

Pneumonia detection using Transfer learning

MSc Research Project MSc in Artificial Intelligence

Pavan Kumar Govind Student ID: x23229896

School of Computing National College of Ireland

Supervisor:

Kislay Raj

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Pavan Kumar Govind
Student ID:	x23229896
Programme:	M.Sc. in Artificial Intelligence
Year:	2024
Module:	MSc Research Project
Supervisor:	Kislay Raj
Submission Due Date:	12/12/2024
Project Title:	Pneumonia detection using Transfer Learning
Word Count:	XXX
Page Count:	16

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Pavan Kumar Govind
Date:	12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).You must ensure that you retain a HARD COPY of the project, both for

your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Pavan Kumar Govind x23229896

1 Introduction

This configuration manual will give step by step procedures in order to reproduce the experiments for the research study on "Pneumonia Detection Using Transfer Learning." This manual describes software, tools and methods employed in the course of the research with regard to the application of transfer learning models for pneumonia detection. It also explains about customized code that contains many functions separately created to enhance the model performance and generate useful outputs for analysis. The manual is intended to help the researchers and practitioners identifying the configuration steps and the resources that are required for the purpose of this further research and development on the subject.

2 Hardware Overview

All research was performed in an Acer Aspire 5 laptop with the Windows 10 operating system. The system is equipped with an Intel Core i5 processor (specific model: i5-1135G7 model comprising 4 cores with 8 GB of RAM. The laptop also features 512 GB SSD as storage and has Intel Iris Xe Graphics for its graphical processing unit. They supplied the hardware needed to smoothly perform the experiments on pneumonia detected by transfer learning approach and to handle large data sets and train complex deep learning models.

3 Environment

Each of the experiments in this paper was conducted using the Python programming language. The experiments were designed and run as a Jupyter Notebook(.ipynb) in Google Colab environment. To support this, Google Colab was selected as the preferred environment to work in, it is cloud based, this eliminates incidents of running out of space to save and the use of GPU as a hardware accelerator was easily available, furthermore most packages in Python can be accessed directly from Colab without necessarily needing to install them locally. Since deep learning models require huge files and consume sizeable memories for training, this environment was sufficiently extensive without prior hardware limitations. To successfully accomplish the experiments described in the previous sections, all used code was written into an ipynb file, which was located in a Google Drive account. Google Drive and Colab can be freely used only if the user currently has an active Google account.

4 Dataset Source

In this project, dataset was collected from Kaggle where there are a collection of chest X-ray images which are classified as either normal or pneumonia Mooney (2018). It is, therefore, useful to determine that the dataset underpins an important opportunity for developing deep learning models in the medical imaging area, with emphasis on pneumonia identification in chest X-rays. The images in this dataset were pre-processed in order to be ready to be fed into deep learning models and to increase accuracy.

First of all, we put the chest X-ray dataset into the working space and investigate the contents. This dataset is stored in Google Drive and contains images classified into two categories: Normal and Pneumonia. For easy operation, we first engage Google Drive and unzip the document files of the dataset.

