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Deep Learning-Based Automated Detection and
Classification of Diabetic Retinopathy Using

MobileNetV2 and DenseNet201

Aswin Kumar G R
x23245778

Abstract

Diabetic Retinopathy (DR) is one of the most common causes of blindness in
global health today, early screening is important in preventing the diseases pro-
gression and complications. The existing approaches in diagnosing TB are time-
consuming, involves the use of expert personnel which is barely available for timely
diagnostic intervention. Although the automated solutions based on deep learning
have been demonstrated as feasible, a range of unvarying and efficient classification
across all the levels of DR stage has not been achieved. This study leverages state-of-
the-art deep learning models, MobileNetV2 and DenseNet201, to classify retinal im-
ages from the Kaggle Retinopathy dataset into five DR stages: It can be None, Mild,
Moderate, Severe and Proliferative Diabetic Retinopathy abbreviated as No DR,
Mild, Moderate, Severe, Proliferative DR. Normalization was used with the aims
to make the model more launches and insensitive to the input data values, as well
as, data augmentation was performed to minimize class over/underrepresentation.
Fine-tuning these models was done while employing common metrics, including
accuracy rate, precision, recall rate, and F1-coefficient. The results therefore valid-
ate these models, with MobileNetV2 attaining 93.4% accuracy and F1-score, while
DenseNet201 attained 92.5% accuracy and F1-score. In view of these, it is evid-
enced that combining efficient deep learning techniques for scalable, accurate, and
efficient DR classification allows enhanced diagnostic reliability in clinical practice.

1 Introduction

Diabetic Retinopathy (DR) is an important complication of diabetes and the major cause
of vision loss and blindness among working-aged adults. Recently, the global prevalence
reached 463 million and is expected to increase DR burden significantly International
Diabetes Federation (2019). Diabetic retinopathy (DR) is characterised by morphological
changes and classified by the severity of DR into non-proliferative DR and proliferative
DR which often leads to blindness. Prevention is the best cure, especially in Kadima
where early detection of these diseases received very little support, despite the fact that
treatments for blinding diseases are available; the current techniques are however very
costly in term of manpower and time as they depend on a team of ophthalmologists to
analyze the images of the retina. The inequality of global healthcare leads to significant
challenges particularly in developing and pointedly resource-scarce environment conveys
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that millions endure unacknowledged and untreated. Alternatively, an automated ap-
proach to DR stage detection and classification is feasible. The incorporation of Artificial
Intelligence (AI) and Deep Learning especially Convolutional Neural Networks (CNNs)
has enabled medical imaging find tools that help with pattern recognition in imaging data
types. CNNs have proven to have great promise in areas such as oncology, and radiology
in particular where analysis of images enables the determination of disease and facilitates
crafting a treatment plan. However, it must be noted that current development of DR
classification has open issues such as the variation in image quality, the disparities of the
imaging devices, existence of the imbalanced classes of the datasets, and dissimilarities in
the performances of automated models Abràmoff and et al. (2018) Solving these issues is
crucial for developing valid AI-based diagnostic instruments applicable to clinical practice.

Current DR detection procedures involve the assessment of fundus images by human
raters, specifically ophthalmologists, this process is subjective and inter-observer incon-
sistency. These problems can be addressed by the automated system for DR detection
where the classification method of retinal images into DR stages is objective, reprodu-
cible, and efficient. Several algorithms have been proposed for this purpose; however,
most of them use a combination of hand crafted features or low level vision techniques
which may not be efficient for different datasets. Medical image classification has shifted
to deep learning because it automatically extracts hierarchical features from the data
automatically. However, for the majority of deep learning models for DR detection, the
level of accuracy is insufficient or there are no adequate resistance for using in clinic.
This is mainly because many issues arise from the handling of imbalanced datasets and
the ability to generalize across a range of imaging conditions.

To fill these gaps, this research studies the performance of two state of the art CNN
architectures; MobileNetV2 and DenseNet201 for DR stages classification as aided by the
Kaggle Retinopathy dataset. MobileNetV2 is considered light-weighted, thus best suited
for deployment in environments with limited resources while DenseNet201 is well suited
for feature extraction because of the densely connected layers which make reusing features
easier. By leveraging transfer learning, this study fine-tunes these pre-trained models to
classify retinal images into five DR stages: No DR, Mild, Moderate, Severe, Proliferative
DR. Pre-trained layers help in reducing the amount of labeled datasets needed and on
top of it the robust layer enables the models to learn from the large datasets it has been
trained from like the ImageNet Deng and et al. (2009). In any deep learning, the prepro-
cessing phase is important, especially if the data set in the medical images is imbalanced.
As part of the preparatory measures in this study, a significant number of steps were
taken to improve model performance and versatility. Data normalization techniques ap-
plied in the set pre-processing floor made pixel intensity distributions standardized, while
introduction of data augmentation introduced some form of variation in the training data,
having a positive impact on the prevention of overfitting. These steps were necessary in
dealing with issues that characterizes Retinopathy dataset including differences in images
sizes, illumination and class imbalance problem.

1.1 Research Question

The primary research question guiding this work is: How do MobileNetV2 and
DenseNet201 models perform in categorizing retinal images from the Dia-
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betic Retinopathy Detection dataset into the 5 stages of Diabetic Retinopathy
in terms of accuracy, precision, recall, and F1-score?

To address this question, the following objectives were outlined:

1. Review the current literature on machine learning algorithms for automatic DR
diagnosis.

2. Develop transfer learning models, including MobileNetV2 and DenseNet201, for
multi-class classification.

3. Employ technical pre-processing measures adaptable to the features of the analysed
databases.

4. Assess the performance of the presented approaches in terms of clinical relevance.
By systematically addressing these objectives, this work aims at providing the proof-
of-concept of the utilization of advanced CNNs for scalable DR classification.

The findings of this study offer important information to understand the application
of deep learning in DR detection in detail. In all the stages of DR, MobileNetV2 model
was as accurate and reliable as DenseNet201 model. MobileNetV2 achieved 93.4% of
accuracy and F1 score of 93.4%, where DenseNet201 achieved an accuracy of 92.5% and
F1 score of 92.5%. These metrics provide evidence for the performance of such models in
capturing patterns in images of retinas while providing accurate classification even where
these patterns may be intricate. Moreover, the models developed in this paper incor-
porate transfer learning and rigorous data preprocessing to guarantee that the model’s
performance is not only high but also stable in terms of input variations. These ob-
servations open up the possibility of these architectures for narrowing the gap between
conceptional models of AI and actual usable solutions.

