
Advancements in Steering Angle Prediction:
Deep Learning Approaches for Self-Driving

Car

MSc Research Project

MSc Artificial Intelligence

Rahul Goswami
Student ID: X23167572

School of Computing

National College of Ireland

Supervisor: Arundev Vamadevan

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Rahul Goswami

Student ID: X23167572

Programme: MSc Artificial Intelligence

Year: 2024

Module: MSc Research Project

Supervisor: Arundev Vamadevan

Submission Due Date: 12/12/2024

Project Title: Advancements in Steering Angle Prediction: Deep Learning
Approaches for Self-Driving Car

Word Count: Approx 7400

Page Count: 21

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Rahul Goswami

Date: 12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Advancements in Steering Angle Prediction: Deep
Learning Approaches for Self-Driving Car

Rahul Goswami
X23167572

Abstract

Deep learning and computer vision have been driven forward, with time, as
the demand in the self-driving automobile sector increases. Under this effort, three
unique models will be built and tested for use in self-driving car applications. Train-
ing shall make use of the Udacity Self-Driving Car Simulator. Each of these shall
be oriented toward making predictions of the steering angle, hence enabling a self-
driving car to make its way through a course completely independently of any
human intervention. Similarly, three models were built using this dataset of images
from the center, left, and right camera with values for steering angle, throttle, brake
and speed NVIDIA Model, PilotNet Model, and Custom CNN Model.

Each model was developed under diverse architectural decisions with an eye on
improving the accuracy of the steering predictions, taking into consideration various
environmental conditions available in the simulator. With that extensive data pre-
processing and augmentation were performed: cropping, resizing, changing bright-
ness, and adding Gaussian blur; all this to make sure the dataset covers everything
and is representative for most driving conditions. Later on, the performance of
models trained based on a mean squared error metric and their generalization cap-
ability on previously unseen driving environments was measured. The primary aim
of the study was to determine which among the three models-the NVIDIA Model,
PilotNet Model, or Custom CNN Model-provides the most consistent and accurate
steering prediction to enable safe and reliable autonomous navigation.

Keywords: Autonomous Vehicles, Deep Learning, Steering Angle Prediction,
NVIDIA Model, PilotNet Model, Custom CNN Model, Udacity Simulator

1 Introduction

1.1 Background

Autonomous driving is basically the capability of vehicles to operate without any inter-
ference from the outside world, much like human cognitive capabilities using advanced
technology like sensor systems, cameras, and machine learning algorithms. At the heart
of it, deep learning helps the vehicle understand, make decisions, and control itself by
finding detailed patterns within driving data Mozaffari et al. (2022).

Levels of automobile autonomy range from Level 0-all manual with no automation-to
Level 5-fully automated. While Level 0 has full human control, Level 1 includes basic
automation features, such as adaptive cruise control; Level 2 then adds features like
automated steering and acceleration, but with continued human oversight. Conditional

1



automation in Level 3 lets drivers disengage but requires them to be ready to intervene.
Level 4 involves high automation with minimal human input under certain conditions,
and Level 5 represents full autonomy, requiring advanced sensor integration and machine
learning to handle diverse driving scenarios.

This paper uses three different deep learning models: PilotNet, an improved Nvidia
model, and a CNN-RNN Hybrid with LSTM layers that will provide the output for
steering angle prediction. PilotNet is a model developed by Nvidia for the estimation of
steering angles with convolutional layers on visual inputs. Data augmentation practices
such as brightness adjustment, rotation, and zoom enhancements make this model more
robust. Improved Nvidia model: Input pre-processing consists of YUV color transform
and normalization; optimized over mean squared error loss on training.

Finally, the CNN-RNN hybrid utilizes LSTMs to capture temporal dependencies for
the estimation of vehicle motion dynamics based on successive frames. All three models
are trained on simulated data comprising images from front-facing cameras and corres-
ponding steering angles. Their performance is evaluated using metrics such as MAE and
RMSE to assess prediction accuracy. This thesis investigates these architectures, com-
paring their strengths and limitations in autonomous driving tasks Janai et al. (2020).

