~

""—-
\ National
College

Ireland

Pneumonia detection using Transfer learning

MSc Research Project
MSc in Artificial Intelligence

Pavan Kumar Govind
Student ID: x23229896

School of Computing
National College of Ireland

Supervisor: Kislay Ra]

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Pavan Kumar Govind
Student ID: x23229896
Programme: M.Sc. in Artificial Intelligence
Year: 2024
Module: MSc Research Project
Supervisor: Kislay Raj
Submission Due Date: 12/12/2024
Project Title: Pneumonia detection using Transfer Learning
Word Count: XXX
Page Count: 16

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Pavan Kumar Govind

Date: 12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Pavan Kumar Govind
x23229896

1 Introduction

This configuration manual will give step by step procedures in order to reproduce the
experiments for the research study on “Pneumonia Detection Using Transfer Learning.”
This manual describes software, tools and methods employed in the course of the research
with regard to the application of transfer learning models for pneumonia detection. It
also explains about customized code that contains many functions separately created to
enhance the model performance and generate useful outputs for analysis. The manual is
intended to help the researchers and practitioners identifying the configuration steps and
the resources that are required for the purpose of this further research and development
on the subject.

2 Hardware Overview

All research was performed in an Acer Aspire 5 laptop with the Windows 10 operating
system. The system is equipped with an Intel Core i5 processor (specific model: 15-1135G7
model comprising 4 cores with 8 GB of RAM. The laptop also features 512 GB SSD as
storage and has Intel Iris Xe Graphics for its graphical processing unit. They supplied
the hardware needed to smoothly perform the experiments on pneumonia detected by
transfer learning approach and to handle large data sets and train complex deep learning
models.

3 Environment

Each of the experiments in this paper was conducted using the Python programming lan-
guage. The experiments were designed and run as a Jupyter Notebook(.ipynb) in Google
Colab environment. To support this, Google Colab was selected as the preferred envir-
onment to work in, it is cloud based, this eliminates incidents of running out of space to
save and the use of GPU as a hardware accelerator was easily available, furthermore most
packages in Python can be accessed directly from Colab without necessarily needing to
install them locally. Since deep learning models require huge files and consume sizeable
memories for training, this environment was sufficiently extensive without prior hardware
limitations. To successfully accomplish the experiments described in the previous sec-
tions, all used code was written into an ipynb file, which was located in a Google Drive
account. Google Drive and Colab can be freely used only if the user currently has an
active Google account.

4 Dataset Source

In this project, dataset was collected from Kaggle where there are a collection of chest
X-ray images which are classified as either normal or pneumonia Mooney]| (2018)). It is,
therefore, useful to determine that the dataset underpins an important opportunity for
developing deep learning models in the medical imaging area, with emphasis on pneumo-
nia identification in chest X-rays. The images in this dataset were pre-processed in order
to be ready to be fed into deep learning models and to increase accuracy.

First of all, we put the chest X-ray dataset into the working space and investigate the
contents. This dataset is stored in Google Drive and contains images classified into two
categories: Normal and Pneumonia. For easy operation, we first engage Google Drive
and unzip the document files of the dataset.

<« C 2% drive.google.com/drive/u/5/my-drive

L Drive
4+ New

@ Home
»B My Drive

»[0 Computers

Shared with me
Recent

Starred

2

o

W

@© Spam
W Trash

& Storage (88% full)
13.21 GB of 15 GB used

(' Get more storage

1
v

Q_ Search in Drive

My Drive ~ l

[“type ~ |[People ~ | [Modified ~ |

e
T

Folders

BB -ipynb_checkpoi.. } B chest xray : Colab Notebooks B models

Files

a

s chest_xray.zip H s DenseNet final_.. i s DenseNet_fine_t.. s EfficientNet_fin...

s ResNet_final_m... H 5 ResNet_fine_tun...

