~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Artificial Intelligence

Aswin Kumar G R
Student ID: x23245778

School of Computing
National College of Ireland

Supervisor: Ms. Sheresh Zahoor

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Aswin Kumar G R
Student ID: x23245778
Programme: Artificial Intelligence
Year: 2024 - 2025
Module: MSc. Research Project
Supervisor: Ms. Sherech Zahoor
Submission Due Date: 12/12/2024
Project Title: Deep Learning-Based Automated Detection and Classification
of Diabetic Retinopathy Using MobileNetV2 and DenseNet201
Word Count: 5990
Page Count: [23]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Aswin Kumar G R

Date: 5th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Aswin Kumar G R
x23245778

1 Introduction

This Configuration Manual contains detailed information on configuration of as well as
the deployment and operation of the MSc Research Project titled “Deep Learning-Based
Automated Detection and Classification of Diabetic Retinopathy Using MobileNetV2
and DenseNet201.” The project uses state-of-the-art deep learning approaches to per-
form automated identification and risk stratification of diabetic retinopathy — a danger-
ous diabetes-related condition that causes vision impairment. Using MobileNetV2 and
DenseNet201, the system provides a high-performance design needed for real-time dia-
gnosis and staging of the disease based on retinal images. This manual is intended for
the users of the current project, its developers, and researchers who will need to replic-
ate, maintain, or continue, the project. It outlines system’s requirement of the hardware
and software, tools and frameworks used and also Preprocessing and analysis of Dataset.
Moreover, it explores the deep learning models and training processes, provides the guide
for the Flask-based web application system deployment, and presents a comprehensive
assessment of the system effectiveness in the form of quantitative and qualitative indices.
This manual also contains information on how to work with the system: uploading pic-
tures and choosing models as well as how to analyze the results. Written and illustrated
for easy comprehension and ease of use, the manual supports the effective application of
the system by the users for maximum advantage in improving the diagnosis of diabetic
retinopathy.

2 System Specification (Figure [1))
e Device Name: DESKTOP-2RED10B
e Processor: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40 GHz (2.42 GHz)
e Installed RAM: 8.00 GB (7.73 GB usable)
e Device ID: 7054E319-8180-418D-BC54-C4D76144954D
e Product ID: 00327-35928-27204-AAOEM
e System Type: 64-bit operating system, x64-based processor

e Pen and Touch: No pen or touch input is available for this display

@ Device specifications

Device name DESKTOP-2RED10B

Processor 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz 2.42 GHz
Installed RAM 8.00 GB (7.73 GB usable)

Device ID 7054E319-8180-418D-BC54-CAD76144954D

Product ID 00327-35928-27204-AA0EM

System type 64-bit operating system, x64-based processor

Pen and touch ~ No pen or touch input is available for this display

Figure 1: System Specification

3 Software Requirements(Figure [2))

This research work was operationalised using Machine Learning and Deep Learning ap-
proaches and, therefore, the project was implemented using Python 3. For creating the
web application, Flask was used as the Web Framework, HTML CSS and JavaScript were
used for the frontend. The code execution and development was done in Visual Studio
Code (VSS) which offers flexibility and an effusive collection of the Libraries needed for
the realisation of Deep Learning models.

£ HAL27-CEBRCeHs OBPBIT OV

Figure 2: Visual Studio Code (VSS)

4 Data Source(Figure [3)

The dataset applied in this research was obtained from Kaggle, given the title “Retino-
pathy”. This dataset contains a total of 1,812 retinal images, categorized into five distinct
classes: No DR (Diabetic Retinopathy) describe images without signs of the disease; Mild
DR is characterized by mild signs of DR; Moderate DR distinguishes between mild and
moderate symptoms; Severe DR refers to advanced or severe DR; and Proliferative DR
describes the most severe form of the disease. This class-wise distribution enables the
dataset to provide sufficient data for the training and testing of Machine Learning and
Deep Learning algorithm for identification and differentiation of retinopathy stages.

mlluulﬂﬂll 9

Figure 3: Source Data

5 Data Load and Analysis(Figures [4] - [6])

Firstly, importing, the most necessary libraries for further implementation, such as Tensor-
Flow, Keras, other libraries and modules that were used for data preprocessing, model cre-
ating and visualization are presented on the Figurddand[5] MobileNetV2 and DenseNet201
were used and both models are pretrained models.

e MobileNetV2 was selected due to its small architecture and low computational
complexity, the network is effective for real-time tasks and areas with limited com-
putational resources.

Figure 4: MobileNetV2 libraries

e DenseNet201 was chosen for its dense connectivity concealing high density and
overhead map making its parameter high but which we consider an advantage due
to possibility of coping with complexity of the dataset well.

Dataset Paths for the training and testing images are defined for both DenseNet201 and
MobileNetV2 models. train_dir variable allows to set the path to the directory containing
training dataset which is a set of images divided by classes in subdirectories. Likewise,
the test_dir variable is used to represent the testing dataset directory in order to validate
the model files demos. These paths are defined as raw strings (") so that the backslashes
appearing in the path names in Windows style are not treated as escape characters by
Python. This step is very important with loading and arranging the data properly for
other preprocessing steps and also in building the deep learning model.