In theoretical framework of the work, it inherits to the development of recognizing deep
learning in medical imaging by showcasing the use of improved CNN frameworks for multi-
classification of the DR stages. The incorporation of MobileNetV2 and DenseNet201 to
the diagnostic process has further possibilities to improve the DR screening portability
and availability in the developing countries. However, in the real-word application, such
high accuracy and reliability of these models, may imply shorter diagnostic time or bet-
ter patient’s prognosis, not to mention reduced healthcare costs. Overall, the automatic
classification leaves clinicians to concentrate on the treatment and the patients while us-
ing the outcome as an input from AI. Nevertheless, it is essential to note the following
objectives of this study. The Retinopathy dataset, despite being extensive, may not be
sufficient to depict all the varying state of real-world retinal images. In the same regard,
transfer learning implies that the weights they incorporate are initially trained on other
tasks as well, and hence the models have access to limited optimized knowledge for med-
ical imaging. In future studies, the information could be gathered from larger and more
divers samples, and the methods of training the models for different domains could be
stimulated for better results.

Finally, this study aims to show that both MobileNetV2 and DenseNet201 can be power-
ful instruments for the automated classification of DR. In gaining high accuracy and
precision with high recall as well as high F1-score, it indicates that these models can be
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applied in different clinical applications since both scalability and reliability are essential
in clinical engineering solutions. Besides contributing to the state of the art in DR detec-
tion, this paper also provides a foundational research for the next wave of improvement
and development of AI-based diagnostic systems in the medical filed.

The structure of this paper is as follows: In the Literature Review section reviews pre-
vious attempts at DR identification and the challenges of those methods to situate this
work. Section 3 describes the data set, data pre-processing and training of MobileNetV2
and DenseNet201 networks. The Results and Discussion sections describe the evaluation
indicators of the constructed models and discuss the potential applications in clinical
practice. Lastly, the Conclusion restates the findings in light of the subject and contrib-
utes positively toward the area of medical diagnostics.

2 Literature Review

Diabetic Retinopathy(DR) is a common microvascular complication of diabetes and a
leading cause of blindness among the populace worldwide. As evidenced in this paper,
DR detection has become an increasingly complex problem as new AI methods such as ML
and DL emerge; many prior and recent studies have harnessed these techniques to build
automated DR detection systems. This section provides a comprehensive review of related
work in the domain, organized into three sections: classification methods using early
traditional approaches, deep learning improvements, current trends and issues. Included
in the review are the datasets employed, the models utilized, the accuracy obtained,
and the constraints of each type of strategy, followed by a discussion of how the current
methods fall short and where and how they could be improved.

2.1 Conventional Machine Learning Techniques

In early endeavors of DR detection, strong reliance was put on conventional machine
learning methods with respect to engineered features. These models normally employed
low level image features including color, texture and shape of the retinal image to detect
DR related pathological features including microaneurysms, exudates and haemorrhages.
Niemeijer and et al. (2007) proposed one of the first algorithms for identifying microan-
eurysm, using DiaretDB1 dataset. By using the k-Nearest Neighbors (k-NN) classifier,
the authors obtained the classification accuracy of 83%. While engendering great results,
such a model was criticized for a high false positive rate stemming from the fact that
microaneurysms often resemble normal retinal structures. In turn Adal and et al. (2010)
improved the field by employing a Support Vector Machine (SVM) classifier for red lesion
detection in images of the retina. Their study used the Messidor dataset and was 86%
accurate. SVMs overall provided high accuracy but were rigid to the data set while also
requiring time-consuming feature engineering.Such classical methods served as the basis
of automated DR diagnosis. However, they introduced critical challenges; those designs
required domain-specific knowledge to build features, and limited scalability could not
scale the large dataset with a variation of picture expertise.
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2.2 Advances with Deep Learning

Diabetic retinopathy is one of the complications of diabetes which if not diagnosed will
result in blindness. Alyoubi et al. (2023) surveyed deep learning approach focusing on
CNNs for DR detection , where they discussed the medical image analysis and pointed
to the challenges for future studies. Similarly, Rajalakshmi et al. (2023) evaluated an
AI-based software with a fundus photograph taken by a Smartphone and showed sens-
itivity of 95.8% and specificity of 80.2% for DR and proposed its usefulness for a mass
examination. In a similar study, Bhandari et al. (2023) worked on detecting new on-
set DR and grading its severity at the earlier stage with help of some soft computing
approaches: Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Neural
Networks, deep learning. Gangwar and Ravi (2023) developed the hybrid deep learning
model by using transfer learning on Inception-ResNet-v2; the proposed model tends to
provide the higher accuracy of 72.33% on Messidor-1 and 82.18% on APTOS. New ar-
chitectures, including the VGG-NIN model proposed by Khan et al. (2023) built based
on the combination with VGG16, SPP, and NiN layers to boost nonlinear feature ex-
traction, demonstrated better performance and computational reconstruction required in
DR classification. In combination, these studies demonstrate that DR is best detected
and graded using advanced machine learning and deep learning approaches at scale and
with high accuracy.The use of deep learning especially signaled a shift in how DR was
detected directly from raw images given that the approach permitted automated fea-
ture extraction and analysis. A new and powerful type of DL approach known as the
Convolutional neural networks (CNNs) became the workhouse of most of the state-of-
the-art systems and greatly enhanced both the detection accuracy and robustness of the
systems. Gulshan and et al. (2016) the authors were one of the pioneers who used a
CNN for DR detection. By employing the EyePACS dataset here they proposed a deep
CNN for operating the categorization of fundus images with respect to DR or non DR
condition. Through more detailed model, they got the sensitivity of 97.5%, specificity of
93.4% and it proved to be more effective than previous methods. However, they found
that while the model had high performance, it required high computational resources
and that the model was black box which led to issues with interpretability and access
for people with disabilities.A new discovery came from Abramoff and et al. (2018) who
proposed a fully-self sustaining AI system for DR detection.