1.2 Problem Statement

With the rapid development of autonomous vehicles, a lot of different problems have
arisen, especially with regard to the safety and security of the control over vehicle nav-
igation. One of the most vital components in autonomous driving is the forecasting
of steering angles, which affects directly the trajectory the vehicle will follow. While
deep learning models have achieved much success in this field, accurate estimation of the
steering angle in ever-changing environmental conditions remains a formidable challenge.
Illumination, meteorological conditions, types of roadways, and other environmental vari-
ables will produce changes that tend to weaken and make such models even less reliable.
Deep learning frameworks also need large training datasets necessary to capture the com-
plex features of real driving scenarios.

The key problem explored in the given paper is related to enhancing the reliability
and accuracy of the predictions of the steering angle in various driving scenarios to
be used in autonomous vehicles. With the purpose of addressing this task, three deep
learning architectures are suggested and implemented: a convolutional neural network-
based PilotNet model, an enhanced Nvidia architecture, and a CNN-RNN combination.
It aims to investigate which model has better performance in terms of steering angle
prediction, under what driving environment, and what are the main factors improving
model resilience under practical application.

The research question is: How can deep learning models be leveraged to improve the
accuracy of steering angle predictions for autonomous vehicles? The sub-questions that
will support this research are as follows:

• What are the comparative strengths and weaknesses of the PilotNet, enhanced
Nvidia, and hybrid CNN-RNN models in terms of steering angle prediction accuracy?

• How does incorporating temporal dependencies using LSTM layers in the hybrid
CNN-RNN model affect its steering angle prediction capabilities? The ultimate goal is
to identify an effective approach to steering angle prediction, contributing to the devel-
opment of safer and more reliable autonomous vehicle systems.

2



2 Related Work

Especially in the last decade, because of the innovations in the domain of artificial intelli-
gence, mainly deep learning, there has been an unprecedented advancement of autonom-
ous vehicles. The possible impacts of AVs-no fewer roadway accidents, improved flow of
traffic, and better mobility-are life-changing. Their deployment, however, rests on sur-
mounting some of the key technical hurdles, especially in fulfilling the requirements of
precise estimations of steering angles, so vital for trajectory planning and vehicle control
Badue et al. (2021).

Initial architectures for steering angle prediction were dominated by CNNs for feature
extraction from images. These architectures were, in fact, good to process the front
camera view images and capture critical roadway features, lane markings, and boundary
information. While pioneering work like PilotNet by Bojarski et al. (2017) recognized the
feasibility of end-to-end learning for steering tasks in autonomous driving, their shortfalls
with respect to dynamic, unstructured environments gradually came out. PilotNet and
similar models were sensitive in changing light conditions; thus, the models were not able
to generalize very well on unseen situations.

Recent works have sought to improve these deficiencies by both architectural improve-
ments and data-driven improvements. Nadella et al. (2024) explored the enhancement
of CNN-based models with essential preprocessing steps such as transformation into the
YUV color space, image normalization, and heavy augmentation of data. These prepro-
cessing methodologies, when applied, increased the robustness of the models against poor
environmental conditions such as glare and low visibility, increasing their generalization
capability. In a related study, Rebuffi et al. (2021) have shown that enriching the train-
ing datasets through synthetic transformations-flipping, changing brightness, and adding
Gaussian noise-significantly reduces overfitting and improves performance results.

Hybrid architectures have marked a large step in the prediction of steering angles.
While CNNs do an excellent job in spatial feature extraction, their inability to understand
temporal dependencies hinders complete understanding of motion dynamics at different
instants in time. In order to bridge this gap, researchers have integrated RNNs, especially
LSTM layers, into CNN frameworks. Bachute and Subhedar (2021) illustrated that a
hybrid CNN-RNN model enhanced the accuracy of a steering prediction by including
sequential information from every frame in the video. These modes give quite good
performance on dynamic scenes: sharp turns or abrupt lane shifts require sharp temporal
awareness jae Lee and Ha (2020).