Figure 1: Dataset, Unzip dataset & saved models in Google drive

o Name +

EfficientNet_fin...

° # Step 1: Define the path to the zip file and output directory
zip file path = '/content/drive/MyDrive/chest xray.zip'
output_directory = '/content/drive/MyDrive/chest xray'

Step 2: Check if the output directory already exists
if not os.path.exists(output directory):
print("output directory not found. Unzipping the dataset...™)
lunzip -q "{zip_file_path}" -d "{output_directory}"
print("Unzipping complete.")
else:
print("output directory already exists. Skipping the unzipping step.")

Step 3: Verify the unzipping by listing the files in the output directory
print(“Contents of the output directory:")
11s "{output directory}"

Step 4: Define base_dir and paths for train, validation, and test directories
base dir = os.path.join('/content/drive/MyDrive/chest xray', 'chest xray")
train_dir = os.path.join(base dir, ‘train')

val dir = os.path.join(base dir, 'val')

test dir = os.path.join(base dir, ‘test')

print("Directories set:")

print(f"Train directory: {train dir}")
print(f"validation directory: {val dir}")
print(f"Test directory: {test_dir}")

Check if these directories exist
for dir_path in [train_dir, val dir, test dir]:
if os.path.exists(dir_path):
print(f"{dir_path} exists.")

Figure 2: Dataset loading and define path

OQutput directory already exists. Skipping the unzipping step.

Contents of the output directory:

chest xray

Directories set:

Train directory: /content/drive/MyDrive/chest xray/chest xray/train
Validation directory: /content/drive/MyDrive/chest xray/chest xray/val
Test directory: /content/drive/MyDrive/chest xray/chest xray/test
Jcontent/drive/MyDrive/chest xray/chest xray/train exists.
Jcontent/drive/MyDrive/chest xray/chest xray/val exists.
Jcontent/drive/MyDrive/chest xray/chest xray/test exists.

Figure 3: Output & loading dataset

5 Implementation

This section explains in detail the code to do the experiments and obtain the results of
the Research Project included in this document. Results and discussion: The most im-
portant pieces of code for replication is presented visually using screenshots of the code,
inputs and outputs.

Here’s an updated version incorporating all the libraries you mentioned, written in a
normal, cohesive format:

5.1 Establishment of environment

This research called for several python libraries and these where imported at the start
of each session to facilitate a proper working environment as shown in the figure 1.
Some of them were NumPy that is created to perform fastest multidimensional array
computations, TensorFlow that can be used to build and train neural networks, lastly
data visualization packages such as Matplotlib and Seaborn.

v Importing libraries

o import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications import DenseNet121, EfficientNetB@, ResNet5@
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from sklearn.metrics import confusion matrix, classification report, roc curve, auc
import matplotlib.pyplot as plt
import seaborn as sns
import cv2

Figure 4: importing libraries

5.2 Image augmentation

For image augmentation during preprocessing, data generators, the load image func-
tion and image to array function were employed. Popular transfer learning models:
DenseNet121, EfficientNetB0, and ResNet50 were downloaded and imported, using Keras
from TensorFlow. Furthermore, libraries like Scikit-learn were used in order to render
performance metrics including the confusion matrix, classification report, ROC curve,

and AUC.

- Data Augmentation for the training set

(]

train_datagen = ImageDataGenerator(
rescale=1./255,
rotation range=39@,
width shift range=0.3,
height shift range=6.3,
shear _range=0.3,
zoom_range=@.3,
horizontal flip=True,
till mode="nearest’,
brightness range=[8.2, 1.5]

)

test datagen = ImageDataGenerator(rescale=1./255)

Figure 5: Data augmentation

Rotation: The images were rotated up to 20 degrees, simulating slight variations in
X- ray orientation.

Width and Height Shifts: Additional small random displacements in the x & y
coordinates for width and height areas were added to assist the model in alignment
shifts.

hearing: Shearing transformations were used to distort the model slightly to rep-
licate minimal angulation.