2.3 Challenges in Diabetic Retinopathy Detection Using CNNs
and Transfer Learning

By integrating the CNNs into their framework and using their own dataset, the authors
realized the AUC of 0.98 for the receiver operating characteristic curve. For clinical
images, the performance of the system was outstanding except for the fact that proper
acquisition of high-quality fundus images cannot always be guaranteed in such environ-
ments or Centres with inadequate resources. Some other scholars studied transfer learning
to take advantage of prior models. Takahashi and et al. (2017) used the prebuilt image
as VGG16 and ResNet50’s Messidor and Kaggle to detect DR. On the Messidor dataset,
these models were accurate nearly 91 percent thus proving the concept of transfer learn-
ing. However, getting carried away with colourful descriptors and getting overly obsessed
with achieving extremely high levels of accuracy on these kinds of smaller datasets and
the computational challenges involved still remained its drawbacks. Some of the research
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papers focused on ensemble techniques where the DR detection was found to be more
robust. Gargeya and Leng (2017) proposed an ensemble of multiple CNNs, for this study
they obtained 0.94 au c on the EyePACS database. While enhancing this structure’s de-
tection performance, the findings imply increased computational conditions and training
time. Later, these attention mechanisms were incorporated into the CNNs in order to
attend to the most relevant regions of the fundus images.

Liu and et al. (2019) implemented an attention-based CNN model for the identifica-
tion of the IDRiD dataset where model achieved the accuracy of about 89%. Through
increasing the understanding of these models, the level of confidence in employing AI for
decision making was increased. However, training attention mechanisms demanded more
(larger) datasets and extra processing power. The multi-class classification of the DR
severity stages was also an active area of focus. MobileNetV2 a light CNN architecture
with its inception has been used by Kumar and et al. (2020) to stage DR based on the
APTOS Demo dataset. Despite the fact that the model succeeded in achieving an 88
percent accuracy rate, it had some limitations because of the lack of ability to transfer
across one set of data to another set of data. In the same way, Wang and et al. (2020)
used ResNet scheme to classify DR severity using the Messidor dataset and achieved an
accuracy level of 90%. Regarding the intermediate stages of DR more difficultly was
observed to differentiate between them because of the similarities in their characteristics.
Methods of preprocessing and data augmentation were described to cope with the prob-
lem of imbalanced datasets. Garcia and et al. (2021) used histogram equalization and
other numerous data augmentation methods to enhance the accuracy of Kaggle dataset
containing CNN to 87%. However, these preprocessing steps made the pipeline longer
and slower, in terms of the time needed to execution this pipeline. Finally, another
developed work was the GANs for synthesising more images of the retinal databases.
Chakrabarti and et al. (2021) revealed that the use of generated images by GAN pro-
duced a significant enhancement of the model robustness with a corresponding increase
of classification by 5%. Nevertheless, training GANs posed problems by consuming vast
volumes of computational assets, hence restricting the MNLI’s real-world application.

2.4 Recent Trends and Challenges

New trends in DR detection have shifted to Light models, Explainable AI and multimodal
which seem to solve some drawbacks of traditional and deep learning methods. The pro-
posed architectures like EfficientNet-B0 and MobileNetV2 are designed in such a way so
as to enable real time DR screening even at the remote locations where computational
power is a constraint. Authors Yuan and et al. (2022) used EfficientNet-B0 for detecting
DR in the APTOS dataset with an accuracy of 85 percent. The time optimization was
achieved flexibly at the expense of efficiency in handling complex DR stages on the model
which was designed for mobile devices. The same way, Hossain and et al. (2023) protype
CNN for real-time DR detection with accuracy of 87% of on Messidor dataset. But the
results showed that the model worked worse if it got low-quality images as an input. This
paper discusses the area of explainability to help improve the accountability and reliabil-
ity of Artificial Intelligence. Ribeiro and et al. (2021) used saliency maps and Grad-CAM
to the fundus images and integrated these into the proposed model, ResNet50. Their
model was accurate at 88% on the Kaggle dataset but used extra computational power
to produce explanations. In their study, Ahmad and et al. (2022) applied SHAP (SHapley
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Additive exPlanations) values to interpret the predictions of their MobileNetV2 model
with a study on the EyePACS using accuracy of 93%. For the trade-off of enhancing the
user trust, the performance of SHAP values compromised the time for prediction. Mul-
timodal data fusion has also being proved to enhance DR detection results. Zhou and
et al. (2021) fused the fundus images with clinical structured data applying the CNN and
gradient boosting method and secured 92% accuracy on the EyePACS dataset. Imple-
mented here, this helped to improve the computational decision making in the model but
also was dependent on the availability of EHRs. Further development of a multimodal
approach was made by Yang and et al. (2022), who included fundus images with optical
coherence tomography (OCT). Their model had AUC of 0.95 but it need costly, OCT
instrument that is impractical in a low income country. ViT, as one of the recent archi-
tectures, has gained remarkable outcomes in the DR detection field. These authors used
ViTs on the IDRiD dataset, where the accuracy was found to be 0.96, as measured from
the AUC. Categorically, the proposed method, the ViTs, provided relatively higher levels
of accuracy and interpretability than the CNNs while suffering from high computational
costs. However, there are still some issues that can be considered to be critical for im-
proving and further developing reliable, scalable, and understandable models. The need
for large annotated training sets and large amounts of labeled data remain challenges
along with the sensitivity of the method to image quality and the black box nature of
deep learning models. In addition, the application of the advanced architectures has the
disadvantage of requiring massive computations an aspect that is unattainable with lim-
ited resources.

From the reviewed works, the authors unbiasedly shown that great advancement has
been achieved towards diagnosing diabetic retinopathy through the use of traditional
and deep learning methods. The classical approaches of learning models were good but
not learnable and not very robust and also not scaleable. CNNs were the main deep
learning models that helped change the DR detection by removing the need for feature
extraction by the human eye and increasing accuracy. Some of the earlier methods’
shortcomings have been offset by the innovation of lightweight architectures, attentions
schemes, and multimodality. However, some issues still remain, such as the requirement
of a big amount of annotated images, the problem of Model interpretability, and their
sensitivity to image quality. Missing from the state-of-the-art are models that are both
lightweight and easy to interpret and specifically designed for deployment in areas of low
computational resources. On the basis of such limitations this research proposes to fill
these gaps by creating a comprehensive, explainable, and fast model for DR identification.