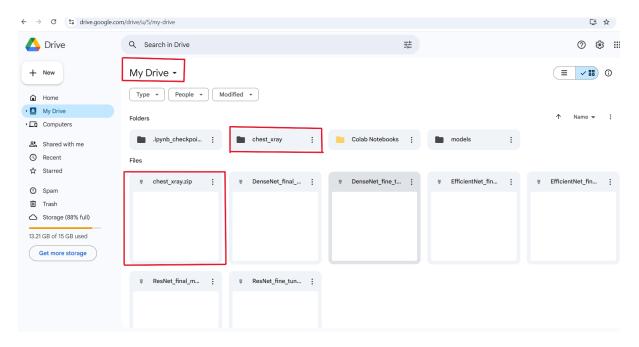


Figure 1: Dataset, Unzip dataset & saved models in Google drive

```
# Step 1: Define the path to the zip file and output directory
    zip_file_path = '/content/drive/MyDrive/chest_xray.zip'
    output directory = '/content/drive/MyDrive/chest xray'
    # Step 2: Check if the output directory already exists
    if not os.path.exists(output directory):
        print("Output directory not found. Unzipping the dataset...")
        !unzip -q "{zip_file_path}" -d "{output_directory}"
        print("Unzipping complete.")
    else:
        print("Output directory already exists. Skipping the unzipping step.")
    # Step 3: Verify the unzipping by listing the files in the output directory
    print("Contents of the output directory:")
    !ls "{output_directory}"
    # Step 4: Define base dir and paths for train, validation, and test directories
    base_dir = os.path.join('/content/drive/MyDrive/chest_xray', 'chest_xray')
    train dir = os.path.join(base dir, 'train')
    val dir = os.path.join(base dir, 'val')
    test_dir = os.path.join(base_dir, 'test')
    print("Directories set:")
    print(f"Train directory: {train dir}")
    print(f"Validation directory: {val dir}")
    print(f"Test directory: {test dir}")
    # Check if these directories exist
    for dir path in [train dir, val dir, test dir]:
        if os.path.exists(dir_path):
            print(f"{dir_path} exists.")
```

Figure 2: Dataset loading and define path

Output directory already exists. Skipping the unzipping step. Contents of the output directory: chest_xray Directories set: Train directory: /content/drive/MyDrive/chest_xray/chest_xray/train Validation directory: /content/drive/MyDrive/chest_xray/chest_xray/val Test directory: /content/drive/MyDrive/chest_xray/chest_xray/test /content/drive/MyDrive/chest_xray/chest_xray/train exists. /content/drive/MyDrive/chest_xray/chest_xray/val exists. /content/drive/MyDrive/chest_xray/chest_xray/test exists.

Figure 3: Output & loading dataset

5 Implementation

This section explains in detail the code to do the experiments and obtain the results of the Research Project included in this document. Results and discussion: The most important pieces of code for replication is presented visually using screenshots of the code, inputs and outputs.

Here's an updated version incorporating all the libraries you mentioned, written in a normal, cohesive format:

5.1 Establishment of environment

This research called for several python libraries and these where imported at the start of each session to facilitate a proper working environment as shown in the figure 1. Some of them were NumPy that is created to perform fastest multidimensional array computations, TensorFlow that can be used to build and train neural networks, lastly data visualization packages such as Matplotlib and Seaborn.

Importing libraries

```
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications import DenseNet121, EfficientNetB0, ResNet50
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from sklearn.metrics import confusion_matrix, classification_report, roc_curve, auc
import matplotlib.pyplot as plt
import seaborn as sns
import cv2
```

Figure 4: importing libraries

5.2 Image augmentation

For image augmentation during preprocessing, data generators, the load image function and image to array function were employed. Popular transfer learning models: DenseNet121, EfficientNetB0, and ResNet50 were downloaded and imported, using Keras from TensorFlow. Furthermore, libraries like Scikit-learn were used in order to render performance metrics including the confusion matrix, classification report, ROC curve, and AUC. Data Augmentation for the training set

```
train_datagen = ImageDataGenerator(
    rescale=1./255,
    rotation_range=30,
    width_shift_range=0.3,
    height_shift_range=0.3,
    shear_range=0.3,
    zoom_range=0.3,
    horizontal_flip=True,
    fill_mode='nearest',
    brightness_range=[0.2, 1.5]
)
test_datagen = ImageDataGenerator(rescale=1./255)
```

Figure 5: Data augmentation

- Rotation: The images were rotated up to 20 degrees, simulating slight variations in X- ray orientation.
- Width and Height Shifts: Additional small random displacements in the x & y coordinates for width and height areas were added to assist the model in alignment shifts.
- hearing: Shearing transformations were used to distort the model slightly to replicate minimal angulation.
- Zooming: The rotation of the images offered close-up view that allowed the model to interpret them differently.
- Horizontal Flipping: The increase of horizontal mirror images was used as a transition to make the dataset more diverse.

