported for CNN-RedPanda.

import tensorflow as tf

from tensorflow.keras import layers, models

from tensorflow.keras.preprocessing import image_dataset_from_directory
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import callbacks

from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from sklearn.utils.class_weight import compute_class_weight

from tensorflow.keras.regularizers import 12

import numpy as np

import matplotlib.pyplot as plt

from google.colab import drive
drive.mount('/content/drive")

Mounted at /content/drive

Figure 10: Importing Library for CNN-RedPanda



After that, the dataset is split into two, training and validation with 80\% and 20\% in Figure
11.

data_dir = "/content/drive/MyDrive/Red Panda Project/RP_Codes/Extracted and Checked"
image_size = (256, 256)
batch_size = 32

#Split red panda dataset into training and validation as 80% and 20%
train_dataset = image_dataset_from_directory(

data_dir,

validation_split=0.2,

subset="training",

seed=123,

image_size=image_size,

batch_size=batch_size,

)

validation_dataset = image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=image_size,
batch_size=batch_size,

)

Found 4801 files belonging to 3 classes.
Using 3841 files for training.
Found 4801 files belonging to 3 classes.
Using 960 files for validation.

Figure 11: Splitting Dataset Before Training CNN-RedPanda

Figure 12 show the data augmentation methods are applied before CNN-RedPanda is built
and trained.

train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=90.1,
horizontal_flip=True,
rotation_range= 20,
width_shift_range=0.1,
height shift range=0.1,
brightness_range=[0.8, 1.2],
channel_shift_range=30.0,
fill mode='nearest’

train_generator = train_datagen.flow_from_directory(
data_dir,
target_size=(256, 256),
batch_size=32,
class_mode="sparse’

#To reduce the taken time to fetch data from memory
AUTOTUNE = tf.data.experimental.AUTOTUNE

train_dataset = train_dataset.prefetch(buffer_size=AUTOTUNE)
validation_dataset = validation_dataset.prefetch(buffer_size=AUTOTUNE)

Figure 12: Data Augmentation for CNN-RedPanda Model



In Figure 13, the model architecture of CNN-RedPanda is shown.

from tensorflow.keras import layers, models

#Custom CNN model
def create_custom_model(input_shape):
model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(128, (3, 3), activation='relu’))
model.add(layers.MaxPooling20((2, 2)))

model.add(layers.Flatten())

model.add(layers.Dense(256, activation='relu')) #Fully connected layer with 256 units
model.add(layers.Dropout(®.5)) #Dropout layer to reduce overfitting
model.add(layers.Dense(3, activation="softmax')) #Output layer with softmax activation for 3 behavioural classes of Red Panda (eating, resting, walking)
return model

input_shape = (256, 256, 3)
model = create_custom_model(input_shape)

model.compile{optimizer=tf.keras.optimizers.Adam(learning_rate=1le-4),
loss="sparse_categorical_crossentropy’,
metrics=["accuracy'])

model.summary( )

Figure 13: Model Architecture of CNN-RedPanda

Subsequently, model training of CNN-RedPanda is shown in Figure 14,

early_stopping = tf.keras.callbacks.EarlyStopping(
moniter="val_loss', patience=3, restore_best_weights=True, verbose=1

history = model.fit(
train_dataset,
validation_data=validation_dataset,
epochs=28,
class_weight=class_weights_dict,
callbacks=[early_stopping]

loss, accuracy = model.evaluate(validation_dataset)
print(f"validation Accuracy: {accuracy * 10@:.2f}%")

Epoch 1/2@
121/121 ———————— 1935 2s5/step - accuracy: 8.4609 - loss: 39.4684 - val_accuracy: 8.6396 - val_loss: 0.7323
Epoch 2/20
121/121 ———————— B6s 621ms/step - accuracy: 0.6682 - loss: @.7187 - val_accuracy: @8.7646 - val_loss: 8.5672
Epoch 3/20
121/121 ————————— 64s 534ms/step - accuracy: 0.7727 - loss: 8.5416 - val_accuracy: 9.8104 - val_loss: 0.5134
Epoch 4/20
121/121 ———————  B2s 533ms/step - accuracy: 0.8415 - loss: 8.3957 - val_accuracy: 9.8498 - val_loss: 0.4282
Epoch 5/20
121/121 ————— 93s 623ms/step - accuracy: 0.8847 - loss: @.3188 - val_accuracy: ©.8979 - val_loss: 9.3236
Epoch 6/20
121/121 —————— 675 555ms/step - accuracy: 0.8871 - loss: 8.2999 - val_accuracy: 0.8885 - val_loss: ©0.3654
Epoch 7/26
121/121 ——————— 75s 62@ms/step - accuracy: 9.9209 - loss: 8.2235 - val_accuracy: ©.9042 - val_loss: 0.3442
Epoch 8/20
121/121 —————— 72s 537ms/step - accuracy: 8.9317 - loss: @.1784 - val_accuracy: ©.9135 - val_loss: ©.3148
Epoch 9720
121/121 ————— 75s 6l16ms/step - accuracy: 0.9445 - loss: @.1466 - val_accuracy: ©.9135 - val_loss: 0.2919
Epoch 18/2@
121/121 73s 6@@ms/step - accuracy: ©.9638 - loss: 8.1234 - val_accuracy: 8.9184 - val_loss: 0.3244
Epoch 11/2@
121/121 ————————— 73s 602ms/step - accuracy: 0.9614 - loss: @.1174 - val_accuracy: ©.9219 - val_loss: ©.3531
Epoch 12/2@
121/121 ———————— B3s 611ms/step - accuracy: @.9577 - loss: @.1354 - val_accuracy: 8.9177 - val_loss: 08.3226

Epoch 12: early stopping

Restoring model weights from the end of the best epoch: 9.

30/39 ———————  12s 391ms/step - accuracy: ©.9082 - loss: ©.2855
Validation Accuracy: 91.35%

Figure 14: Model Training of CNN-RedPanda



5 Evaluation

The results of EfficientNetBO, ResNet50 and CNN-RedPanda are discussed in evaluation
section. The results are explained with plots such as accuracy and loss curves of training and
validation, confusion matrix, and classification report.

5.1. Evaluation for EfficientNetB0

In Figure 15, the curves show the accuracy and loss of EfficientNetB0O model during training
and validation.

Model Accuracy

—— Train //___’/("___",_________’,,_______«_»___
Validation

1.00 1

0.95 1

0.90 4

Accuracy

0.85 4

0.80 1

0.75

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

Model Loss

1 — Train
Validation

~

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

Figure 15: EfficientNetBO Model Accuracy and Loss Curves
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Figure 16 presents the confusion matrix and classification report of EfficientNetB0.

Confusion Matrix
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Figure 16: Confusion Matrix and Classification Report of EfficientNetBO Model
5.2. Evaluation for ResNet50

In Figure 17, the curves show the accuracy and loss of ResNet50 model during training and
validation.
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Figure 17: Accuracy and Loss Curves for ResNet50 Model
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Figure 18 shows the confusion matrix and classification report of ResNet50.
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Figure 18: Confusion Matrix and Classification Report of ResNet50 Model

4.3. Evaluation for CNN-RedPanda

In Figure 19, the curves show the accuracy and loss of CNN-RedPanda model during training
and validation.
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Figure 19: CNN-RedPanda Model Accuracy and Loss Curves
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Figure 20 shows the confusion matrix and classification report of CNN-RedPanda.
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Figure 20: Confusion Matrix and Classification Report of CNN-RedPanda Model
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