3 Research Methodology Design Implementation

Diabetic retinopathy (DR) would be amongst the primary reasons for blindness and vision
loss for people with such conditions as diabetes. Consequently, timely identification and
correct stratification of the patients according to the severity of DR is paramount in
management and obliteration of vision loss. In this study, DenseNet201 and MobileNetV2
machine learning models are used as a means of detecting and differentiating DR with
the use of retinal imagesCreswell (2014). These two models are considered more efficient
in image classification tasks than many of the most advanced models; both of them show
the ability to perform transfer learning using pre-trained ImageNet weights; and both are
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known to work quite well with relatively minimal training when applied to domain-specific
data sets. Generally, DenseNet201 uses densely connected convolutional network to adapt
grad-centre propagation and feature repetition, while MobileNetV2 is lightweight and fast
to use and perfectly suited in real-time application in the limited resources environment.
Methodology of this study involves, data gathering/collection and cleaning as well as
preparation of data, model training, model assessment, and implementation as shown in
Figure 1. This section also includes visual figures and tools that support and explain the
processes and outcomes arrived at.

Figure 1: Model Workflow

3.1 Model Selection

Thus, DenseNet201 and MobileNetV2 were selected as the main models for this study
the reason being that they offer the best results when it comes to image classification.
(DenseNet201) is a densely connected convolutional neural network in which every node is
connected to all previous nodes which was proposed by Huang, Liu, Maaten and Weinber-
ger (2017). This architecture enables reuse of the features, solving the vanishing gradient
problem, and proper use of parameters. These attributes make DenseNet201 best suited
to learn fine-level features from high-resolution retinal images including blood vessels and
microaneurysms that indicate different levels of DR.

The second model we tested is MobileNetV2 proposed by Sandler et al. (2018), which is
designed for mobile and other edge devices. Its architecture uses inverted residual blocks
and depthwise separable convolutions; this has reduced computational work by a large
extent but does not compromise with the accuracy achieved. The efficiency of MobileN-
etV2 means that it is possible to deploy it for real-time use – as a component of an online
diagnostic tool. The necessary balance of DenseNet201 and MobileNetV2 guarantee that
the models reflect both the high accuracy and the high efficiency – the objectives set in
this study.

3.2 Dataset Description

The data of the present study was collected from the Kaggle repository with the name
’Retinopathy’. It consists of high-resolution fundus images categorized into five classes,
representing the severity of DR: Non Diabetic Retinopathy, Normal, Mild, Moderate,
Severe and Proliferative Diabetic Retinopathy. The dataset used in the study comprises
of a total of 1812 images where a training set is comprised of 1120 and a test set is
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comprised of 692 images only. Each of the images is a retinal scan which in detail reveals
details including blood vessels, microaneurysms, hemorrhages and exudates all of which
are important in the staging of DR.

Figure 2 shows the distribution of the samples over the five classes of Diabetic Ret-
inopathy in the training set. It shows a certain disparity where the two classes “No DR”
and “Moderate DR” stands more sampling than the classes “Severe” and “Proliferative
DR.”Johnson and Khoshgoftaar (2019). This can lead to models being overly optim-
ized for real work class and failure to identify features of underrepresented classes while
training the models the underrepresented classes are usually dominated by the real work
class in the data hence during the training iteration data-augmentation and weighted loss
functions can be used in order to force the models to learn features from all classes.

Figure 2: Class Distribution in Training Dataset

Figure 3 is also similar to the training dataset figure and represents the distribution
of the samples belong to the test dataset. Such allotment mimics the tendencies specified
in the training set; yet, it is critical to think about preprocessing as a way to deal with
this distortion. It also explains the problem of attaining good generalization performance
in terms of the model across all the DR classes when the system is run on data never
before fed into the model(Decencieere et al,2014).

Figure 3: Class Distribution in Test Dataset.

The pictures in the images dataset also differ in their size and in the contrast and
color saturation. To encode the input data into the required format, all the images were
normalized with a size of 224×224 as the standard size required by both DenseNet201
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and MobileNetV2. Furthermore, in order to minimize the effect of numerical differences
of pixel values during the training phase of the model, the pixel values were scaled to the
range of 0 to 1. Due to deviation in the class distribution, extra care was taken in the
processing of the data so that the models wouldn’t have a slant to the majority classes.

3.3 Data Preprocessing

Data preprocessing of the dataset was done systematically and in detail to make the im-
ages ready for proper training and assessment. Standard sizes of Facebook and Instagram
images were used for the study; they were reduced to 224 x 224 pixels as necessary for
models. The normalization of the pixel values was important to ensure that images being
used for training had similar intensity range so that the gradients will not explode or
vanish. Additionally, breathers, channel-wise comparisons were made in these studies to
determine the intensity distribution of the red, green, and blue (RGB) channels. Fig-
ure 4 above reveals the intensity distribution for the respective channel and it is evident
there is high intensity in the red channel to the green and blue channel. Additional
statistical analyses were conducted to obtain density descriptors for the pixel intensities
related to each channel of the dataset, and these are displayed in Figure 5. These in-
sights formed the basis of the normalization and augmentation of the obtained data. The
mean, median, and standard deviation of pixel intensities of the entire set of images in
our experiment was also computed to know the overall feature of our dataset as shown
in Figure 6 Krizhevsky et al. (2012).

Figure 4: RGB Channel Intensity Distribution in Dataset.

Figure 4 shows the histogram analysis of the pixels for the Red, Green and Blue com-
ponents of the images in the database. This means that on average the red channel has
the highest intensity values , blue channel has the lowest intensity values and green chan-
nel comes in between. These insights are important for normalization and preprocessing
steps whereby the pixel intensity ranges are balanced across channels to correct for the
situation whereby one channel may dominate learning by deep learning models.

The mean and standard deviation for the intensities for the extracted images of red,
green and blue pixel intensities are shown in Figure 5. Hence, the red channel has the
highest mean and the highest standard deviation values than the other channels because
of the high intensity distribution. These statistics were used to control its normalization
in order to maintain the same standardized characteristics of the inputs; and to provide
stability in the training of the models.
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Figure 5: Mean and Standard Deviation of Pixel Intensities per Channel.