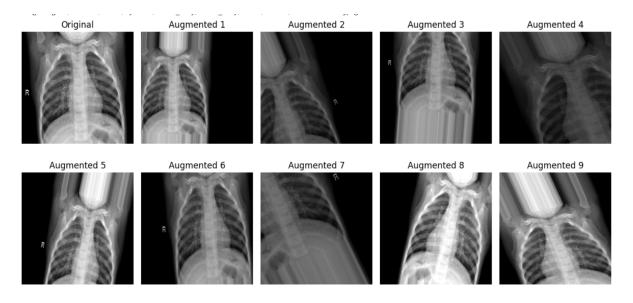


Figure 6: Sample augmentation output

5.3 Callback & Early stopping

Other callback functions including EarlyStopping were also incorporated so as to minimize overfitting during training. Preprocessing processes, model construction, and output assessment in all experiments were conducted with adjusted code implementation and a rigid procedure pipeline. After loading of the required packages and functions (Figure 2), environment was set to load the datasets and start the experiments.

```
[ ] from tensorflow.keras.callbacks import EarlyStopping
# Add EarlyStopping callback to stop training when the validation loss stops improving
early_stopping = EarlyStopping(
    monitor='val_loss',
    patience=5, # Number of epochs with no improvement after which training will stop
    restore_best_weights=True, # Restore the model weights from the epoch with the best value of the monitored metric
    verbose=1
    )
```

Figure 7: Early stopping

5.4 model building

we define the architectures for three different models: DenseNet, EfficientNet, and ResNet.

```
[ ] def build_model(base_model):
    """
    Builds a binary classification model on top of a pre-trained base model.
    """
    x = base_model.output
    x = GlobalAveragePooling2D()(x) # Adds global average pooling to reduce dimensions
    x = Dense(1024, activation='relu')(x)
    predictions = Dense(1, activation='sigmoid')(x) # Output layer for binary classification
    model = Model(inputs=base_model.input, outputs=predictions)
    return model
```

Figure 8: Model building

5.5 model training

After defining the models, we can now proceed to train each of them.

```
# Train DenseNet model and visualize training
print("Training DenseNet Model...")
model_densenet = compile_and_train_model(model_densenet, 'DenseNet', learning_rate=0.0001, epochs=30)
```

Figure 9: DenseNet Training

V									
$\overline{\rightarrow} $	Training DenseNet Model								
7	Epoch 1/30								
	163/163	877s 4	s/sten - ac	curacy: 0.8		: 0.2424 -	val accuracy: 0.	7500 - val loss: 0.	8909
	Epoch 2/30								
		156s 92	24ms/step -	accuracy:	0.9475 - 1	oss: 0.127	0 - val accuracv:	0.8750 - val loss:	0.4171
	Epoch 3/30						_ ,	-	
	163/163	197s 88	35ms/step -	accuracy:	0.9642 - 1	oss: 0.090	3 - val accuracy:	0.9375 - val loss:	0.1428
	Epoch 4/30							-	
	163/163	202s 89	95ms/step -	accuracy:	0.9702 - 1	oss: 0.081	0 - val_accuracy:	0.9375 - val_loss:	0.1136
	Epoch 5/30								
		152s 89	91ms/step -	accuracy:	0.9747 - 1	oss: 0.068	5 - val_accuracy:	1.0000 - val_loss:	0.0779
	Epoch 6/30								
		204s 91	14ms/step -	accuracy:	0.9729 - 1	oss: 0.067	'8 - val_accuracy:	1.0000 - val_loss:	0.0430
	Epoch 7/30								
		215s 98	35ms/step -	accuracy:	0.9779 - 1	oss: 0.064	0 - val_accuracy:	1.0000 - val_loss:	0.0872
	Epoch 8/30								
		161s 9:	39ms/step -	accuracy:	0.9757 - 1	oss: 0.0/2	1 - val_accuracy:	1.0000 - val_loss:	0.0421
	Epoch 9/30 163/163	201 - 07	0		0 0000 1			4 0000	0.0055
	Epoch 10/30	2015 9:	soms/step -	accuracy:	0.9831 - 1	055: 0.04/	2 - val_accuracy:	1.0000 - val_loss:	0.0055
		1626 0/	17mc/ctop	accupacy	0 0900 1	0001 0 061	2 val accuracy	1.0000 - val loss:	0 0200
	Epoch 11/30	1025 94	+/ms/scep -	accuracy.	0.9009 - 1	055. 0.001	.z - var_accuracy.	1.0000 - Val_1035.	0.0300
		158s 92	9ms/sten -	accuracy:	0.9864 - 1	055: 0.043	3 - val accuracy:	0.9375 - val loss:	0.1731
	Epoch 12/30		251107 9000	decar dey.	0.0004	0000	s var_accaracy.	0100000 101_100001	011/01
		159s 94	46ms/step -	accuracy:	0.9775 - 1	oss: 0.054	7 - val accuracy:	0.7500 - val_loss:	0.3101
	Epoch 13/30			,			_ /	-	
	163/163	195s 90	01ms/step -	accuracy:	0.9868 - 1	oss: 0.037	8 - val accuracy:	1.0000 - val loss:	0.0142
	Epoch 14/30						- /	—	
	163/163	157s 92	24ms/step -	accuracy:	0.9855 - 1	oss: 0.038	9 - val_accuracy:	1.0000 - val_loss:	0.0319