It becomes clear that, in the last few years especially, preprocessing and augmenta-
tion bear vital importance. For the given dataset, Saleem et al. (2021) showed that using
Gaussian blur with histogram equalization enhances model robustness through eliminat-
ing noise by amplifying the necessary features. These are found to be quite effective for
the simulation of real-world conditions of driving, along with some domain-specific data
augmentation, such as random shadow addition Taylor and Nitschke (2018). The ability
to do well with relatively small datasets is an important limitation with most works in
autonomous driving.

Running parallel to these, the methodologies of sensor fusion have also been amply
employed.

While camera frames remain the most common input for steering angle prediction,
researchers have explored augmenting this with LIDAR, radar, and GPS for enhanced
contextual understanding by the model. Liu et al. (2018) pointed out that making use

3



of multimodal inputs increases robustness for autonomous vehicle systems, especially in
complex urban environments.

These methods help the models fill in some gaps that are visually there, occlusions,
bad weather, among other things, and enhance precision in decision-making.

Despite such progress, there is still some way to go. Aljehane (2024) pointed out
that hybrid CNN-RNN deep learning models, which are computationally complex, are
barely applicable in real-time at least in resource-constrained setups. Large and varied
training datasets are also viewed as one of the bottlenecks of this approach, since a simu-
lated environment cannot quite afford the variability that real driving scenarios provide.
Generative adversarial networks have also been used for the synthesis of data, and their
integration might allow researchers to include more realistic driving scenarios into this
dataset Rožanec et al. (2022). Apart from developing better architectures, significant
work has been done in optimizing using different techniques. Among these techniques
are quantization and pruning to reduce the computational load, hence allowing real-time
use on edge devices. According to Nadella et al. (2024) quantized versions of the CNN
models retain most of the predictive accuracy while reducing the time and memory taken
for the inference by a huge factor. These are important steps for field deployments of
the AV system with restricted computation capacity. As the domain keeps developing,
generalization issues have increasingly cast their focus on domain adaptation methods.
Li et al. (2024) investigated the utilization of unsupervised domain adaptation, which
aligns the features of simulated environments with those of real driving data. So far,
this method has proved very promising and efficient in narrowing the gap between syn-
thetic and natural datasets, making models trained on simulation act effectively in the
real world. Dong et al. (2023)The architectures that are surveyed here on deep learn-
ing for steering angle prediction, in chronological order, show the overall trend in AV
development: from early CNN-based models via hybrid CNN-RNN frameworks toward
even further models. While current models achieve remarkable accuracy in a controlled
environment, future work has to be directed toward increasing robustness, scalability,
and computational efficiency Faizi and Alsulaifanie (2023). This is foreseen to be based
on deeper studies related to multimodal data fusion, sophisticated data augmentation
methods, and lightweight model architectures suitable for edge deployment. It is this
kind of innovation that has been instrumental in unleashing the full value proposition of
AVs: making transportation autonomous, safe, reliable, and efficient.

2.1 Summary of Literature Review

Starting with CNN-based architectures, such as Nvidia’s PilotNet, the bases of their
application were shown to be very effective in extracting spatial features but struggled
in dynamic and unstructured environments. Accordingly, improvements have been made
via advanced preprocessing and data augmentation, hybrid CNN-RNN with LSTMs, with
the addition of better robustness and temporal learning. Recently, domain adaptation,
sensor fusion, and lightweight network architectures have further boosted model per-
formance and applicability in real time. While there has been considerable improvement,
both aspects, computing efficiency and data variability, are yet open and active areas of
research.

4



3 Methodology

3.1 Approach 1 - Vision-Based Steering Prediction Using Pi-
lotNet Architecture

In this work, the architecture of PilotNet is followed to estimate the steering angle of an
autonomous car from visual data; the data is sourced from the Udacity simulation envir-
onment. In designing high computational efficiency, the model processes RGB images of
size 66x200, captured from the front-facing camera of the car. These are passed through
convolutional layers responsible for the extraction of salient features like lane markings
and road edges, followed by ReLU for learning complex representations. Flattening these
into vectors, the features extracted are further processed by fully connected layers, which
include an output layer that predicts a continuous steering angle.