Figure 6 also shows the average pixel intensity for all pictures present in the data-
base, as well as the average median pixel intensity, and the corresponding average stand-
ard deviation. The information presented here gives a big picture view of the kinds of
characteristics present in the dataset for any kind of machine learning or AI project and
also aids in fine tuning of some of the basic preprocessing techniques involved such as
normalization and data augmentation.

Figure 6: Overall Mean, Median, and Standard Deviation of Pixel Intensities.

To minimize the class imbalance issue, several data augmentation methods were used
throughout this work. These were comprised of random rotations of 30 degrees, zooms
within a range of ± 20%, the horizontal flipping of the images and shifting along the
width and height extents. All of these augmentations proved useful in broadening the
range of training data and in helping the models achieve better accuracy across the
classes in particular the under-represented ones. Further, during the training phase, a
class weighted loss function was used to make correction for high-weight classes costly,
so as to prevent majority class bias among the models.

4 Model Architectures and Training

Due to its capability in the image classification tasks, DenseNet201 and MobileNetV2
were chosen for this research. DenseNet201 utilize densely connected convolutional net-
work, where every level enjoys the connection from all levels before it. A more efficient
passing down and recycling of features occurs besides the diminishment of the vanish-
ing gradient problem and increased computational complexity Sandler et al. (2018). It
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consists of dense blocks followed by transition layers that sample down and maintain
important features. To this architecture, a new classification head was incorporated for
this study which include global average pooling layer and a fully connected layer with
five softmax neurons needed to classify the input images into the five categories of DR.

MobileNetV2 on the other hand is low on latency and has efficient and fast compu-
tational capability. It presents inverted residual blocks and depthwise separable con-
volutions, which have opened up emphasis on parameter reduction and computational
impacts during the inference Huang and et al. (2017). This makes MobileNetV2 espe-
cially appropriate for real-time use or usage in the mobile and edge environment. As with
DenseNet201, to adapt it for the identification of DR, dense output layer with softmax
activation was included in addition to the global average pooling layer present in Mobi-
leNetV2.

In both models, transfer learning was applied as the images are preprocessed and fed
into the models after augmentation. For the initial layers of the models, weights from the
ImageNet were used and these layers were frozen to maintain the architectural features
that the models learnt from the ImageNet dataset. The deeper layers in the two models
developed on the DR dataset to learn task-specific features were fine tuned. Fine-tuning
was done in batches with the specified optimizer of Adam, with a learning rate of 10 -
4 and categorical cross-entropy as the loss function as recommended in Yosinski et al.
(2014). Training was made for 60 repetitions with a batch size of 1 since the images be-
ing processed by the CNN are high resolution. By this configuration, the authors made
certain that the models could converge while at the same time preventing over-fitting.

5 Evaluation

The performance DenseNet201 and MobileNetV2 models were tested on the test dataset,
consisting of 692 images. Various measures were applied to evaluate them, namely, ac-
curacy, precision, recall, F1 and confusion matrices. A slightly higher accuracy of 92.5%
was reproduced by DenseNet201 and specifically, for detecting the most pathologically
interesting images it performed rather great because of the focus on feature extraction.
MobileNetV2 achieved more accuracy of 93.4% proving that it is efficient when it comes to
trading accuracy for efficiency. A reasonably good distinction of the stages was achieved
for both models; however, occasional confusion of the Mild and Moderate classes was
noted because of their similarities in terms of features. To further support the models,
visual predictions were also examined. Figures 6 to 10 are the prediction results obtained
from DenseNet201 and MobileNetV2 on all the five severity levels of DR. These images
show how the model can take in the retinal scans and get it right at identifying the
problem. The predictions include examples from all five classes: There are Non Diabetic
Retinopathy, Mild DR, Moderate DR, Severe DR, and Proliferative DR. Instead of prov-
ing that the models are capable of classifying each stage, these visualizations allow the
exploration of how the models distinguish between stages using retinal characteristics.

5.1 Experiment / Case Study 1

Figure 7 provides a hypothetical prediction of DenseNet201 model for an image Typed as
“Mild Diabetic Retinopathy”. It demonstrates the ability of the model to detect changes
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Figure 7: Prediction Result for Mild Diabetic Retinopathy using DenseNet201

in the retinal image that include the formation of microaneurysm which is evidence of
this stage of DR.

5.2 Experiment / Case Study 2

Figure 8 given in the paper uses MobileNetV2 to make a sample prediction of an image
with ‘Moderate Diabetic Retinopathy’. This stage is characterized by definite retinal
degeneration in the form of microaneurysms and hemorrhages, and the chosen model
well predicts these changes to provide correct classification.

Figure 8: Prediction Result for Moderate Diabetic Retinopathy using MobileNetV2.
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5.3 Experiment / Case Study 3

In Figure 9, DenseNet201 predicts an image as “No Diabetic Retinopathy.” The retinal
scan has been retrieved as being normal and thus free from the early sign of DR, evidence
of the potential the model has in differentiating between healthy and diseased retinal
situations.

Figure 9: Prediction Result for No Diabetic Retinopathy using DenseNet201

5.4 Experiment / Case Study 4

Figure 10: Prediction Result for Proliferative Diabetic Retinopathy using MobileNetV2.

Figure 10 shows a forecast of “Proliferative Diabetic Retinopathy,” the most severe
form of DR. Moreover, it is noteworthy that the ‘abnormal’ image contains various severe
pathologies including neovascularization and scarring, which are well detected by the
model to classify the image correctly.
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5.5 Experiment / Case Study 5

Figure 11: Prediction Result for Severe Diabetic Retinopathy using DenseNet201.

In Figure 11 below demonstrates a prediction for “Severe Diabetic Retinopathy.”
Density and connectivity are expressed in several areas of the image including hemor-
rhages and exudates, which the DenseNet201 model uses to make the classification. This
they were able to achieve, affirming the efficiency of the model in detecting and categor-
izing severe retinal damage with high confidence level.

These predictions also vividly apply and explain the significance of the models in terms
of the extent to which they generalize to unidentified image data and the accuracy in
photograph classification of the retinal.