Figure 5: DenseNet201 libraries

Figure 6: Dataset Paths

6 Exploratory Data Analysis (EDA)(Figures 7| - 16

To generalize the results of DenseNet201 and MobileNetV2 the exploratory data analysis
(EDA) is carried out to find out more about the given data set. Using the count_images_in_directory
function we first determine the number of images in each class in the training and the
testing datasets. This step evaluates that both models have a balanced data distri-
bution, or identify any distribution issue that may impact the models. The function
plot_class_distribution helps to display the number of instances in each class for the
training and testing datasets: bar plots that will allow to evaluate the distribution of
the dataset and its heterogeneity. Further, in the plot_sample_images function, few im-

Figure 7: Count and Plot the Class Distribution

ages randomly from each class are selected using the montage widget. This visualization
aids in, not only, the quality and variety of the input data to be supplied to both the
DenseNet201 and the MobileNetV2 models but also the appearance. These steps lead
the preprocessing decisions and the selection of models such that both models are trained
based on the well understood data. Hence the visualization and statistical comprehen-
sion of the given dataset enable a fine-tuning or adjustment of both models for better
performance of the detection of diabetic retinopathy.

4

from tensorflow. preprocessing.image import load img, img to array

, img_height=224, img widtl samples_per class=3):
, samples_per class, f , 10))

img_name)
img = load_img(i e —(img_height, img width))
r—

.set_title(class_dir)

plt. show()

classes = os.listdir(train_dir)

plot_sample_images(train dir, classes)

Figure 8: Visualize Sample Images

In order to determine the dimensions of the images within the dataset, image shapes
and aspect ratios are examined before preparing the data for both DenseNet201 and
MobileNetV2 models. The analyze_image shapes function just loops through all files in
a given set and gather file width and height data. This information assists in deciding
whether the data set includes images of the fixed dimension or if the images should be
resized to fit the model’s input dimensions. The dense net 201 as well as mobile net v2
expect the images to be resized to 224%224 pixels as their expected input shape. These

analyze_image shapes(directory, clas
image _shapes = []

for class_dir in classes:
class_path = os.path.join(directory, class dir)
images = os.listdir(class_path)

for img name in images:
img_path = os.path.join(class_path, img_name)
img = load img(img_path)
image_shapes.append(img.size)

return image shapes

image shapes = analyze_image shapes(train_dir, classes)

image shapes = np.array(image shapes)

aspect_ratios = image shapes[:,
plt.hist(aspect_ratios, bin
plt.title(

plt.show()

Figure 9: Analyze Image Shapes and Aspect Ratios

aspect ratios are obtained by dividing the width of the image with the height, and plot-
ted in a histogram. It also allows to determine whether the dataset has predominantly
landscapes or portraits for example, which might influence decisions on padding or crop-
ping. Also, for the quantitative distribution of images, a scatter plot is used to display
the various dimensions that are available in the given set. In these analyses we verify
compatibility of input data with both models and identify possible preprocessing steps
necessary to train these models effectively. Distributions of pixel intensities and RGB
channels are examined; this analysis helps to determine certain distinctive features of
the image data sets with reference to both the DenseNet201 and the MobileNetV2 mod-

scatter(image & 1, image_shapes[:, 1], alpha=0.5)
.title(Tmage Siz the Da)

.xlabel(
.ylabel("
.show()

Figure 10: Image Sizes

els. The plot_pixel_intensity_distribution function is dedicated to the grayscale images
through getting pixel values, scaling it for the range [0;1] and plotting histogram. This
aids to determine if predominantly the input dataset has bright or dark pixel values or
some mixture of the two which is very essential to provide similar inputs to the two models
at the time of training. In case of RGB images the plot_rgb_channel _distribution function

plot_pixel_intensity_distribution(directory, classes, num :
pixel values = []

ight, img width), color mode

plot_pixel intensity distribution(train dir, classes)

Figure 11: Analyze Pixel Intensity

extracts the images into red, green, and blue channel. It standardizes each channel’s pixel
and creates two different histograms to represent the intensity of the given channels. This
step allows for checking dataset for bias with regards to color channels, guaranteeing the
color information for the models to learn from is balanced. The foundations for both

plot_rgb_channel distribution(directory, classes, num images=50):

in(directory, class_dir)
stdir(class_path)

for img name in images[:num_ii
.path.join(c

.flatten()
pha=0.7)

plt.title('c

plt.subplot(1
plt.hist(, b 5 cc *, alpha=0.7)
plt.title('s e tion')

plt.show()

plot_rgb_channel_distribution(train_dir, classes)