Zooming: The rotation of the images offered close-up view that allowed the model
to interpret them differently.

Horizontal Flipping: The increase of horizontal mirror images was used as a trans-
ition to make the dataset more diverse.

Augmented 2

Original Augmented 1 Augmented 3 Augmented 4

*.’n

Augmented 5

£

Augmented 7 Augmented 8 Augmented 9

o
.

Figure 6: Sample augmentation output

5.3 Callback & Early stopping

Other callback functions including EarlyStopping were also incorporated so as to minimize
overfitting during training. Preprocessing processes, model construction, and output
assessment in all experiments were conducted with adjusted code implementation and a
rigid procedure pipeline. After loading of the required packages and functions (Figure 2),
environment was set to load the datasets and start the experiments.

[1 from tensorflow.keras.callbacks import EarlyStopping

Add EarlyStopping callback to stop training when the validation loss stops improving
early_stopping = EarlyStopping(
monitor="val loss’',
patience=5, # Number of epochs with no improvement after which training will stop
restore_best weights=True, # Restore the model weights from the epoch with the best value of the monitored metric
verbose=1

Figure 7: Early stopping

5.4 model building

we define the architectures for three different models: DenseNet, EfficientNet, and Res-
Net.

[1 def build _model(base_model):

wun

Builds a binary classification model on top of a pre-trained base model.

x = base_model.output

x = GlobalAveragePooling2D()(x) # Adds global average pooling to reduce dimensions

X = Dense(1024, activation="relu')(x)

predictions = Dense(l, activation="sigmoid')(x) # output layer for binary classification
model = Model(inputs=base model.input, outputs=predictions)

return model

Figure 8: Model building

5.5 model training

After defining the models, we can now proceed to train each of them.

© # Train DenseNet model and visualize training
print("Training DenseNet Model...")
model_densenet = compile and_train_model({model_densenet, ‘DenseNet', learning_rate-e.eee1, epochs=30)

Figure 9: DenseNet Training

L\ 4
5% Training DenseNet Model...

Epoch 1/30

163/163 ———————————— §77s 4s/step - accuracy: ©.8979 - loss: 0.2424 - val_accuracy: 0.7500 - val_loss: 0.8909
Epoch 2/30

163/163 —————————— 1565 924ms/step - accuracy: ©.9475 - loss: ©.127@ - val_accuracy: ©.8750 - val_loss: 0.4171
Epoch 3/30

163/163 ———————— 197s 885ms/step - accuracy: ©.9642 - loss: ©.0903 - val accuracy: ©.9375 - val_loss: ©.1428
Epoch 4/30

163/163 ——————— 202s 895ms/step - accuracy: ©.9702 - loss: ©.081@ - val accuracy: ©.9375 - val_loss: ©.1136
Epoch 5/30

163/163 ——————— 152s 891ms/step - accuracy: ©.9747 - loss: 0.0685 - val accuracy: 1.6e00 - val loss: 0.0779
Epoch 6/30

163/163 ——————————— 204s 9l4ms/step - accuracy: ©.9729 - loss: 0.0678 - val_accuracy: 1.0000 - val_loss: 0.0430
Epoch 7/30

163/163 ———————————— 215s 985ms/step - accuracy: ©.9779 - loss: 0.064@ - val_accuracy: 1.0000 - val_loss: 0.0872
Epoch 8/30

163/163 ————————— 161s 939ms/step - accuracy: ©.9757 - loss: ©.0721 - val_accuracy: 1.0000 - val_loss: @.0421
Epoch 9/30

163/163 ——————— 201s 939ms/step - accuracy: ©.9831 - loss: ©.0472 - val_accuracy: 1.0000 - val_loss: 0.0055
Epoch 10/30

163/163 ———————— 162s 947ms/step - accuracy: ©.9809 - loss: 8.8612 - val_accuracy: 1.0000 - val_loss: 0.0380
Epoch 11/38