5.6 Deployment

Since the goal of the present work was to provide a data-driven approach to solve attack
problems using optimization, Flask was chosen to build the web-based interface. This
application lets users to upload retinal images and then choose between DenseNet201
or MobileNetV2 for real-time predictionTopol (2019). The proposed interface shows the
uploaded image and the predicted DR class and thus us effective for the non-technical
users. These applications demonstrate practical applicability of the models and makes it
possible to integrate them into clinical practice easily. Increases can be made to data cloud
for more access and sounds; as well as upcoming developments by integrating ensemble
of DenseNet201 and MobileNetV2.

6 Results

This study evaluated the performance of two advanced deep learning models, DenseNet201
and MobileNetV2, in classifying diabetic retinopathy severity across five levels: No DR,
Mild, Moderate, Severe and Proliferate DR. From the results obtained in Table 1, it can
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Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
DenseNet201 92.5 89.1 92.5 92.5
MobileNetV2 93.4 87.7 93.4 93.4

Table 1: Performance metrics

be seen that the chosen models well suited to solving the research problem, although the
MobileNetV2 model was slightly better than DenseNet201 in terms of validation accur-
acy, amounting to 93.35% and 92.49%, respectively. To further support and evaluate the
analysis, measures of precision, recall, F1-scores, and corresponding confusion matrices
are also presented to offer a better understanding of the performance of all the presented
models. From the results, it is seen that both the models are also not without their
drawbacks: problems with partially overlapping features of neighboring severity levels.

6.1 Performance of DenseNet201

Figure 12: Confusion matrix for DenseNet201

DenseNet201 performed well, with an F1-score of 92.5% which proves the good trade-
off between Precision and recall. In the case of confusion matrix in Figure 12 below
the TPs, FNs, and FP show the program’s classification prowess while the TN indicate
areas that need improvement. For example, it assigned 153 cases from No DR group
to the right classifying vector but misclassified 7 samples as Moderate suggesting the
occasional confusion between no pathology and early stages of the disease. Likewise,
131 Mild cases were identified correctly and 22 from Moderate cases were classified as
Mild. Moderate category DenseNet201 retrieved 187 results from the correct class but
in Proliferate DR there were some mistakes which were misclassified as Moderate, 6 of
them. Severe cases were assigned correctly with minimal crossover to adjacent categories
92 times while Proliferate DR correctly classified 77 images but misclassified to Moderate
6 times. These findings provide empirical evidence of the DenseNet201 ability in feature
extraction as it has a more accurate performance than the others, but it flunks sometimes
in parts where these categories are highly related in their features.
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6.2 Performance of MobileNetV2

Figure 13: Confusion matrix for MobileNetV2

In all the evaluation criteria, MobileNetV2 outperformed the other models by attain-
ing higher F1-score 93.4%, and had less misclassified error than DenseNet201. As shown
in the confusion matrix Figure 13 the model exhibits constant performance of correct
classification regardless of the difficulty level of the Severe and Proliferate DR types.
When it came to No DR, MobileNetV2 was accurate in flagging 148 samples with Mild
being incorrectly identified 12 times. It provided good performance for Mild ones, where
it accurately predicted 160, but 33 that were confused here with Moderate, which clearly
demonstrates that its performance at the boundary between these stages was not per-
fect. Moderate severity was correctly identified in 160 patients with 33 being classified
as Mild. MobileNetV2 was found most effective in Severe Imagery Classification with no
severe misclassification and 95 correct predictions. When it comes to the Proliferate DR
category, the model assigned the correct label to all cases in the set totaling 83. As shown
in this performance, MobileNetV2 is evidence to demonstrate its ability to diagnose the
latter stages of diabetic retinopathy while preserving the distinction across the severity.

6.3 Comparative Analysis

From the comparison of DenseNet201 with MobileNetV2 important insights into the
tradeoff between accuracy and efficiency are drawn. The results in Figure 14 showed that
MobileNetV2 has a slightly higher classification accuracy and better ability of general-
ization, especially for detecting Severe and Proliferate DR, the models are important in
actual clinical applications. Still, DenseNet201, being less accurate in general, showed
better precision within the Mild and Moderate classes thanks to its greater depth and the
use of Dense Block. However, MobileNetV2 has smaller model size, higher inference speed
and tends to classify the adjacent severity levels better than DenseNet, which makes it
suitable to be deployed in real-world where resources are often scarce.
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Figure 14: Comparison of training and validation accuracy

6.4 Implications and Limitations

The implications for research and clinical pracice are evident from the results. From a re-
search is perspective, this paper adds to the existing literature by providing insights into
the uses of deep learning models when faced with the issue of engineering them for greater
capacity or making the models more practical for use. First, DenseNet201 is designed to
deal with complex cases primarily focusing on the extraction of the features while Mobi-
leNetV2 presents the solution for the efficient implementation of the lightweight models.
The advantage of MobileNetV2 is due to its higher precision and speed that allows it
to be incorporated into portable diagnostic or telemedicine applications, especially in
developing countries. Even though, they deliver high results, the use of both models has
some drawbacks. Of the four classes, Severe and Proliferate DR had the least number of
samples, which caused a high mis-classification rate. Moreover, the models appeared not
well capable to distinguish between two adjacent severity levels like Mild and Moderate,
and therefore advanced preprocessing strategies or more complex architectures appear to
be required. Swapping standard convention for better-balanced datasets and employing
integrate, explainability such as Grad-CAM could further strengthen and prove useful in
clinical practice.

In conclusion, DenseNet201 and MobileNetV2 show high possibilities of automation of
Diabetic Retinopathy detection. Although DenseNet201 outperforms other models in
feature extraction when dealing with intricate situations to classify, deploying models in
real life is a question of efficiency, accuracy, size, and the ability to classify images quickly,
and thus MobileNetV2 is therefore preferred for this reason. Appropriate Figures 12 &
13 depict these aspects of their classifications clearly enough, thereby pointing towards
their merits as well as their weaknesses. By effectively responding to issues like the im-
balance of the dataset and interpretability of the model, these models have the potential
to greatly enhance DR care, opening a door to translation of AI-based diagnostic app
that can be widely used for managing diabetic retinopathy in clinics as well as in remote
areas.
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7 Discussion

This paper aims at comparing DenseNet201 and MobileNetV2 for detecting Diabetic Ret-
inopathy while adopting a well-architected deep learning framework. The models used
and tested on real large-scale datasets, focused on class distribution and proper error
measures. The current section applies critical analysis to the methodological approach
and the results of the study, drawing a comparison between the findings of the experi-
ments and prior studies while considering the foreground strengths and limitations of the
research and proposing avenues for improvement of the methodology.

