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Configuration Manual

Pavan Kumar Govind
x23229896

1 Introduction

This configuration manual will give step by step procedures in order to reproduce the
experiments for the research study on “Pneumonia Detection Using Transfer Learning.”
This manual describes software, tools and methods employed in the course of the research
with regard to the application of transfer learning models for pneumonia detection. It
also explains about customized code that contains many functions separately created to
enhance the model performance and generate useful outputs for analysis. The manual is
intended to help the researchers and practitioners identifying the configuration steps and
the resources that are required for the purpose of this further research and development
on the subject.

2 Hardware Overview

All research was performed in an Acer Aspire 5 laptop with the Windows 10 operating
system. The system is equipped with an Intel Core i5 processor (specific model: i5-1135G7
model comprising 4 cores with 8 GB of RAM. The laptop also features 512 GB SSD as
storage and has Intel Iris Xe Graphics for its graphical processing unit. They supplied
the hardware needed to smoothly perform the experiments on pneumonia detected by
transfer learning approach and to handle large data sets and train complex deep learning
models.

3 Environment

Each of the experiments in this paper was conducted using the Python programming lan-
guage. The experiments were designed and run as a Jupyter Notebook(.ipynb) in Google
Colab environment. To support this, Google Colab was selected as the preferred envir-
onment to work in, it is cloud based, this eliminates incidents of running out of space to
save and the use of GPU as a hardware accelerator was easily available, furthermore most
packages in Python can be accessed directly from Colab without necessarily needing to
install them locally. Since deep learning models require huge files and consume sizeable
memories for training, this environment was sufficiently extensive without prior hardware
limitations. To successfully accomplish the experiments described in the previous sec-
tions, all used code was written into an ipynb file, which was located in a Google Drive
account. Google Drive and Colab can be freely used only if the user currently has an
active Google account.
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4 Dataset Source

In this project, dataset was collected from Kaggle where there are a collection of chest
X-ray images which are classified as either normal or pneumonia Mooney (2018). It is,
therefore, useful to determine that the dataset underpins an important opportunity for
developing deep learning models in the medical imaging area, with emphasis on pneumo-
nia identification in chest X-rays. The images in this dataset were pre-processed in order
to be ready to be fed into deep learning models and to increase accuracy.

First of all, we put the chest X-ray dataset into the working space and investigate the
contents. This dataset is stored in Google Drive and contains images classified into two
categories: Normal and Pneumonia. For easy operation, we first engage Google Drive
and unzip the document files of the dataset.

Figure 1: Dataset, Unzip dataset & saved models in Google drive
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Figure 2: Dataset loading and define path

Figure 3: Output & loading dataset
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5 Implementation

This section explains in detail the code to do the experiments and obtain the results of
the Research Project included in this document. Results and discussion: The most im-
portant pieces of code for replication is presented visually using screenshots of the code,
inputs and outputs.

Here’s an updated version incorporating all the libraries you mentioned, written in a
normal, cohesive format:

5.1 Establishment of environment

This research called for several python libraries and these where imported at the start
of each session to facilitate a proper working environment as shown in the figure 1.
Some of them were NumPy that is created to perform fastest multidimensional array
computations, TensorFlow that can be used to build and train neural networks, lastly
data visualization packages such as Matplotlib and Seaborn.

Figure 4: importing libraries

5.2 Image augmentation

For image augmentation during preprocessing, data generators, the load image func-
tion and image to array function were employed. Popular transfer learning models:
DenseNet121, EfficientNetB0, and ResNet50 were downloaded and imported, using Keras
from TensorFlow. Furthermore, libraries like Scikit-learn were used in order to render
performance metrics including the confusion matrix, classification report, ROC curve,
and AUC.
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Figure 5: Data augmentation

• Rotation: The images were rotated up to 20 degrees, simulating slight variations in
X- ray orientation.

• Width and Height Shifts: Additional small random displacements in the x & y
coordinates for width and height areas were added to assist the model in alignment
shifts.

• hearing: Shearing transformations were used to distort the model slightly to rep-
licate minimal angulation.

• Zooming: The rotation of the images offered close-up view that allowed the model
to interpret them differently.

• Horizontal Flipping: The increase of horizontal mirror images was used as a trans-
ition to make the dataset more diverse.
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Figure 6: Sample augmentation output

5.3 Callback & Early stopping

Other callback functions including EarlyStopping were also incorporated so as to minimize
overfitting during training. Preprocessing processes, model construction, and output
assessment in all experiments were conducted with adjusted code implementation and a
rigid procedure pipeline. After loading of the required packages and functions (Figure 2),
environment was set to load the datasets and start the experiments.

Figure 7: Early stopping

5.4 model building

we define the architectures for three different models: DenseNet, EfficientNet, and Res-
Net.
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Figure 8: Model building

5.5 model training

After defining the models, we can now proceed to train each of them.

Figure 9: DenseNet Training

Figure 10: DenseNet Test acc & loss
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Figure 11: DenseNet Plot

Figure 12: EfficientNet Training

Figure 13: EfficientNet Test acc & loss

8



Figure 14: EfficientNet Plot

Figure 15: ResNet Training

Figure 16: Resnet Test acc & loss
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Figure 17: ResNet Plot

5.6 model saving

Once the models are trained, we save them for future use and evaluation.

Figure 18: DenseNet Model saving to drive

Figure 19: EfficientNet Model saving to drive

Figure 20: ResNet Model saving to drive

5.7 model loading and traing with fine tuning

Once the models are savsed, we load them for fine tuning evaluation.
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Figure 21: Loading saved models for fine-tuning

The below defines a Python function, evaluatemodel, which evaluates a trained deep
learning model on a test dataset. The function generates key performance metrics and
visualizations to assess the model’s classification performance.

Figure 22: Evaluate and classification report
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Figure 23: Evaluate fine-tuning models

Figure 24: DenseNet & EfficientNet Test acc & loss

Figure 25: ResNet Test acc & loss

12



6 Results

Figure 26: DenseNet Classification report

Figure 27: EfficientNet Classification report
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Figure 28: ResNet Classification report

7 Grad CAM

To further understand the model’s decision-making process, we use Grad-CAM (Gradient-
weighted Class Activation Mapping) to visualize which parts of the chest X-ray images
the model is focusing on. This helps in interpreting the model’s predictions.

Figure 29: Grad CAM
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Figure 30: Enter Caption

Figure 31: Grad CAM sample output
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