Figure 12: Analyze RGB Channels

DenseNet201 and MobileNetV2 are on the ImageNet weights, where this assumption of
normalized image input holds. This way you guarantee that by next preprocessing seg-
ment it adheres with above requirements, which in turn aids both models employed in

diabetic retinopathy detection to perform their best. The mean and standard deviation

calculate mean_std_per channel(directory, classes):
means = np.zeros(3)

stds = np.zeros(3)

num_images = @

for class_dir in classes:

class_path = os.path.join(directory, class dir)
images = os.listdir(class_path)

for img_name in images:
img path = os.path.join(class path, img name)
img = load_img(img_path, target_size=(img_height, img width))
img = img_to_array(img) / 255

means += np.mean(img, axis=(@, 1))
stds += np.std(img, axis=(0, 1))
num_images += 1

means /= num_images
stds /= num_images

print(
print(nel: {stds}")

calculate mean_std_per_channel(train_dir, classes)

Figure 13: Calculate Mean and Standard Deviation for Each RGB Channel

of pixel intensities are computed, and the distribution of pixel intensities in images is as-
sessed utilizing the correponding histograms to verify whether the content of the dataset
corresponds to the training of the models of DenseNet201 and MobileNetV2. The function
calculate_mean_std_per_channel calculates the statistics, mean, and standard deviation of
all images ‘s pixel intensities channel wise, meaning three channels- Red, Green, and Blue
respectively. This step helps to get the intensity and contrast of each channel and strike
a balance for each channel of color in the frame to avoid one or more channels being
dominant of the others. Next, they calculate the mean and variance of these statistics
and depict such in bar plots alongside others to expose any bias that may hinder the
learning of the models.

import numpy as np
import matplotlib.pyplot 2

means = np.ar
stds = np.arr:

channels = [Red"

fig, ax = plt.subplots(1, 2, figsize=(12, 6

plt.tight layout()
plt.show()

Figure 14: Calculate Mean and Standard Deviation for Each RGB Channel

The calculate_overall _stats function calculates the overall mean, median and the stand-
ard deviation of pixel intensity average over all images and all channels. These metrics
give a simple yet comprehensive picture of how bright and variable the entire dataset is.
These overall statistics are presented in a bar plot to get an idea of the global features of
the data set.

As it will be recalled both DenseNet201 and MobileNetV2 use pre-trained weights
on ImageNet where input data is normalized to specific distributions. By doing these

7

img_width))

all pixels.append(img.reshape(-1, 3))

all pixels = np.vstack(all_pixels)

over
over

print(
print(
print(£"0

calculate_overall_stats(train_dir, classes)

labels
values

plt.figure(figsize=(8, 6))
plt.bar(labels, values, color=[‘blue’

plt.title(a Median, and Standard Deviation c xel Intensities®)
plt.ylabel

plt.show()

Figure 16: Calculate Overall Pixel Intensity Statistics

statistic, you make sure the input format of the models will be matched with the dataset,
resulting into higher training and better prediction of diabetic retinopathy disease. All
the above-stated preprocessing steps are very important to obtain higher results and to
overcome the problem of unequal or imbalanced pixel distribution.

7 Preprocess Dataset for Training (Figures |17 - (18

batch size
epochs = 5

img height = 224
img width = 224

Figure 17: Image Size

This involves pre-processing of the dataset in readiness to train DenseNet201 and the
MobileNetV2 model. An ImageDataGenerator is then created with rescale parameter to
scale the pixel values from range [0, 255] to [0, 1]. This appears to normalise the data
as a similar pre-process was performed for both inputs based on the models’ expecta-
tions of normalised input data as used in ImageNet datasets. Two generator models

train_data_gen and val_data_gen are built for the training and validation data set. These
generators read images from the given directories, resize them to the standard input size
of 224 x 224 pixels for both models, normalize them and arrange them into batches.

During training, the model seems to learn in sequence, and the training data generator
fixes this by using random shuffling to minimize this issue. The validation generator,
in the same way, brings images for model assessment while not permutating, to make
outcomes well-arranged. Part of the optimization parameters include using a batch size
equal to 32, which is memory efficient during training yet fast for computations. In
preprocessing the dataset in this way, both DenseNet201 and MobileNetV2 are fed with
correctly formatted and standardized data which ensures the best results are obtained
from the networks in the detection of Diabetic Retinopathy.

Figure 18: Creating Data Generators for Training and Validation

8 Define and Train the Model
8.1 MobileNetV2 (Figures [19 -

Figure 19: Pre-trained MobileNetV2

mobile = tf.keras.models.Sequential()

mobile.add(rsntBase)

mobile.add(GlobalAveragePooling2D())
mobile.add(Dense(5, activation = "so
mobile.summary ()

Figure 20: Custom Layers

MobileNetV2 architecture is customized, trained, and then saved for the diabetic
retinopathy detection problem. MobileNetV2 which is improved and pre-trained on Im-
ageNet dataset is selected as the base model for transfer learning. Same as in the previ-
ous example the convolutional base is loaded with include_top=False and its weights are
frozen. Additional layers are custom layers, which are GlobalAveragePooling2D, applied
before the final fully connected Dense layer which has 5 nodes to classify the diabetic
retinopathy into the five classes. In the output layer a softmax nonlinearity is applied to
give probabilities for each class of the input. The model is compiled using the Adam
optimizer for an efficient adaptive learning and categorical crossentropy loss for multi-
class classification problem. Training is done to 60 epochs with the help of the previously