Figure 10: DenseNet Test acc & loss

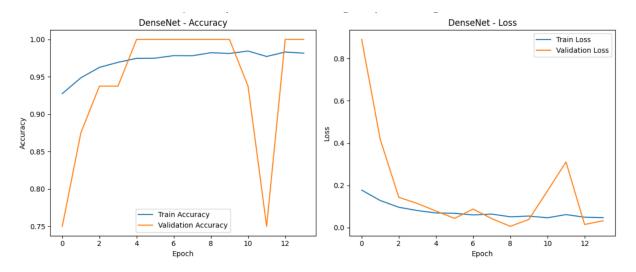


Figure 11: DenseNet Plot

C	<pre># Train EfficientNet model and visualize training</pre>		
-	<pre>print("Training EfficientNet Model")</pre>		
	model efficientnet = compile and train model(model efficientnet, 'EfficientNet',	learning rate=0.0001, epoch	s=30)

Figure 12: EfficientNet Training

-	Training EfficientNet Model.										
⋺	Epoch 1/30	•••									
		245s	909ms/step	- accuracy:	0.8493	loss:	0.3285 -	val accuracy:	0.5625	- val loss:	0.7808
	Epoch 2/30							- ,		-	
	163/163	213s	934ms/step	- accuracy:	0.9517	- loss:	0.1361 -	val accuracy:	0.5000	- val loss:	1.1781
	Epoch 3/30							_ ,		_	
	163/163	146s	853ms/step	- accuracy:	0.9541	- loss:	0.1108 -	val accuracy:	0.5000	- val loss:	2.4057
	Epoch 4/30									_	
	163/163	143s	849ms/step	- accuracy:	0.9640	loss:	0.0868 -	val_accuracy:	0.6875	<pre>- val_loss:</pre>	0.5302
	Epoch 5/30										
	163/163	205s	859ms/step	- accuracy:	0.9681	- loss:	0.0836 -	val_accuracy:	0.8750	<pre>- val_loss:</pre>	0.2558
	Epoch 6/30										
	163/163	138s	814ms/step	- accuracy:	0.9784	- loss:	0.0571 -	val_accuracy:	1.0000	<pre>- val_loss:</pre>	0.0549
	Epoch 7/30										
	163/163	144s	828ms/step	- accuracy:	0.9754	- loss:	0.0670 -	<pre>val_accuracy:</pre>	0.9375	<pre>- val_loss:</pre>	0.0964
	Epoch 8/30										
		140s	815ms/step	- accuracy:	0.9749	- loss:	0.0662 -	<pre>val_accuracy:</pre>	1.0000	<pre>- val_loss:</pre>	0.0312
	Epoch 9/30					_					
	163/163	139s	820ms/step	- accuracy:	0.9744	- loss:	0.0614 -	val_accuracy:	1.0000	<pre>- val_loss:</pre>	0.0978
	Epoch 10/30										
		141s	827ms/step	 accuracy: 	0.9769	- loss:	0.0613 -	val_accuracy:	0.8750	- val_loss:	0.1747
	Epoch 11/30										
		145s	848ms/step	- accuracy:	0.9780	- loss:	0.0543 -	val_accuracy:	0.8750	- val_loss:	0.1671
	Epoch 12/30		/ .								
		142s	830ms/step	- accuracy:	0.9755	- 10SS:	0.0696 -	val_accuracy:	0.7500	- vai_loss:	0.2921
	Epoch 13/30							1			
	163/163	137s	800ms/step	- accuracy:	0.9819	- 10SS:	0.0498 -	val_accuracy:	1.0000	- vai_loss:	0.0/44