PilotNet is purely an end-to-end architecture; hence, it minimizes the mean squared
error between the predicted and actual steering angles that can effectively reproduce
human driving without explicit feature engineering. This makes it really simple and
efficient for regulated environments such as the Udacity Simulator devoid of pedestrians,
moving vehicles, or even traffic lights, meaning the model could focus solely on lane
detection and smooth steering control.

3.2 Approach 2 – Steering Control - Enhanced Nvidia Model

The Enhanced Nvidia Model predicts the steering angles of self-driving cars from visual
information gathered from the Udacity simulator. An extension from Nvidia’s original
basic end-to-end architecture incorporates extra convolutional layers to enhance its per-
formance and ability to outline key road features that facilitate better trajectory control.
This model processes RGB images downscaled to 66x200 pixels using convolutional layers
where lane markings and road edges are identified by the filters. Each convolutional layer
is followed by an ReLU activation function that helps in identifying complex patterns.

Following the extraction of features, the output is flattened and passed through the
fully connected layers to make predictions of the steering angle. Utilizing mean squared
error for the loss function, the model minimizes the difference between predicted and
actual steering angles while it learns from the raw pixel data input directly, without
explicit feature engineering.

The Enhanced Nvidia Model proves to be more effective in those lane-following scen-
arios which do not involve many intricate factors like vehicles or pedestrians. The Udacity
simulator shows that by adding more convolutional layers to the base architecture, the
model can gain further finesse in understanding road features for precise and reliable
steering in controlled environments.

3.3 Approach 3 – Hybrid CNN-RNN Model-Steering Angle
Prediction

It proposes a hybrid model that couples the strengths of a Convolutional Neural Network
with the advantages of a Recurrent Neural Network using LSTM units for the exact
steering angle prediction of an autonomous vehicle. Every step in the implementation
of this model is explained, including the training and data collection using Udacity’s
simulator. The proposed architecture will hence take into account both the spatial and

5



temporal features of driving comprehensively for the prediction of steering Ngoc et al.
(2023).

In addition, the CNN portion of the model receives input images from only one single
front-facing camera and calculates its spatial features. In particular, the input images are
cropped to 66 x 200 pixels and then pass through a stack of convolutional layers, each one
followed by a ReLU activation that allows the model to learn nonlinear relationships in
the data and understand the road marks and lane boundaries. After those convolutional
layers, batch normalization and dropout provide better training stability and normalize
the output from each layer so that it wouldn’t go to overfit.

After the feature extraction, the output of CNN is flattened into a one-dimensional
vector for feeding into the fully connected layer so that the spatial information will be
represented right for further temporal analysis. The output from the fully-connected
layer at this stage will be reshaped and used as the input for the LSTM layer. After
that, through the LSTM, it captures the temporal relations of these frames, enabling
the model to understand what temporal progressions can most likely happen in a visual
context. This would be a way to enable the model to capture, far ahead on the road,
the temporal information that will eventually allow it to make suitable decisions relating
to direction; hence, it is useful in making predictions by understanding the sequence of
frames Wu et al. (2019)

The proposed LSTM module will extract frame-to-frame interdependencies by skill-
fully controlling the flow, with the help of three types of gates, recognizing both short-term
and long-term interdependencies.

This will consequently allow the model to predict future road characteristics and
therefore make the steering prediction more reliable. Finally, the output from the LSTM
layer is fed through a final fully connected layer that outputs the predicted steering
angle. The hybrid CNN-RNN network is therefore trained in an end-to-end fashion using
MSE to compare predicted steering angles against ground truth values of human driving.
Therefore, the proposed architecture has both spatial and temporal pattern learning
capabilities, having a CNN and an LSTM section hence capable of driving with informed
decisions in a sequential environment such as the one from Udacity’s Simulator. That
proves to be a very effective combination not only for obtaining the static configuration
of the roadway but also the temporal dynamics. The hybrid model thus has been quite
apt for following lanes in the absence of any interaction with traffic, pedestrians, or other
complicating factors.

4 Design Specification

Here, we discuss the design of the three models utilized in this research—PilotNet, the
enhanced Nvidia architecture, and the hybrid CNN-RNN model. We also describe the
methodology approach adopted for model training, evaluation, and deployment.