Figure 22: Model Training

created data generators, the training generator generates the set of normalized image
batches and the validation generator tracks performance on unseen images. After train-
ing the model is stored as MobileNetV2.h5 so that the model can be returned to for
testing or used in deployment without having to be trained again. This approach effect-
ively enables transfer learning while guaranteeing a solid model well suited to diabetic
retinopathy classification.

mobile.save('MobileNetv2.h5")

Figure 23: Saving the Model

8.2 DenseNet201 (Figures [24] -

Figure 24: Pre-trained DenseNet201

resnet = tf.keras.models.Sequential()

resnet.add(rsntBase)

resnet.add(GlobalAveragePooling2D())
resnet.add(Dense(5, activation = "so
resnet.summary()

Figure 25: Custom Layers

The DenseNet201 model is configured, trained and then saved with respect to the
task of diabetic retinopathy classification. ImageNet pre-trained Convolutional Neural
Network DenseNet201 is used as a transfer learning basis model. The top layers of
the base model that does not include the top classification layers are not included (in-
clude_top=False) and the weights of the model are frozen in order to use them for feature
extraction only. The base model is modified with additional layers; GlobalAveragePool-
ing2D layer to transform the feature maps into a single vector, the latter is followed by a
Dense layer containing 5 neurons, which will classify the images into the stages of diabetic
retinopathy. In the final layer, the softmax activation function is applied so as to produce
the probability of each class. The model used Adam optimizer, this optimizer optimizes
the learning rate automatically to improve training efficiency, categorical cross entropy

10

Figure 26: Model Compilation and Training

was the loss function used for multi class classification, the model used accuracy to meas-
ure its performance. Developed for 60 epochs using the data generators processed earlier.
The training generator supplies normalized and augmented images for learning and the
validation generator then assesses the performance of the model on data that it has not
seen before. The trained model is then saved in h5 format as DenseNet201.h5 format so
that the reuse is accomplished for evaluation, fine-tuning or deployment. This approach
takes advantage of feature extraction of DenseNet201 to provide reliable performance in
identifying diabetic retinopathy.

resnet.save('DenseNet2@1.h5")

Figure 27: Saving the Model

9 Model Evaluation (Figure 28

The trained models are DenseNet201 and MobileNetV2, the model’s performance is as-
sessed on the validation data set finding the true labels and proposed labels from the
models. The actual class labels are obtained from val_data_gen which generates batches
of images and their one hot encoded equivalents. These labels are combined and join
into a new array and then the code convert all one hot encoded form into simple numeric
form using np.argmax. The trained models are then used in the manner of predicting

Figure 28: Model Prediction

the classes of all validation images. These predictions are produced as likelihoods of the
five classes of diabetic retinopathy. Applying the function np.argmax to these probabil-
ities, we find the predicted class indices which are most likely to belong to the images.
This makes the process same for both models to obtain similar results of the evaluation
process. The true and predicted labels serve as a basis for other performance analysis
including construction of confusion matrix and determining accuracy, precision and re-
call and Fl-measure. This step enables a comparison to be made quantitatively of how
well DenseNet201 and MobileNetV2 are suited for the diabetic retinopathy classification
task.

11

plot_confusion matrix(cm

on matrix’,

Blues):

plt.tight layout()
plt.yl True label’)
plt.xlabel(’Predicted label’

Figure 29: Confusion Matrix

10 Confusion Matrix (Figures 29| - 30

Therefore, a confusion matrix is constructed and displayed to assess the DenseNet201 and
MobileNetV2 on the classification of diabetic retinopathy. The confusion matrix shows
the truths value of the validation set with the model’s found prediction which gives clearly
classification of accuracy ratio for each class. The confusion matrix has actual classes at
the row side, and the predicted classes are on the column side. The actual classifications
are formed within the diagonal whereas misclassifications are displayed at other locations
in the grid.

The plot_confusion_matrix function can be used to plot a heatmap, in which Y-axis rep-
resents True Label and X-axis represents Predicted label and the color intensity actually
shows how many samples fall in that cell. The function can also optionally scale the val-
ues to expressions of percentages as well to make further more relative contrasts between
model performance on the imbalanced datasets easier to observe . To make the generated
matrix interpretable, classes that are used for labeling are class names including ‘No_DR,,’
‘Mild,” ‘Moderate,” ‘Severe,” and ‘Proliferative_DR.” By visualizing confusion matrices for

m sklearn.metrics import confusion matrix
itertools
matplotlib.pyplot as plt
onfusion_matrix(y_true=true labels, y pred-prediction)

cm_plot_labels = ['No_DR', M

plot_confusion_matrix(cm=cm, classes=cm_plot_labels, title='Confusion M

Figure 30: Visualization

DenseNet201 and MobileNetV2, we realize specific classes that each model is good at or
bad at. For instance, it can tell the extent to which the models are overlapping between
severe and moderate cases or if the rare classes are not being identified. It is important
with this step in order to obtain perspectives for further improvements of the models
where the pros and cons are outlined.