Figure 13: EfficientNet Test acc & loss

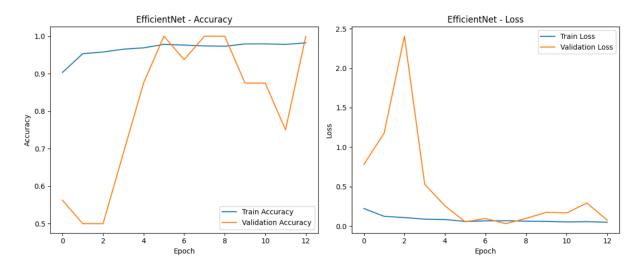


Figure 14: EfficientNet Plot

C	# Train ResNet model and visualize training
-	print("Training ResNet Model")
	<pre>model_resnet = compile_and_train_model(model_resnet, 'ResNet', learning_rate=0.0001, epochs=30)</pre>

Figure 15: ResNet Training

>	Training ResNet Model Epoch 1/30									
7	163/163	223s	933ms/step -	accuracy:	0.8840 -	loss:	0.2724 -	val accuracy:	0.5000 - val loss	0.9357
2	Epoch 2/30									
	163/163	167s	921ms/step -	accuracy:	0.9473 -	loss:	0.1282 -	val_accuracy:	0.3750 - val_loss	0.8054
	Epoch 3/30									
		196s	889ms/step -	accuracy:	0.9619 -	loss:	0.1022 -	val_accuracy:	0.5000 - val_loss	1.6334
	Epoch 4/30									
		212s	949ms/step -	accuracy:	0.9706 -	loss:	0.0761 -	val_accuracy:	0.5000 - val_loss	5.9751
	Epoch 5/30									
		196s	911ms/step -	accuracy:	0.9677 -	loss:	0.0865 -	val_accuracy:	0.5000 - val_loss	9.7571
	Epoch 6/30 163/163	2044	021mc/ctop		0.0753	10001	0.0701		0 5000 vol loco	2 4017
	Epoch 7/30	2045	aarma/areh -	accuracy:	0.9753 -	1055;	0.0781 -	var_accuracy:	0.5000 - val_loss	2.4017
		150s	887ms/sten -	accuracy:	0 9750 -	10551	0 0685 -	val accuracy:	0.7500 - val loss	0 3367
	Epoch 8/30	1900	007m3/ 500p	uccur ucy i	0.5750	10551	0.0005	var_accaracy.	017500 Var_1055	0.5507
		206s	907ms/step -	accuracy:	0.9756 -	loss:	0.0620 -	val accuracy:	0.9375 - val loss	0.1260
	Epoch 9/30									
	163/163	152s	904ms/step -	accuracy:	0.9774 -	loss:	0.0640 -	val_accuracy:	1.0000 - val_loss	0.0181
	Epoch 10/30									
	163/163	163s	952ms/step -	accuracy:	0.9774 -	loss:	0.0648 -	val_accuracy:	0.9375 - val_loss	0.2502
	Epoch 11/30									
		155s	909ms/step -	accuracy:	0.9798 -	loss:	0.0502 -	val_accuracy:	1.0000 - val_loss	0.0024
	Epoch 12/30									
		200s	906ms/step -	accuracy:	0.9823 -	loss:	0.0556 -	val_accuracy:	1.0000 - val_loss	0.0158
	Epoch 13/30		074			1	0.0407		0.0075	0.0044
	163/163	2005	8/1ms/step -	accuracy:	0.9834 -	1055:	0.0497 -	val_accuracy:	0.9375 - val_loss	0.0841
		2100	041ms/stop -	accuracy	0 0965	10551	0 0424 -	val accuracy:	1.0000 - val loss	0 0269
	Epoch 15/30	2103	541113/3Cep -	accuracy.	0.9809 -	1035.	0.0424 -	var_accuracy.	1.0000 - Val_1033	0.0208
		1905	867ms/sten -	accuracy:	0.9862 -	loss:	0.0389 -	val accuracy:	0.6875 - val loss	0.9543
	Epoch 16/30	2000	007.1107 Seep	accuracy.	0.0002	10000	0.0505	.uz_uccurucy.	0.0000 Vu1_1000	0.0040
		157s	924ms/step -	accuracy:	0.9843 -	loss:	0.0438 -	val accuracy:	1.0000 - val loss	0.0164
	•									