163/163 ———— 158s 929ms/step - accuracy: ©.9864 - loss: 8.0433 - val_accuracy: ©.9375 - val loss: 0.1731
Epoch 12/3@

163/163 —————————— 159s 946ms/step - accuracy: ©.9775 - loss: 0.0547 - val accuracy: ©.7500 - val loss: 0.3101
Epoch 13/3@

163/163 —————————— 1955 9@1ms/step - accuracy: ©.9868 - loss: 8.6378 - val_accuracy: 1.0000 - val loss: 8.0142
Epoch 14/3e

163/163 ———————— 1575 924ms/step - accuracy: ©.9855 - loss: ©.0389 - val accuracy: 1.0000 - val_loss: 0.0319

Figure 10: DenseNet Test acc & loss

DenseNet - Accuracy

DenseNet - Loss

1.00 \ —— Train Loss
\ —— Validation Loss
0.8 \
0.95 \
\
0.6 \
0.90 - \
> \
o \
@] \
5 \
g 3 04 \
0.85
0.80 - 021
f —— Train Accuracy 15’
0.75 / —— Validation Accuracy ! 0.0 4
0 2 4 6 8 10 n 0 2 4 6 8 10 1
Epoch Epoch

Figure 11: DenseNet Plot

‘) # Train EfficientNet model and visualize training
print("Training EfficientNet Model...")
model efficientnet =

Figure 12:

-

— Training EfficientNet Model...

—>v

— Epoch 1/3e
163/163 245s 9@9ms/step - accuracy:
Epoch 2/3@
163/163 213s 934ms/step - accuracy:
Epoch 3/30
163/163 146s 853ms/step - accuracy:
Epoch 4/3@
163/163 143s 849ms/step - accuracy:
Epoch 5/3@
163/163 2@5s 859ms/step - accuracy:
Epoch 6/3@
163/163 138s 814ms/step - accuracy:
Epoch 7/3@
163/163 144s 828ms/step - accuracy:
Epoch 8/30
163/163 14@s 815ms/step - accuracy:
Epoch 9/3@
163/163 139s 82ems/step - accuracy:
Epoch 18/3@
163/163 141s 827ms/step - accuracy:
Epoch 11/3@
163/163 145s 848ms/step - accuracy:
Epoch 12/30@
163/163 142s 83ems/step - accuracy:
Epoch 13/30
163/163 137s 8eems/step - accuracy:

Figure

compile_and_train model(model efficientnet, 'EfficientNet’, learning rate=0.6001, epochs=30)

EfficientNet Training

a.

a.

a.

a.

a.

.8493

.9517

.9541

9640

L9681

.9784

9754

.9749

9744

.9769

.9780

9755

9819

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

Q.

0.

a.

a.

a.

Q.

a.

a.

a.

a.

a.

a.

a.

3285

1361

1168

0868

0836

0571

0670

0662

0614

0613

0543

0696

0498

- val_accuracy: 8.5625 - val_loss: ©.7808
- val_accuracy: 8.5008 - val_loss: 1.1781
- val_accuracy: @.5000 - val_loss: 2.4@57
- val_accuracy: @.6875 - val_loss: 0.5302
- val_accuracy: ©.8750 - val_loss: 0.2558
- val_accuracy: 1.0000 - val_loss: 0.0549
- val_accuracy: ©8.9375 - val_loss: 9.0964
- val_accuracy: 1.8000 - val_loss: 0.0312
- val_accuracy: 1.eee@ - val_loss: 0.0978
- val_accuracy: ©.8750 - val_loss: 0.1747
- val_accuracy: ©.8750 - val_loss: 0.1671
- val_accuracy: ©.7500 - val_loss: 0.2921
- val_accuracy: 1.0000 - val_loss: 0.0744