12

11 Model Metrics (Figure (31

Performance measures of the DenseNet201 and MobileNetV2 for the classification of DR
are computed and assessed. Specifically, we calculate four evaluation scores: accuracy,
precision, recall, and F1 score. Accuracy determines the total percentage of preciseness
by dividing the number of samples that the models have predicted correctly, to the total
samples available. Accuracy measures the ratio of the total accurately predicted posit-
ive samples to the total number of these types of samples thereby illuminating just how
accurate the models are when making their predictions. Recall computes the percentage
of actual positive samples correctly remembered by the models as it focuses on accur-
ate identification of true positives. The Fl-score computes the harmony mean of both
precision and recall to giving a single figure for checking the two measures concurrently.
Both these metrics are computed through the true_labels (labels obtained from the valid-

Figure 31: Model Metrics

ation data sets) and predicted_labels (predictions generated by the models). In the case
of multi-class classification, the metrics are averaged for all classes, by using the micro
method. From both DenseNet201 and MobileNetV2 model, it becomes possible to define
which model has a higher or lower overall accuracy, class level of precision, sensitivity
and specificity, and F1 score. It helps in deciding whether to choose or improve the best
option for the model in the application for detecting diabetic retinopathy.

12 Explanation of app.py (Figures |32 - 42

This Flask application serves as a web-based interface to predict diabetic retinopathy
classification using two deep learning models: DenseNet201 and MobileNetV2. The code
enables users to upload an image and choose between the described models and get the
prediction. Below is a detailed explanation of each part of the code:

12.1 Import Required Libraries

The first part of the application requires importation of several libraries for building and
running the Flask web application, pre-processing images and generate predictions with
the help of pre-existing machine learning models. Flask is imported as the core web
interface builder tool as well as for manoeuvring user interactions and for routing the

13

r_template, request

ensorflow.keras.models import load model
from tensorflow.keras.preprocessing import image

import numpy as np

Figure 32: Import Required Libraries

requests and last but not least for HTML templating. As for the libraries, TensorFlow
and Keras are imported to load the pre-trained deep learning models such as DenseNet201
and MobileNetV2 as well as for performing the transformation of images for making the
prediction. In particular, load_model in the Keras utilities is applied to load the saved
models, and the image module that helps to preprocess the uploaded images (resizing,
normalizing and reshaping) corresponding to the input format of the model. Last, numpy
lib is imported to perform array manipulations and data transformation tasks which may
be required in preprocessing or during the stage of making predictions. Combined these
libraries are the fundamental core that is employed when aiming to create a viable—but
basic—machine learning web application.

12.2 Initialize Flask Application

app = Flask(_ name)

Figure 33: Initialize Flask Application

The second step involves allowing Flask to handle the application hence creating an
instance of the Flask class and saving it in variable app. This initialization is used to
configure to Flask, the web framework of choice for this application. By default, the
flask instance is the central figure and through it one can define routes, handle HT'TP
requests and templates. Calling Flask(__name__) tells the app where it is defined and
Flask then understands where static and template files are relative to the app directory.
This initialization step is necessary for making routes and for setting up the fundamental
application’s functionality and what it will do, for instance, handle inputs from users and
generating HTML pages on the fly.

12.3 Load Models

DenseNet = load model(

mobilenet = load model

Figure 34: Model Loading

In the third step, the DenseNet201 and MobileNetV2 were imports into memory
space using load_model function in Keras. The models stored in .h5 format hold the wt.
value, which was learned firearm analysis procedure or architecture during the training
session and can be used to make the predictions on the new data. The DenseNet201.h5

14

file contains DenseNet201 model fine-tuned on ImageNet for the diabetic retinopathy
classification as well as for the MobileNetV2 model optimized for the same task. The
deployed models are made easily accessible for use during inference using the variables
DenseNet and mobilenet when loaded into the application. They are designed to be ready
to take preprocessed input images and spit out predictions to form the ML capability of
the envisaged application.

12.4 MobileNetV2 Prediction

predict_label(img_path):

test_image = image.load_img(img_path, target size-(224,224))
test_image = image.img to_array(test_image)/255.0
test_image = test_image.reshape(l, 224,224,3)

predict x=mobilenet.predict(test image)
classes_x=np.argmax(predict_x,axis=1)

return verbose_name [classes_x[0]]
Figure 35: MobileNetV2 Prediction

The predict_label function was also designed entailing the generation of the predic-
tions using the MobileNetV2 model. It accepts the path of an image file img_path as
the input and then it properly prepares the given image for the feeding to the model.
First, to represent the image in the model, it is loaded using the load_img function from
Keras and immediately resized to the standard size for the chosen model: 224 x 224.
Subsequently, the input image is converted to a NumPy array format and then further
standardize by the division the pixel value through 255.0 to make it into a range of 0 to
1. The image array is then resized to a 4-D tensor with the batch size of 1 (As the inputs
to the network must be in the form 1 * height * width * channel).