Figure 16: Resnet Test acc & loss

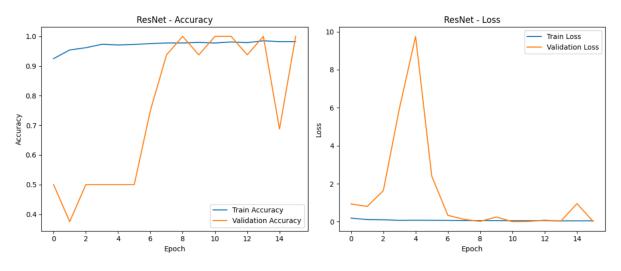


Figure 17: ResNet Plot

5.6 model saving

Once the models are trained, we save them for future use and evaluation.

Figure 18: DenseNet Model saving to drive

Figure 19: EfficientNet Model saving to drive

Figure 20: ResNet Model saving to drive

5.7 model loading and traing with fine tuning

Once the models are savsed, we load them for fine tuning evaluation.

```
# Load the previously saved models
densenet_model_path = '/content/drive/MyDrive/DenseNet_final_model.keras'
efficientnet_model_path = '/content/drive/MyDrive/EfficientNet_final_model.keras'
resnet_model_path = '/content/drive/MyDrive/ResNet_final_model.keras
model_densenet = load_model(densenet_model_path)
model efficientnet = load model(efficientnet model path)
model_resnet = load_model(resnet_model_path)
# Define the path to your chest xray dataset
base_dir = '/content/drive/MyDrive/chest_xray/chest_xray'
# Path to training, validation, and test directories
train dir = os.path.join(base dir, 'train')
val dir = os.path.join(base dir, 'val')
test_dir = os.path.join(base_dir, 'test') # Path to the test data
# Set image size and batch size
IMG SIZE = (224, 224)
BATCH_SIZE = 32
# Prepare the ImageDataGenerator for rescaling
test_datagen = ImageDataGenerator(rescale=1./255)
```

Figure 21: Loading saved models for fine-tuning

The below defines a Python function, evaluatemodel, which evaluates a trained deep learning model on a test dataset. The function generates key performance metrics and visualizations to assess the model's classification performance.

```
C
    # Evaluate the model using a custom threshold
    def evaluate_model(model, test_generator, model_name, threshold=0.5):
        Evaluates the model on the test data and generates various metrics like classification report,
        confusion matrix, and ROC curve.
        Args:
         - model: The trained model
        - test_generator: The data generator for the test data
         - model_name: The name of the model (for display purposes)
         - threshold: The threshold for classification (default: 0.5)
        # Get true labels
        y_true = test_generator.classes
        # Get predicted probabilities
        y_pred_prob = model.predict(test_generator, verbose=1)
        # Convert probabilities to binary predictions using the threshold
        y_pred = (y_pred_prob > threshold).astype(int).flatten()
        # Classification Report
        print(f"{model_name} Classification Report (Threshold: {threshold}):")
        print(classification_report(y_true, y_pred, target_names=['Normal', 'Pneumonia']))
```