13: EfficientNet Test acc & loss

oW

Accuracy

EfficientNet - Accuracy EfficientNet - Loss
2.5
1.0 | A —— Train Loss
Y | / —— Validation Loss
\ f [
\ / / \
\ 2.04 |
0.9 1 \ / [\
— /
\\ t'f \
/ 1.5 [
0.8 \ / / \
\ \
\/ 9 [\
‘ ? 1.0 // \
0.7 1 / -0
/ /
/ /
/ \
0.6 0.5 4
—— Train Accuracy - f//\
0.5 1 —— validation Accuracy 0.0 - —
0 2 a 6 8 10 2 0 2 a 6 8 10 12
Epoch Epoch

Figure 14: EfficientNet Plot

Q© # Train ResNet model and visualize training
print(“Training ResNet Model...")
model_resnet = compile_and_train_model(model resnet, ‘'Reshet’, learning_rate=0.0001, epochs=38)

Training ResNet Model...
Epoch 1/3@
163/163
Epoch 2/3@
163/163
Epoch 3/3@
163/163
Epoch 4/30
163/163
Epoch 5/30
163/163
Epoch 6/30
163/163
Epoch 7/3@
163/163
Epoch 8/30
163/163
Epoch 9/30
163/163
Epoch 10/3@
163/163
Epoch 11/3@
163/163
Epoch 12/3@
163/163
Epoch 13/3@
163/163
Epoch 14/3@
163/163
Epoch 15/3@
163/163
Epoch 16/3@
163/163

223s 933ms/step - accuracy: 0.8840 - loss: @.
167s 921ms/step - accuracy: 0.9473 - loss: o.
196s 889ms/step - accuracy: 0.9619 - loss: @.
212s 949ms/step - accuracy: 0.9706 - loss: @.
196s 911ms/step - accuracy: 0.9677 - loss: @.
2e4s 931ms/step - accuracy: 0.9753 - loss: o.
158s 887ms/step - accuracy: 0.9750 - loss: o.
206s 907ms/step - accuracy: 0.9756 - loss: @.
152s 904ms/step - accuracy: 0.9774 - loss: @.
163s 952ms/step - accuracy: ©.9774 - loss: @.
155s 909ms/step - accuracy: ©.9798 - loss: @.
2@0s 906ms/step - accuracy: ©.9823 - loss: @.
2@0s 871ms/step - accuracy: 0.9834 - loss: @.
210s 941ms/step - accuracy: 0.9865 - loss: @.
19@s 867ms/step - accuracy: 0.9862 - loss: @.
157s 924ms/step - accuracy: 0.9843 - loss: o.

Figure 15: ResNet Training

2724

1282

1022

8761

8865

8781

0685

0620

0640

0648

09502

08556

0497

0424

0389

0438

val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:

val_accuracy:

.

0.

.

.

5000

.3750

5000

.5000

.5000

.5000

7500

9375

. 0000

9375

. 0000

. 0000

L9375

.0000

.6875

. 0000

val _loss: ©.9357

val _loss: ©.8054
val loss: 1.6334
val _loss: 5.9751
val loss: 9.7571
val loss: 2.4017
val loss: ©.3367
val_loss: ©.1260
val_loss: ©.0181
val_loss: ©.2502
val_loss: ©.0024
val_loss: ©.0158
val loss: ©.0841
val loss: ©.0268
val loss: ©.9543

val loss: ©.0164

Figure 16: Resnet Test acc & loss

ResNet - Accuracy

ResNet - Loss

1.0 — A ! 101 A —— Train Loss
// \/ N/ L ’.f /j \.‘ —— Vvalidation Loss
091 / l J 8 /)'\
/ \ /
/ \ f “,‘ “
081 _/” \ | / \
/ \ / 61 [\
> / \ / \
& | \/ | \
g 071 / y 9 / |
3 / 8 / |
¢ / ol ‘
0.6 - / \
/ |
05{ — 24
\ /
\ /
0.4 \‘\ /J —— Train Accuracy _ //\\
v —— Validation Accuracy 0 = —
0 2 4 6 8 10 12 14 4 6 8 10 12 14
Epoch Epoch

Figure 17: ResNet Plot

5.6 model saving

Once the models are trained, we save them for future use and evaluation.