Preprocessed image is then used to pass to the MobileNetV2 model for prediction us-
ing the predict method which gives the probabilities of each class. The np.argmax is used
to find out the index corresponding to the class having maximum probability, which is
the predicted class for the model. Lastly, the function employs the verbose name dic-
tionary to replace the class index with the label that would be easier to understand such
as “No_DR,” “Mild,” and the like and then return the label as the prediction. This
function bows up the entire work flow for preprocessing and predicting an image using
MobileNet V2.

12.5 DenseNet201 Prediction

denseNet(img_path):

test_image = image.load_img(img_path, target size=(224,224))
test_image = image.img_to array(test image)/255.e@
test_image = test_image.reshape(1, 224,224,3)

predict x=DenseNet.predict(test image)
classes_x=np.argmax(predict x,axis=1)

return verbose_name [classes_x[8]]

Figure 36: DenseNet201 Prediction

15

The denseNet function makes predictions applying the DenseNet201 model in the
same way as the function predict_label. The function takes the image path, img path as
input and processes the image in order to meet the standard of DenseNet201. Firstly,
the image is built in and then resized through Keras’s load_img to 224 x 224 pixels.
Next, the obtained image is converted into the NumPy array where its pixel values are
divided by 255.0 in order to get range [0, 1]. The normalized image array is rescaled
into the DenseNet201 model acceptable 4D tensor format with a batch size of 1 (shape
(1,224,224,3)).

The generated preprocessed image is inputted to the DenseNet201 model, using predict
method, to get the probabilities of each class. The argmax function is used in numpy
called np.argmax whence we obtain the index of the class with the highest probability
which gives the output class. Last but not the least, the function converts this class in-
dex to its human-readable label by checking the verbose_name dictionary and returns the
label. They represent prefect tools for preprocessing and prediction, and this function is
designed to encapsulate the DenseNet201 model directly into the application’s workflow.

12.6 Home and Navigation Routes

@app.route("/
@app.route(”/first™)
first():
return render_template('first.html")

@app.route(”/login™)
login():
return render_template('login.html')

@app.route("/ ", methods=['GET", 'POST'])
index():
return render_template("index.html™)

Figure 37: Home and Navigation Routes

The home and navigation routes determine the layout of the web application be-
cause they map URLs to their correspondent HTML templates. The @app.route(”/”)
and @app.route(” /first”) decorators define the root route and the /first, the first.html
template is probably the home page, or, the first page the user visits upon their inter-
action with the application. Likewise, the /login is created using @Qapp.route(” /login”)
decorator and returns the ‘templates/login.html” which can offer the interface for the user
login. The /index route, was created using the BeautifulSoup and is defined with the
@app.route(” /index”, methods = [GET’, ‘POST’]) decorator, it will respond to both
the GET and POST methods and pass the input to the index.html template. This page
could act as the homepage or the base or the mode of entrance into/operation of the
application. Combined, they provide an easy way to move from one section of the web
app to another, creating the framework of the user interface.

12.7 Image Upload and Prediction

The /submit route deals with image uploading and prediction, the only way in which
users can in some way engage with the application. It supports GET and POST meth-
ods, but the main function is processed during the POST request. The users upload an

16

Figure 38: Image Upload and Prediction

image using a form (my_image) and choose between two models, DenseNet201 or Mobi-
leNetV2. When the image has been uploaded, it is given a file name and saved in the
static/tests/ folder for ease of processing. It then examines the chosen model and ex-
ecutes the correct prediction function either density prediction for DenseNet201 or label
prediction for MobileNetV2 to analyze the image, make the prediction, and identify the
type of diabetic retinopathy:.

The prediction result is then passed alongside the image path and the model name to
the template for prediction.html. It looks also intersects with the previous one and it
is a simple HTML template that enables the identification of the uploaded photo and
the prediction result to facilitate model-based classification. This route adopts the work
of combining image input, model selection/processing, and result display which is the
significant function of this web application.

12.8 Chart and Performance

@app.route("/chart™)
chart():
return render_template('chart.html")

@app.route ance™)
perform
return render_template(' performance.html")

Figure 39: Chart and Performance

The /chart and the /performance routes can be used as end points to display structures

and statistics inside the application. The /chart route is defined having the @app.route(” /chart”)

decorator and this function returns the chart.html template which presumably contains
charts or graphical representations regarding diabetic retinopathy classification or trends,

distribution and so on. Likewise the /performance route defined with @app.route(” /performance”)

as its decorator, would notify the performance.html template, which might present met-
rics like accuracy, precision, recall, or Fl-score as well as compare the performance of
DenseNet201 against MobileNetV2 . These routes enrich the application by presenting
analytical visualisations and dynamic status updates while increasing comprehensibility
and refine decision making abilities.