Figure 22: Evaluate and classification report

Figure 23: Evaluate fine-tuning models

Fine-tuning DenseNet Mode Epoch 1/5	el
20/20	— 57s 2s/step - accuracy: 0.9331 - loss: 0.1962 - val_accuracy: 0.9038 - val_loss: 0.2692
Epoch 2/5 20/20	— 15s 660ms/step - accuracy: 0.8884 - loss: 0.3470 - val accuracy: 0.9038 - val loss: 0.2613
Epoch 3/5 20/20	— 24s 807ms/step - accuracy: 0.8644 - loss: 0.3890 - val accuracy: 0.9087 - val loss: 0.2548
Epoch 4/5	
20/20	— 17s 655ms/step - accuracy: 0.8789 - loss: 0.3178 - val_accuracy: 0.9119 - val_loss: 0.2496
	— 15s 637ms/step - accuracy: 0.8910 - loss: 0.3009 - val_accuracy: 0.9151 - val_loss: 0.2442 l saved to: /content/drive/MyDrive/DenseNet fine tuned.keras
Fine-tuning EfficientNet	
	— 54s 2s/step - accuracy: 0.6675 - loss: 1834306.0000 - val_accuracy: 0.6250 - val_loss: 989264.3125
Epoch 2/5 20/20	— 53s 637ms/step - accuracy: 0.6737 - loss: 1490716.7500 - val accuracy: 0.6250 - val loss: 919060.4375
Epoch 3/5 20/20	— 18s 768ms/step - accuracy: 0.6382 - loss: 1582678.7500 - val accuracy: 0.6250 - val loss: 842986.4375
Epoch 4/5	
20/20	— 17s 627ms/step - accuracy: 0.6955 - loss: 1067287.5000 - val_accuracy: 0.6250 - val_loss: 780935.1250
	— 18s 825ms/step - accuracy: 0.6967 - loss: 1106307.1250 - val_accuracy: 0.6250 - val_loss: 710208.1250 model saved to: /content/drive/MyDrive/EfficientNet fine tuned.keras

Figure 24: DenseNet & EfficientNet Test acc & loss

Fine-tuning ResNet Model Epoch 1/5	
20/20	• 32s 1s/step - accuracy: 0.8845 - loss: 0.3699 - val_accuracy: 0.8974 - val_loss: 0.3451
Epoch 2/5	
20/20	• 15s 557ms/step - accuracy: 0.9232 - loss: 0.2471 - val_accuracy: 0.8990 - val_loss: 0.3301
Epoch 3/5	
20/20	• 23s 787ms/step - accuracy: 0.8227 - loss: 0.6446 - val_accuracy: 0.9038 - val_loss: 0.3111
Epoch 4/5	
20/20	• 22s 786ms/step - accuracy: 0.8359 - loss: 0.5903 - val_accuracy: 0.9071 - val_loss: 0.2975
Epoch 5/5	
20/20	• 17s 676ms/step - accuracy: 0.9256 - loss: 0.2186 - val_accuracy: 0.9135 - val_loss: 0.2878
Fine-tuned ResNet model sa	<pre>wed to: /content/drive/MyDrive/ResNet_fine_tuned.keras</pre>

Figure 25: ResNet Test acc & loss

6 Results

*	Evaluating DenseNet with adjusted threshold 0.3: 20/20 ——————————————— 27s 885ms/step									
	DenseNet Clas	DenseNet Classification Report (Threshold: 0.3):								
		precision	recall	f1-score	support					
	_									
	Normal	0.92	0.85	0.88	234					
	Pneumonia	0.91	0.95	0.93	390					
	accuracy			0.91	624					
	macro avg	0.91	0.90	0.91	624					
	weighted avg	0.91	0.91	0.91	624					

Figure 26: DenseNet Classification report

False Positive Rate

Evaluating EfficientNet with adjusted threshold 0.3: 20/20 ———— 20s 646ms/step								
EfficientNet Classification Report (Threshold: 0.3):								
Lifference			f1-score	support				
Norma] Pneumonia		0.00 1.00	0.00 0.77	234 390				
accuracy		1.00	0.62	624				
macro avg weighted avg	g 0.31	0.50 0.62	0.38 0.48	624 624				