Save the trained DenseNet model to Google Drive
model densenet.save('/content/drive/MyDrive/DenseNet final model.keras') # Save in .keras format

print("DenseNet model saved to Google Drive.")

Figure 18: DenseNet Model saving to drive

Save the trained EfficientNet model to Google Drive
model efficientnet.save('/content/drive/MyDrive/EfficientNet final model.keras’) # Save in .keras format

print("EfficientNet model saved to Google Drive.")

Figure 19: EfficientNet Model saving to drive

Save the trained ResNet model to Google Drive

model resnet.save('/content/drive/MyDrive/ResNet final model.keras') # Save in .keras format

print("ResNet model saved to Google Drive.™)

Figure 20: ResNet Model saving to drive

5.7 model loading and traing with fine tuning

Once the models are savsed, we load them for fine tuning evaluation.

10

Load the previously saved models

densenet_model path = */content/drive/MyDrive/DenseNet final model.keras'
efficientnet model path = '/content/drive/MyDrive/EfficientNet final model.keras’
resnet_model path = '/content/drive/MyDrive/ResNet final model.keras’

model densenet = load_model(densenet model path)
model efficientnet = load model(efficientnet model path)
model resnet = load model(resnet model path)

Define the path to your chest xray dataset
base_dir = '/content/drive/MyDrive/chest xray/chest xray’

Path to training, validation, and test directories

train dir = os.path.join(base dir, "train')

val dir = os.path.join(base dir, ‘val")

test dir = os.path.join(base dir, 'test’) # Path to the test data

Set image size and batch size
IMG_SIZE = (224, 224)
BATCH_S5I7E = 22

Prepare the ImageDataGenerator for rescaling
test _datagen = ImageDataGenerator(rescale=1./255)

Figure 21: Loading saved models for fine-tuning

The below defines a Python function, evaluatemodel, which evaluates a trained deep
learning model on a test dataset. The function generates key performance metrics and
visualizations to assess the model’s classification performance.

Evaluate the model using a custom threshold
def evaluate model(model, test_generator, model name, threshold=@.5):

Evaluates the model on the test data and generates various metrics like classification report,
confusion matrix, and ROC curve.

Args:

- model: The trained model

- test_generator: The data generator for the test data

- model name: The name of the model (for display purposes)

- threshold: The threshold for classification (default: @.5)

Get true labels
y_true = test_generator.classes

Get predicted probabilities
y_pred_prob = model.predict(test generator, verbose=1)

Convert probabilities to binary predictions using the threshold
y_pred = (y_pred prob > threshold).astype(int).flatten()

Classification Report
print(f"{model_name} Classification Report (Threshold: {threshold}):")
print(classification report(y_true, y pred, target_names=['MNormal’, 'Pneumonia’]))

Figure 22: Evaluate and classification report

11

D #Evaluate models with adjusted threshold (e.g., ©.3)

print("Evaluating DenseNet with adjusted threshold @.3:")
evaluate_model(model_densenet, test_generator, 'DenseNet’, threshold=e.3)

print("Evaluating Efficientnet with adjusted threshold ©.3:")
evaluate_model(model_efficientnet, test_generator, 'EfficientNet', threshold=e.3)

print("Evaluating ResNet with adjusted threshold @.3:")
evaluate_model(model resnet, test generator, 'Reshet’, threshold=e.3)

Fine-tuning DenseMet Model...