17

verbose name = {

‘Proliferate DR’

Figure 40: Defining Prediction Labels

12.9 Defining Prediction Labels

The verbose_name dictionary shown is a general form used to address a situation where
the models assign numerical class indices as their labels and relates them to their hu-
man equivalent. These indices, such as 0, 1, 2, 3, and 4, represent the five categories
of diabetic retinopathy: Normal no DR (No Diabetic Retinopathy), Mild, Moderate,
Severe, and Proliferative DR (Proliferative Diabetic Retinopathy). Since DenseNet201
and MobileNetV2 provide outputs in the form of numerical values this dictionary helps
the application translate these figures into results which are more easily interpretable by
a user. This way the keys of the dictionary give an accurate and informative understand-
able picture to the user as a result of the model predictions which are associated with
these labels. This mapping is something that would form a part of the user experience
since it offers a translation of the technical output to diagnostic type.

12.10 Running the Flask App

The final step in the application involves running the Flask development server by in-
cluding the statement if _name__ == ’_main_":. This helps to ensure that, if it is being
run directly, it will run without considering it a module of some other program. Flask
app development requires the use of a command line whereby the app.run(debug="True)
command will start the Flask server locally, making the developed application accessible
through a web browser is done. Debug=True puts the web application in Debug mode
which will give more detailed errors messages and will also restart each time that changes
are made. This is useful particularly during development as the various problems that
characterize this process are easily diagnosable and can be easily tested. By running this
block, the application is now up and fully ready to process client interactions, prediction,
as well as other routings within the code.

12.11 Flask Application on Development Server

Checking the terminal, the message that the Flask Application is running on local server
in development mode gives the green light that the app was successfully created and

18

if _ name__ =="__ main

app.run(debﬁé =

Figure 41: Running the Flask App

Figure 42: Flask Application on Development Server

deployed. The line * Serving Flask app ‘app’ means that now a web application that is
launched in the Python script with the same name — app, is ready to serve to requests.
Debugging mode is enabled, as shown by the line * Debug mode: on, which means that
the server is continuously reloading every time some changes are made on the code and
gives the best errors whenever a problem occurs. The application is accessible at http:For
example, go to in the address bar of your web browser and type http://127.0.0.1:5000,
where 127.0.0.1 represents the localhost (the machine you are currently using), and 5000
is the default port for Flask. Other users can open the given URL in web browser in
order to interact with it and observe main goals of the application.

12.11.1 Landing Page: Efficient Detection of Diabetic Retinopathy (Figures

43- 48)

) A 5]
: //Tltu—i'-&l". o

Figure 43: Landing Page: Efficient Detection of Diabetic Retinopathy

In Figure 43, the visitor of the web application of the work titled “Efficient Detection
of Diabetic Retinopathy through Deep Learning” can only see the basic landing page. At
the top of the page, there is a beautiful large picture of an eye, which tells the visitor that
this site is about retinal health. Large letters are positioned over the image and state
the goal of the application: to detect diabetic retinopathy using deep learning algorithms
such as DenseNet201 and MobileNetV2.

The primary horizontal bar contains the hyperlinks “Home” and “Login” allowing people
to go to the main page and get to the webpage that requires authorization. The general
layout is clear and leaves a businesslike impression with target users in a specific niche

19

who are searching for the application’s capabilities. It is a landing page of the application
or a website encouraging the users to learn more about the specific application.

12.11.2 Login Page: Access with Admin Credentials

The Login Page gives the user a secure way of getting to the application for the detection
of Diabetic Retinopathy. In order to continue, the users should enter their credentials at
stages Username / Password . For demonstration purposes, the default credentials are
set as:

NNNNNNNNNN

Login

pppppppp

Figure 44: Login Page: Access with Admin Credentials

e Username: admin
e Password: admin

Once the correct credentials have been inputted into the spaces provided, hitting the
“Login’ button sends the entered data for validation. This simple login capability serves
as a way of protecting the application from unauthorized users only. BYOD capability
has been integrated to enhance usage of the system, with a clean interface and great
organizational format as the vital elements that give users easy control for secure and
restricted access to the application.

12.11.3 Image Upload and Model Selection Page

The following completes the figure shows the Image Upload and Prediction Interface
of diabetic retinopathy detection application. Due to the fact that this system is the
main functional page of the system, users can upload images and then submit the same
for analysis and classification. At the very beginning of the page, a title of “Diabetic
Retinopathy Detection” is present and after it there is a large and aggressive heading
“Preview” which points out that the goal of the page is to present the user with the
preview of the offer. In the interface, users are offered an input field which is labeled
“Upload Image,” and through it people can choose the image file that is stored in their
local device for further processing. Under the uploader field, there is a drop down list
which has a label model on it, where the user have to select the deep learning models for
prediction like MobileNetV2 or DenseNet201 etc. The green-colored “Submit” button is
located at the bottom of the page, and submitting the uploaded image along with the
selected model will cause the backend to generate and display the classification outcomes.
The style used is clean with no complicated graphics allowing its users to use the system
with relative ease as well as effectively utilizing the prediction facility.