4.1 PilotNet Model

The PilotNet model is a CNN proposed by Nvidia, (Bojarski et al. 2016), which is
designed for an end-to-end learning process in the task of autonomous driving. More
precisely, the PilotNet model is supposed to predict the steering angle by an end-to-end
learning process in autonomous driving. In this study, the PilotNet model was trained on

6



data from the Udacity simulator and it processes road images to infer the best steering
response. It uses a series of convolutional layers to extract features such as lane markings
and curvature of the road. Following these are activation functions such as ReLU that
allow the model to learn complex nonlinear relationships inherent in the input. With
the input traversing multiple convolutional layers, higher-level features capture more
abstract aspects of the driving environment. Subsequent to convolutional layers, there
comes a flattening layer that condenses the obtained feature maps to one-dimensional
vectors, further to be processed over fully connected layers. The fully connected layers
combine these spatial features and produce a single output; in this case, that would be the
predicted steering angle. In its architecture, PilotNet is trained end-to-end to minimize
the MSE present between predicted and actual steering angles so that it successfully
emulates human driving patterns. As the model was trained on the Udacity simulator, it
focuses mainly on learning lane following without considering the complications of traffic
or obstacles, and thus is feasible in the simple, controlled environments of autonomous
driving. The below Table 1 describes the detailed architecture of the PilotNet model,
showing each layer’s input and output dimensions, layer type, and the activation function
used.

Table 1: Tasks in the Implementation - PilotNet Model.

4.2 Enhanced Nvidia Model

The Enhanced Nvidia Model retains the same basic architecture as the original Nvidia
end-to-end driving network but enhances the features to ensure better capability in pre-
dicting the steering angle in an autonomous vehicle setting using data derived from the
Udacity simulator. This model makes use of a number of convolutional layers, crucial for
the extraction of spatial features of an input image, followed by fully connected layers that
produce the control commands. It includes the major convolutional layers that are for
detecting the major features of road boundaries and lane markings. A ReLU activation
function has been introduced after each convolutional layer to embed non-linearity into
it, enabling the model to comprehend complex patterns with much clarity. It consists of
more convolutional filters and layers compared to the earlier Nvidia architecture, which
is helpful in better feature extraction from input images. After convolutional layers, the
resulting feature maps are flattened and subsequently fed into a stack of fully connected
layers, which merge these features into output in the form of a steering angle. Changes
here allow this network to learn higher-order spatial representations necessary for a wide
range of road scenarios. This is an architecture designed for end-to-end learning: the

7



model maps raw pixel data incoming from the Udacity simulator to steering commands
directly, by minimizing the MSE between the predicted and real steering value so that the
car can move through the virtual road smoothly. It uses a more complex and elaborate
approach to predict the steering angles based solely on the spatial features of roadway
images, while completely disregarding the need to model the interaction with pedestri-
ans, traffic lights, or other cars. The below Table 2 outlines the essential layers of the
Nvidia model, focusing on its convolutional, fully connected, and output layers with their
respective input and output dimensions, along with activation functions. The simpler
convolutional structure likely focuses more on efficiency, making it a lightweight adapta-
tion of the original PilotNet.

Table 2: Tasks in the Implementation - Enhanced Nvidia Model.

4.3 Hybrid CNN-RNN Model (CNN-LSTM)

It’s a hybrid CNN-RNN model in which the power of a CNN combines with that of an
LSTM to process the data coming from the Udacity simulator and provide information
useful for the control-related activities of a self-driving car. The model leverages the CNN
part of the network to process images: that is, extracting meaningful spatial features such
as road lanes via successive convolution operations. The previously mentioned layers
achieve their functionality by introducing convolution filters, which may find patterns in
lane markings and road edges while abstracting visual features hierarchically. Adding
to this process are the incorporation of activation functions, which introduce non-linear
properties; hence, pooling layers reduce dimensionality, ensuring computational efficiency.
The processed feature maps from CNN are then passed through the LSTM component
to capture, correctly, the temporal dependencies from analyzing sequences of frames over
time. In this context, the LSTM layer is crucial since it can hold the memory of a
sequence, enabling the model to comprehend the development of road features and the
trajectory that the car is taking, crucial for making predictions about steering.