Figure 27: EfficientNet Classification report

Evaluating ResNet with adjusted threshold 0.3: 20/20 ————————————————————————————————————				
			f1-score	support
Normal Pneumonia	0.95 0.87	0.75 0.98	0.84 0.92	234 390
accuracy macro avg weighted avg	0.91 0.90	0.86 0.89	0.89 0.88 0.89	624 624 624

Figure 28: ResNet Classification report

7 Grad CAM

To further understand the model's decision-making process, we use Grad-CAM (Gradientweighted Class Activation Mapping) to visualize which parts of the chest X-ray images the model is focusing on. This helps in interpreting the model's predictions.

```
def make_gradcam_heatmap(img_array, model, last_conv_layer_name):
       Generate Grad-CAM heatmap to visualize model focus.
       Args:
           img_array: Preprocessed input image array.
           model: Trained model.
           last_conv_layer_name: Name of the last convolutional layer.
       Returns:
        Heatmap indicating areas of model focus.
       grad_model = Model(inputs=model.input, outputs=[model.get_layer(last_conv_layer_name).output, model.output])
       with tf.GradientTape() as tape:
           conv_outputs, predictions = grad_model(img_array)
           loss = predictions[:, 0]
       grads = tape.gradient(loss, conv outputs)[0]
       pooled_grads = np.mean(grads, axis=(0, 1)) # Compute average gradient per channel
       \texttt{conv\_outputs} = \texttt{conv\_outputs}[\emptyset] \ \texttt{ # Get the output of the last convolutional layer for the image}
       # Reshape pooled_grads to [1, 1, channels] for broadcasting
       pooled_grads = pooled_grads[np.newaxis, np.newaxis, :] # Shape: [1, 1, channels]
       # Element-wise multiplication using broadcasting
       conv_outputs = conv_outputs * pooled_grads # Broadcasting happens here
       heatmap = np.mean(conv_outputs, axis=-1) # Average across channels to get the heatmap
       heatmap = np.maximum(heatmap, 0) # Remove negative values (we only care about positive importance)
       heatmap = heatmap / np.max(heatmap) # Normalize the heatmap to [0, 1]
       return heatmap
```

Figure 29: Grad CAM

```
import matplotlib.pyplot as plt
import cv2
def display_gradcam(img_array, model, last_conv_layer_name, class_index):
    Displays Grad-CAM heatmap overlayed on input image.
    Args:
        img_array: Preprocessed image array.
       model: Trained model.
        last_conv_layer_name: Last convolution layer name.
       class_index: Index of the class to visualize.
    .....
    heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name)
    # Rescale heatmap to range [0, 255]
    heatmap = cv2.resize(heatmap, (img_array.shape[2], img_array.shape[1]))
    heatmap = np.uint8(255 * heatmap)
    # Apply a colormap to the heatmap
    heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
    # Convert the input image to RGB
    img_array_rgb = img_array[0] * 255 # Reverse the preprocessing
    # Overlay the heatmap on the image
    superimposed_img = cv2.addWeighted(img_array_rgb.astype(np.uint8), 0.6, heatmap, 0.4, 0)
```

Figure 30: Enter Caption

```
# Display the image
plt.imshow(superimposed_img)
plt.axis('off') # No axes for the image
plt.show()
# Example usage:
img, label = next(test_generator) # Fetch a batch using the built-in next() method
sample_img = np.expand_dims(img[0], axis=0) # Take one image from the batch
display_gradcam(sample_img, model_densenet, 'conv5_block16_2_conv', class_index=1)
```

7

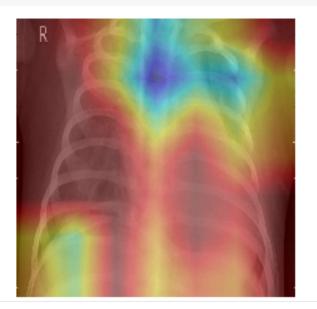


Figure 31: Grad CAM sample output

References

Mooney, P. (2018). Chest x-ray images (pneumonia). Available: https://www.kaggle.com/datasets/paultimothymooney/chest-xraypneumonia?resource=download.