20

Diabetic Retinopathy Detection

Preview

Upload Image:

Choose File |No file chosen

Model: | MobileNetV2 v

Figure 45: Image Upload and Model Selection Page

12.11.4 Prediction Result and Selected Model

Figure 46 shows the output generated by the diabetic retinopathy detection application
once a picture has been uploaded, and the “Submit” button is clicked. On the page,
there is the retinal image that was uploaded by the user, the prediction result, and finally
the model selected for classification. In this case according to the Prediction Result the
uploaded retinal image is described as “Mild” which denotes mild stage of the DR. The
Model Selected label is clearly shown as MobileNetV2 to provide an indication that this
deep learning model was employed to analyze the image and produce the prediction. In

Prediction Result is : Mild

Model Selected is : MobileNetVz

Figure 46: Prediction Result and Selected Model

this simple result page, the input image is displayed and there is an easy-to-read result
of the application’s diagnostic. Since the uploaded Image is shown to the users and the
prediction is printed along with it, the end users can audit the input and its output.
Ensuring the selected model is also included adds to the clarity recurrent in analyses
using similar models, particularly when other models are used as a benchmark. As a

21

consequence of the present work, this output refers to the effectiveness of the proposed
application for producing accurate and user-friendly results when it comes to diabetic
retinopathy detection.

12.11.5 Performance Analysis Page

Performance Analysis
MOBILENETV2 PERFORMANCE ANALYSIS
Accuracy: 0.934
Precision: 0.877

Recall: 0.934

Figure 47: Performance Analysis Page

The Performance Analysis Page gives a comparison of the specific results of both
the MobileNetV2 and DenseNet201 for classifying DR. A variety of performance indicat-
ors, including Accuracy, Precision, Recall and F1-Score are provided for the two models,
providing important data for comparison. Accuracy is a measure of how much of the total
predictions got it right independent of the category while Precision looks into how well
the models do in reducing the number of false positives or in other words looking at the
actual positives among the total number of positives that were predicted. Recall defines
the ability of distinguishing between actual positive cases and potential false negatives.
Precision is a measure of how many of the identified entities are genuinely negative, and
Recall which is a measure of how many of the negative entities in the actual dataset are
successfully flagged as such by the models In order to address both Precision and Recall
values in managing the models’ imbalanced datasets, a balance is passed in the form of
a harmonic mean called F1-Score.

The page also contains the Confusion Matrix for each model where a visual demonstration
is provided for the classification in all the classes like “No_DR” and “Proliferate_DR”.
This matrix enables users to find out about the strengths and weaknesses of the models by
pointing out areas of right and wrong classifications or misclassifications. The structure
of the design supports end users to understand the metrics and the visualization forms
in an easy manner. For this reason, users are infused with equal performance results of
both models; MobileNetV2 and DenseNet201 making a decision on what is well suited
for diabetic retinopathy detection and identifying potential improvements to be made.

12.11.6 Chart Page

The Figure 48 gives the Chart Page of the developed application related to the detection
of Diabetic Retinopathy that shows the training and validation accuracy of the two DL
models; MobileNetV2 and DenseNet201. The chart uses a bar graph where each model
or step is described in blue bar indicating the training accuracy and red bar for the
validation accuracy.The aims of this side by comparison is to give an uncomplicated
feel of how each of these models trains and performs against unseen validation data.
From the chart, the users can tell which model gives a higher accuracy and how much

22

Figure 48: Chart Page

difference exists between the training accuracy and validation accuracy meaning that
the model is overfitting or underfitting.The name of the page is Chart with the subtitle
Diabetic Retinopathy Detection which indicates that presented charts are concerning the
application’s performance. With such a comparison shown graphically, an application
allows users to assess and compare the efficacies of MobileNetV2 and DenseNet201 and
select between the two models most effectively.

23

	Introduction
	System Specification (Figure 1)
	Software Requirements(Figure 2)
	Data Source(Figure 3)
	Data Load and Analysis(Figures 4 - 6)
	Exploratory Data Analysis (EDA)(Figures 7 - 16)
	Preprocess Dataset for Training (Figures 17 - 18)
	Define and Train the Model
	MobileNetV2 (Figures 19 - 23)
	DenseNet201 (Figures 24 - 27)

	Model Evaluation (Figure 28)
	Confusion Matrix (Figures 29 - 30)
	Model Metrics (Figure 31)
	Explanation of app.py (Figures 32 - 42)
	Import Required Libraries
	Initialize Flask Application
	Load Models
	MobileNetV2 Prediction
	DenseNet201 Prediction
	Home and Navigation Routes
	Image Upload and Prediction
	Chart and Performance
	Defining Prediction Labels
	Running the Flask App
	Flask Application on Development Server
	Landing Page: Efficient Detection of Diabetic Retinopathy (Figures 43 - 48)
	Login Page: Access with Admin Credentials
	Image Upload and Model Selection Page
	Prediction Result and Selected Model
	Performance Analysis Page
	Chart Page