In general, the LSTM network relies on different mechanisms, such as input, for-
get, and output gates, to control information flow and solve issues like the vanishing
gradient problem in order to learn effective temporal dependencies. While CNN meth-
odology helps the model learn spatial information from discrete frames, the integration
with LSTM captures dynamic temporal associations-crucial for the precise forecasting

8



of the steering angle. As the dataset used was from the Udacity simulator, the present
work focuses on the estimation of steering angles, without the intricacies involved when
other vehicles, pedestrians, or even traffic lights come into view. It is in performance
sets, which require understanding of road configuration and vehicular dynamics, that the
architecture works best. It especially performs very well in learning driving behavior in
a controlled virtual environment where the core of decision-making is road information
and the sequence of actions taken. The below Table3 describes the CNN-RNN model
architecture, which integrates convolutional layers for feature extraction, followed by an
LSTM layer to capture temporal relationships between frames. Dropout and batch nor-
malization layers are added to enhance robustness and prevent overfitting (Valiente., et
al. 2019).

Table 3: Tasks in the Implementation - CNN-RNN Model

5 Implementation

5.1 Dataset Description

The material data used in this work were provided by the Udacity self-driving car simu-
lator; these are principally made up of images and steering angle values. These include
images taken from three cameras attached to the car - that is, center, left, and right.
Each of these images represents an instant in time for the vehicle movement which could
be useful in training a model on how to estimate a steering angle. These captured im-
ages came from different time spans, thus offering varying road conditions, bends, and
lighting conditions which would enhance the generality of the model with more accurate
prediction of the steering commands from various visual inputs.

9



Driving log.csv includes the metadata for each captured instant. It contains the path
for the images from the center, left, and right cameras and the values of the steering
angle, throttle, brake, and speed. The steering angle column is supposed to be the most
important ground truth to train the model, since throttle, brake, and speed provide more
information about the state of the vehicle.

At the pre-processing stage, all the images are resized to 66x200 pixels and then
converted to the YUV color space so that it best matches the format that Nvidia PilotNet
architecture was trained on. The images are then normalized to have pixel values within
the range [0,1] for better stability of the training process.

This combines visual data with metadata so that the model can learn how the road-
way imagery is related to the steering commands, making it perfect for lane-following
applications. It encompasses a variety of roadway conditions without dynamic features
of pedestrians or vehicles. Figure 1 shows images of three camera positions for training
models on the prediction of steering angle.

Figure 1: Images captured during simulation run.

5.2 Dataset Preparation

Preparation of data is an important step involved in the construction of any deep learning
model; prepping the data with the right formatting, balance, and preparation of input
data for training. In this regard, the dataset contained in this paper consists of images
and driving log data generated from the Udacity simulator and has been preprocessed
through a series of steps in order to be suitable for training of PilotNet, Nvidia, and
CNN-RNN models.

Importing the data using Python’s Pandas library: it reads in the driving log.csv
file containing image paths from center, left, and right cameras and their corresponding
values for the steering angle, throttle, brake, and speed. The steering angle here is the
target variable for the model, representing the control output fated for the autonomous
vehicle.

In addition, to handle this huge dataset, a batch generator was created that could
load and pre-process the images on the fly to avoid overflow of memory and thus enhance
efficiency in training. Several other data augmentation techniques included zooming,
flipping horizontally, changes in brightness, rotation, and translation to simulate different
driving conditions to improve the robustness of the model.

Images were pre-processed by truncating irrelevant parts, resizing them to 66 by
200 pixels, and then converting them to the YUV color space, as in previous works on
autonomous driving. Such a standard format ensures the model architecture compatib-
ility. The pixel values were normalized to be between 0 and 1 to facilitate the model
training without any possible numerical dominance issues

It is divided into an 80:20 ratio for training versus validation subsets, hence leaving
ample data for training while retaining a fraction of it for validation to observe overfitting.