7.1 Confidence in Results

The DenseNet201 model with the accuracy of 92.5% and MobileNetV2 with an accuracy
of 93.4% is similar to effectiveness levels other current technologies in identifying diabetic
retinopathy as showed by Gulshan and et al. (2016). The given models also yield high
accuracy of recognizing appropriate classes of diabetic retinopathy through such perform-
ance indicators as precision, recall, and F1 score. The findings presented in this paper
strengthen the proposed strategy, specifically with regard to generalization capability of
the models. However, the models might have inherited some inherent ImageNet biases
inherent in their pre-learned weights from the models instead of being Medical images
used for training . This may be disadvantageous in their ability to generalize to retinal
images were it not for fine-tuning to the domain specifics Rajpurkar and et al. (2018).

7.2 Comparison with Previous Research

Diabetic retinopathy detection in the previous works often describes the efficiency of
CNNs Abràmoff and et al. (2016). The performance of DenseNet201 and MobileNetV2
reaffirms using these architectures for image classification problems, as seen in previous
chapters. I found that responding to gradient vanishing and improving the features’ reuse
has been crucial in this study, as DenseNet201 proposed by Huang and et al. (2017).
While MobileNetV2 has comparatively superior efficiency and computational behavior,
these facts are quite proven Sandler et al. (2018) and therefore realistic. Specifically,
this research focuses on increasing the size of the datasets employed and making use of
enhanced preprocessing steps, including scaling and normalization. It is crucial in recent
studies to utilize appropriate techniques to decrease overfitting and increase the practical
stability of models such as feature selection as explained in the literatures. However,
unlike some works using the ensemble approaches Li and et al. (2021), this work solely
incopporated individual model architectures which still could be further investigated.

7.3 Scope and Generalizability

The models trained in this study are developed to address five classes of diabetic ret-
inopathy, providing a holistic approach to the study of the disease. This granularity the
work extends to clinical application where finite differentiation prove useful in diagnosis
and management. Still, a dataset given could be of quite large volume and might in-
clude images of quite different nature because of variation in equipment, patients, and
diseases throughout the world. Such constraints pose a threat to the external validity of
the obtained results when transferring them to other populations.
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7.4 Strengths and Limitations

The major strength of this research can be pinned down to the train and assess ap-
proach employed in this study. Reliability is achieved by using preexisting architectures
DenseNet201 and MobileNetV2 for network building, while the additional data augment-
ation techniques increase the model’s robustness. Further, echoing the integration of
a Flask-based web interface augments usability, and it appears feasible for clinical use.
However, this brings me to the limitations of the study. First, the use of pre-trained mod-
els can bring the problem of domain shift since ImageNet much differs from clinical image
data sets. Second, the precision of the models on minority classes, including Proliferative
DR, may be skewed by class imbalance. Some work done by He and Ma (2013) indic-
ated that some of strategies such as oversampling or cost-sensitive learning could help in
tuning up the model to get the desired results. Further, there are no methods such as
Grad-CAM for interpreting the model’s decisions, which is crucial when the models are
applied to medicine.

7.5 Contributions to Knowledge

Therefore, this research has relevant implications for detecting diabetic retinopathy. The
results prove that transfer learning works in medical imaging tasks as well as illustrate
the strengths of DenseNet201 and MobileNetV2 in the critical field. The work also
focuses on the benefits of datasets: preprocessing and augmentation as well in improving
the performance of the models. In addition, the development of a user-friendly web
application helps to translate the results obtained from the studies into practice, which
in turn proves the possibility of applying deep learning models in practice.

8 Conclusion and Future Work

This research developed a methodology for screening DR using current deep learning
architectures, DenseNet201 and MobileNetV2. Indeed, the major goal was to identify
the stages of diabetic retinopathy accurately using convolutional neural network archi-
tectures. Preprocessing included numerous steps, visualizations of raw data and initial
testing of both models was carried out. Specifically, DenseNet201 model was to give an
accuracy of 92.5% for the same, the MobileNetV2 was to give an accuracy of 93.4% for the
same The results proved how useful transfer learning can be in medical image classifica-
tion problems. The obtained results confirm the models’ effectiveness, using high values
of precision, recall, and F1 as evidence. However, there are some constrains included
in this research, such as a diverse datasets and class imbalance that may affect the ap-
plicability of the developed models in various real-world environments. The range of the
study was focused on the use of transfer learning on diabetic retinopathy datasets with
the methodologies extendability to similar datasets. However, the models’ generality can
be enhanced even more by using the data sets of greater size and variability. The major
advantage of the study is the strong preprocessing of the data consisting in augmenta-
tion and normalization steps; the comparison of DenseNet201 and MobileNetV2 shows
the advantages of one or another approach pointing at the trade-off between the model
complexity and the computational complexity. However, in using pre-trained models, the
task of interpreting features specific to the domain was somewhat reduced: second, the
small number of cases required further investigation of the models in cases of rarely seen
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or imbalanced conditions. However, the developed study makes a contribution to existing
research on the utilization of CNNs in medical imaging for diagnosing DR. The results
confirm that initialized models can be near-optimal for the considered task with the help
of additional preprocessing and data augmentation strategies.

As such, the future work should include overcoming the mentioned limitations and active
use of larger and more diverse data sets of variability. Further, choosing unique archi-
tectures or using domain adaptation approaches could improve feature extraction with
regard to DR. Intelligible approaches like Grad-CAM are also to be incorporated in order
to generate explainable predictions in an attempt to enhance clinician’s confidence in
these models. Additional work investigating more advanced methods of merging tradi-
tional machine learning with deep learning or conducting fusion of multi-modal sources,
e.g., clinical records, along with the retinal images, could enhance diagnostic accuracy
even further. Some possible uses in commerce might involve design of methods to pre-
screen patients in an effort to ease the burden of diagnosis on clinicians, especially those
in low-resource environments. These models could be implemented with added efficacy
if the health care providers teaming up with these businesses are located in the more
remote regions or if the target market is not well served by health care providers.