Epoch
20/20
Epoch
28/20
Epoch
28/20
Epoch
20/20
Epoch
20/20

Epoch
20/20
Epoch
20/20
Epoch
20/20
Epoch
20/20
Epoch
20/20

1/5

57s
2/5

15s
3/5

24s
4/5

17s
5/5

15s

1/5

54s
2/5

53s
3/5

13s
4/5

17s
5/5

18s

Figure 23: Evaluate fine-tuning models

2s/step - accuracy: ©.9331 - loss: ©.1962 - val accuracy: ©.9938 - val loss: ©.2692

660ms/step - accuracy: @.8884 - loss: ©.3470

807ms/step - accuracy: @.8644 - loss: ©.3890

655ms/step - accuracy:

0.8789 - loss: ©.3178

_— 637ms/step - accuracy: @.8910 - loss: ©.3009
Fine-tuned DenseNet model saved to: /content/drive/MyDrive/DenseNet fine tuned.keras
Fine-tuning EfficientNet Model...

val_accuracy:
val_accuracy:
val_accuracy:

val accuracy:

©.9038 - val_loss: ©.2613
©.9087 - val_loss: ©.2548
9.9119 - val_loss: ©.2496

0.9151 - val_loss: ©.2442

2s/step - accuracy: ©.6675 - loss: 1834306.0000 - val accuracy: ©.6250 - val loss: 989264.3125

637ms/step - accuracy: ©.6737 - loss: 1490716.750@ - val accuracy: ©.6250 - val loss:

768ms/step - accuracy: ©.6382 - loss: 1582678.750@ - val accuracy: ©.6250 - val loss:

627ms/step - accuracy: ©.6955 - loss: 1067287.5000 - val accuracy: ©.6250 - val loss:

_— 825ms/step - accuracy: ©.6967 - loss: 1186307.1258 - val accuracy: ©.6250 - val loss:
Fine-tuned EfficientNet model saved to: /content/drive/MyDrive/EfficientNet_fine_tuned.keras

919060.4375

842986.4375

780935.1250

710208.1250

Figure 24: DenseNet & EfficientNet Test acc & loss

Fine-tuning Reshet Model...

Epoch
20/20
Epoch
20/20
Epoch
20/20
Epoch
20/20
Epoch
20/20

1/5
2/5

3/5

4/5

5/5

32s 1s/step - accuracy: ©.8845 - loss: ©.3699 - val accuracy: ©.8974 - val loss: ©,3451

15s 557ms/step
23s 787ms/step
22s 786ms/step

17s 676ms/step

accuracy: 8.9232
accuracy: 0.8227
accuracy: 0.8359

accuracy: 0.9256

loss: ©.2471

loss: ©.6446

loss: ©.5903

loss: ©.2186
Fine-tuned ResNet model saved to: /content/drive/MyDrive/ResNet fine tuned.keras

val accuracy: ©.8998 - val loss:

val_accuracy: ©.9038 - val _loss:

val_accuracy: ©.9071 - val _loss:

val accuracy: ©.9135 - val loss:

Figure 25: ResNet Test acc & loss

12

0.3301

0.2111

0.2975

0.2878

6 Results

»v Evaluating DenseNet with adjusted threshold ©.3:
27s 885ms/step

DenseNet Classification Report (Threshold: ©.3):
recall fi1-score

20/20
precision
Normal 9.92
Pneumonia 9.91
accuracy
macro avg 9.91
weighted avg 9.91

0.85
0.95

0.99
0.91

6.88
8.93

8.91
8.91
8.91

Figure 26: DenseNet Classification report

support

234
396

624
624
624

ralse rositlve Rale

Evaluating EfficientNet with adjusted threshold ©.3:

20/20

20s 646ms/step

EfficientNet Classification Report (Threshold: 8.3):

Normal
Pneumonia

accuracy
macro avg
weighted avg

precision

recall fil-score

0.00
1.00

0.50
0.62

support
0.00 234
.77 390
B.62 624
B.38 624
0.48 624

Figure 27: EfficientNet Classification report

13

Evaluating ResNet with adjusted threshold ©.3:

20/20 13s 450ms/step

ResNet Classification Report (Threshold: ©.3):
precision recall fi1-score support
Normal ®.95 B.75 B.84 234
Pneumonia 8.87 B.98 B.92 390
accuracy 9.89 624
macro avg 8.91 B.86 B.88 624
weighted avg 9.90 0.89 0.89 624

Figure 28: ResNet Classification report

7 Grad CAM

To further understand the model’s decision-making process, we use Grad-CAM (Gradient-
weighted Class Activation Mapping) to visualize which parts of the chest X-ray images
the model is focusing on. This helps in interpreting the model’s predictions.

> def make_gradcam_heatmap(img_array, model, last_conv_layer_name)

Generate Grad-CAM heatmap to visualize model focus.
Args:

img_array: Preprocessed input image array.

model: Trained model.

last_conv_layer_name: Name of the last convolutional layer.
Returns:

Heatmap indicating areas of model focus.

grad_model = Model(inputs=model.input, outputs=[model.get_layer(last_conv_layer_name).output, model.output])
with tf.GradientTape() as tape:
conv_outputs, predictions = grad model(img_array)
loss = predictions[:, @]
grads = tape.gradient(loss, conv_outputs)[e]
pooled grads = np.mean(grads, axis=(@, 1)) # Compute average gradient per channel

conv_outputs = conv_outputs[@] # Get the output of the last convolutional layer for the image

Reshape pooled_grads to [1, 1, channels] for broadcasting
pooled grads = pooled grads[np.newaxis, np.newaxis, :] # Shape: [1, 1, channels]

Element-wise multiplication using broadcasting
conv_outputs = conv_outputs * pooled grads # Broadcasting happens here

heatmap = np.mean(conv_outputs, axis=-1) # Average across channels to get the heatmap
heatmap = np.maximum(heatmap, @) # Remove negative values (we only care about positive importance)

heatmap = heatmap / np.max(heatmap) # Normalize the heatmap to [0, 1]

return heatmap

Figure 29: Grad CAM

14

import matplotlib.pyplot as plt
import cv2

def display gradcam(img_array, model, last conv_layer name, class_index):
Displays Grad-CAM heatmap overlayed on input image.
Args:
img array: Preprocessed image array.
model: Trained model.
last conv layer name: Last convolution layer name.
class_index: Index of the class to visualize.

o

heatmap = make gradcam heatmap(img array, model, last conv layer name)

Rescale heatmap to range [@, 255]
heatmap = cv2.resize(heatmap, (img array.shape[2], img array.shape[1]))
heatmap = np.uint8(255 * heatmap)

Apply a colormap to the heatmap
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)

Convert the input image to RGB
img_array_rgb = img_array[@] * 255 # Reverse the preprocessing

Overlay the heatmap on the image
superimposed img = cv2.addweighted(img_array rgb.astype(np.uint8), 0.6, heatmap, ©.4, @)

Figure 30: Enter Caption

Display the 1mage
plt.imshow(superimposed_img)
plt.axis('off’) # No axes for the image
plt.show()

Example usage:

img, label = next(test_generator) # Fetch a batch using the built-in next() method
sample_img = np.expand_dims(img[©], axis=0) # Take one image from the batch
display gradcam(sample_img, model densenet, ‘conv5 blockl6 2 conv', class_index=1)

Figure 31: Grad CAM sample output

15

References

Mooney, P. (2018). Chest x-ray images (pneumonia). Avail-
able: https://www.kaggle.com /datasets/paultimothymooney /chest-xray-
pneumonia?resource=download.

16

	Introduction
	Hardware Overview
	 Environment
	Dataset Source
	Implementation
	Establishment of environment
	Image augmentation
	Callback & Early stopping
	model building
	model training
	model saving
	model loading and traing with fine tuning

	Results
	Grad CAM