10



Distribution of the steering angles was normalized in order not to be biased toward
driving in a straight line. Added batch normalization and dropout layers to enhance
model stability, hence generalization throughout the training process.

Pre-processing the data systematically was now allowing the model to learn well from
the Udacity dataset, increasing efficiency in predicting the steering angle for different
driving scenarios.

5.3 Dataset Processing

Processing stands for the necessary step in preparing the dataset that will be used for
training deep learning models. Data processing basically transforms the raw dataset into
a format that will fit the process of training, at the same time cleaning unnecessary
information which may affect the performance of the model. In addition, as a result, a
full data processing pipeline to efficiently train PilotNet, Enhanced Nvidia, and Hybrid
CNN-RNN was realized with considerable depth in learning on the Udacity dataset.

The raw images captured from the Udacity simulator dataset contained not just the
roadway itself but also several irrelevant features such as the sky, trees, and other objects
that always align alongside the road. Irrelevant features in the images may distract the
model and lower its performance. Image cropping was done to eliminate the top 70 pixels
to exclude the sky and trees, and the bottom 25 pixels containing the car’s hood so that
the model will be allowed to pay attention to the interest area, which is the road upfront
and hence can easily learn about its characteristics without interference from irrelevant
structures at the background.

These images were then resized to 66x200 pixels after cropping. Where the resizing
process is very relevant is that it allowed all three models to share the same size input and,
by shrinking the size of the input image without excluding relevant visual information,
reduce computational complexity. The images were colored in YUV color space to further
help the model learn better; recently, this has been shown to enhance the performance of
the model, especially in driving tasks, by decoupling luminance from chrominance.

Figure 2: Data Augmentation

This may make this model closer to the original training methodology used for the
Nvidia PilotNet architecture and hence make the model more capable of finding important
features.

These images, after processing, underwent normalization to have the pixel values
scaled within the range of [0, 1]. Normalization is indispensable to ensure that variances
between pixel intensities are reduced and no feature dominates the training process, hence
increasing the model’s speed of convergence. The normalization was done based on the

11



mean and standard deviation of pixel intensities, hence offering a consistent measure
across all images and enabling models to learn better.

Regarding the steering angles, the dataset was analyzed for imbalance in the steering
data. This was done through balancing the data by keeping the number of samples less in
case of on-centre driving and augmenting data for the turns through image augmentation.
In this way, the model has seen an equal number of all types of steering; hence, it can
learn driving straight as well as turns.

Figure 3: Data Augmentation

On the other hand, parallel to the hybrid CNN-RNN model where the spatial pro-
cessing is conducted by the CNN, the sequence of frames has been treated in order for
feeding them into the LSTM layer. This required the organization of image data in time
order to enable the LSTM layer to learn temporal dependencies adeptly and recognize
patterns over time-such as curves approaching, or even changing road conditions.

Complementing that, batch normalization was applied at the time of training the
model, normalizing the inputs of every layer. That idea helped in the stability of the
learning process because it standardized the intermediate output and favored fast con-
vergence. Moreover, dropout layers were introduced, especially in the CNN-RNN model,
to avoid overfitting by randomly dropping units during training; this helps in enhancing
the generalization capability of the model. The broad approach to data processing pur-
sued in this work has ensured that irrelevant and unimportant data flow into the model.
As such, it improves the quality of learning and enables the model to generalize better in
new driving scenarios. It not only reduces data noise but decreases computational loads
and focuses the model on the most salient features of driving, for example, lane markings
and road edges.

5.4 Training and Testing

The training and testing phases were designed in a way that can perfectly evaluate the
effectiveness of the PilotNet, Enhanced Nvidia, and Hybrid CNN-RNN. All three models
were trained using data from the Udacity simulator; the main goal of all these models is
to predict the steering angle of the self-driving car based on visual input from cameras
positioned in front.

The training and testing phases were designed in a way that can perfectly evaluate the
effectiveness of the PilotNet, Enhanced Nvidia, and Hybrid CNN-RNN. All three models
were trained using data from the Udacity simulator; the main goal of all these models is
to predict the steering angle of the self-driving car based on visual input from cameras
positioned in front.