Consequently, using DenseNet201 and MobileNetV2, the proposed research achieved
promising performance measures in the diagnosis of DR. This brought out the fact that
data preprocessing, augmentation and the selection of the right models will yield accurate
predictions. Despite the limitations, this work presents directions for the development
of AI-based health care services applications through considering domain-specific modi-
fications, enhancing model explainability, and enlarging the range of datasets. Such
approaches could lead to effective, automated screening instruments that increase early
detection probabilities and relief the burden of DR globally. It is such a work that sup-
ports the role of developed artificial intelligence in improving the patients’ health status
in future when the technology will play a major role in addressing severe medical issues.
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Abràmoff, M. D. and et al. (2018). Automated analysis of retinal images for detection of
referable diabetic retinopathy, JAMA 316(22): 2402–2410.

Adal, K. M. and et al. (2010). Automated detection of diabetic retinopathy using support
vector machines, Journal of Biomedical Optics .

Ahmad, M. and et al. (2022). Improving explainability of dr detection using shap values,
IEEE Access .

21



Alyoubi, W. L., Shalash, W. M. and Abulkhair, M. F. (2023). Diabetic retinopathy
detection through deep learning techniques: A review, Journal of Medical Imaging and
Computer Vision .

Bhandari, S., Pathak, S. and Jain, S. A. (2023). A literature review of early stage diabetic
retinopathy detection using deep learning and evolutionary computing techniques, Soft
Computing in Medical Diagnosis .

Chakrabarti, U. and et al. (2021). Data augmentation using gans for improving dr clas-
sification, IEEE Transactions on Medical Imaging .

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods
approaches, 4th edn, SAGE Publications, Thousand Oaks.

Deng, J. and et al. (2009). Imagenet: A large-scale hierarchical image database, 2009
IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255.

Gangwar, A. K. and Ravi, V. (2023). Diabetic retinopathy detection using transfer
learning and deep learning, Journal of Advanced Artificial Intelligence Applications .

Garcia, M. and et al. (2021). Preprocessing and data augmentation for deep learning in
diabetic retinopathy, Journal of Medical Imaging .

Gargeya, R. and Leng, T. (2017). Automated identification of diabetic retinopathy using
deep learning, Ophthalmology .

Gulshan, V. and et al. (2016). Development and validation of a deep learning algorithm for
detection of diabetic retinopathy in retinal fundus photographs, JAMA 316(22): 2402–
2410.

He, H. and Ma, Y. (2013). Imbalanced learning: foundations, algorithms, and applica-
tions, Wiley .

Hossain, T. and et al. (2023). Real-time dr detection using custom cnns, Journal of AI
Research .

Huang, G., Liu, Z., Maaten, L. V. D. and Weinberger, K. Q. (2017). Densely connected
convolutional networks, Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4700–4708.

Huang, G. and et al. (2017). Densely connected convolutional networks, Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 4700–4708.

International Diabetes Federation (2019). Diabetes Atlas, 9th Edition, International Dia-
betes Federation. [Accessed Date].
URL: https://www.diabetesatlas.org

Johnson, J. M. and Khoshgoftaar, T. M. (2019). Survey on deep learning with class
imbalance, Journal of Big Data 6(1): 1–54.

Khan, Z., Khan, F. G., Khan, A., Rehman, Z. U., Shah, S., Qummar, S., Ali, F. and Pack,
S. (2023). Diabetic retinopathy detection using vgg-nin: a deep learning architecture,
International Journal of Computer Vision & Medical Imaging .

22



Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks, Advances in Neural Information Processing Systems,
Vol. 25, pp. 1097–1105.

Kumar, D. and et al. (2020). Diabetic retinopathy classification using lightweight con-
volutional neural networks, Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

Li, X. and et al. (2021). Multi-scale convolutional neural network for diabetic retinopathy
grading, Neural Networks 134: 11–20.

Liu, H. and et al. (2019). Attention-based cnn for severity grading of diabetic retinopathy,
Journal of Biomedical and Health Informatics .

Niemeijer, M. and et al. (2007). Automated detection of microaneurysms in digital color
fundus photographs, IEEE Transactions on Medical Imaging .

Rajalakshmi, R., Subashini, R., Anjana, R. M. and Mohan, V. (2023). Automated
diabetic retinopathy detection in smartphone-based fundus photography using artificial
intelligence, Journal of Diabetes & Metabolic Disorders .

Rajpurkar, P. and et al. (2018). Deep learning for chest radiograph diagnosis: A retro-
spective comparison of the chexnext algorithm to practicing radiologists, PLOS Medi-
cine 15(11): e1002686.

Ribeiro, F. and et al. (2021). Explainable ai in diabetic retinopathy detection using
grad-cam, Ophthalmology Science .

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L. C. (2018). Mobilen-
etv2: Inverted residuals and linear bottlenecks, Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520.

Takahashi, H. and et al. (2017). Applying transfer learning to diabetic retinopathy clas-
sification, IEEE Transactions on Medical Imaging .

Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial
intelligence, Nature Medicine 25(1): 44–56.

Wang, X. and et al. (2020). Multi-stage classification of diabetic retinopathy using resnet,
Medical Image Analysis .

Yang, J. and et al. (2022). Combining oct and fundus images for accurate dr detection,
Journal of Biomedical Optics .

Yuan, F. and et al. (2022). Efficientnet-based lightweight model for dr screening, Proceed-
ings of the International Conference on Artificial Intelligence and Applications (ICAI).

Zhou, X. and et al. (2021). Multimodal fusion for diabetic retinopathy detection using
fundus images and clinical data, IEEE Transactions on Biomedical Engineering .

23


	Introduction
	Research Question

	Literature Review
	Conventional Machine Learning Techniques
	Advances with Deep Learning
	Challenges in Diabetic Retinopathy Detection Using CNNs and Transfer Learning
	Recent Trends and Challenges

	Research Methodology Design Implementation
	Model Selection
	Dataset Description
	Data Preprocessing

	Model Architectures and Training
	Evaluation
	Experiment / Case Study 1
	Experiment / Case Study 2
	Experiment / Case Study 3
	Experiment / Case Study 4
	Experiment / Case Study 5
	Deployment

	Results
	Performance of DenseNet201
	Performance of MobileNetV2
	Comparative Analysis
	Implications and Limitations

	Discussion
	Confidence in Results
	Comparison with Previous Research
	Scope and Generalizability
	Strengths and Limitations
	Contributions to Knowledge

	Conclusion and Future Work