The collected dataset was further divided into training and validation subsets in the
ratio 80:20. Therefore, the model was trained using 80% of the data to learn how road

12



characteristics relate to the steering angle, while 20% of the data is utilized for validation
to check for overfitting and seeing the model’s generalization capability on previously
unseen data. This was by random division, but with precautions taken so the training
and validation subsets would have rough equality of straight driving, left turns and right
turns so neither subset was biased. Figure 4 shows the distribution of steering angles for
the training and validation datasets for three different models: NVIDIA (first), CNN-
RNN (second), and PilotNet (third). These histograms are used to analyze and balance
the dataset, ensuring appropriate representation of steering angles during model training.

Figure 4: Distribution of steering angles for the training and validation datasets.

During training, the models took in pre-processed images along with the ground-
truth steering angles. Therefore, the objective during training was to minimize the mean
squared error between the predicted and ground-truth steering angle.

Adam was used due to its fast and adaptive learning rates, which are efficient in
updating the parameters. Training was done in an iterative manner for a number of
epochs, where one epoch consisted of many iterations of mini-batches. In each iteration,
a batch generator fetched images, applied real-time data augmentation, then provided
them to the model, hence optimizing memory and exposing the model to diverse visual
contexts for robustness. While PilotNet and Enhanced Nvidia model are targeted to
learn the critical spatial features for steering control, both models are purely trained in
an end-to-end style, mapping the input images to steering angles directly. The PilotNet
was trained until its loss for validation converged or, in other words, it didn’t overfit or
underfit.

This is because the Hybrid CNN-RNN model required more careful training due to
its temporal dimension.

In this framework, successive frames within sequences were fed into the model where
the LSTM layer chose the temporal relations quite effectively. It learned about the evol-
ution of time dependency regarding the road condition and hence improved the model’s
understanding of sequences with respect to approaches and transitions that are turning
from and moving into a straight pathway. It also selects that the length in a training
sequence provides sufficient temporal context without imposing burdensome historical
data onto the model.

13



The model was further tested on a 20% validation set that it had not seen during the
training. MSE described how well the model understood the human driving behavior. It
applied the models to straight roads, sharp curves, and gentle turns. It watched over the
training and validation curves to see whether overfitting or underfitting occurred, and
it added dropout layers or changed other hyperparameters where necessary. The CNN-
RNN model required more training cycles to comprehend time-related patterns compared
to the PilotNet and Nvidia models. The review also analyzed the accuracy, strength,
and generality of each model in predicting steering angles, ensuring their goodness for
controlling autonomous vehicles.

5.5 Tools and Technologies Used

It has been implemented in the Python programming language, where the main deep
learning frameworks used for the construction and training of models were TensorFlow
and Keras. For preprocessing and basic data manipulation, NumPy and Pandas were
used. Matplotlib has been used for training course visualization of loss and overall model
performance. The models have been trained on a system with an Nvidia RTX 3050 GPU,
which can execute deep learning faster and reduce the time taken for its training.

5.6 Data Transformation

The raw data comprises visual images and driving telemetry which had to undergo some
preprocessing steps to make model training effective. Specifically, the images were resized,
parts of the frame containing superfluous information like the sky were eliminated, and
the pixel values were standardized so that the input might be uniform. Further data
augmentation-hence artificial increase of the dataset-included such techniques as changing
brightness, flipping, and random cropping to make the models robust to various driving
conditions.

5.7 Model Development

5.7.1 PilotNet

PilotNet is a light network architecture comprising five convolutional layers for the ex-
traction of the spatial features followed by a series of fully connected layers that predict
the steering angle. Much emphasis was given to the extraction of the spatial features
while training this model, and hence there was an efficient trade-off between accuracy
and computational efficiency.

5.7.2 Enhanced Nvidia Model

Enhanced Nvidia Model: Based on a performance improvement, design a better model
by adding additional layers to the Nvidia base PilotNet architecture. This added the max
pooling, batch normalization, and dropout layers in our model to make it invariant to
overfitting and generalizing better over different driving scenarios. It proved to be much

14



more effectual for generalization and thus giving smaller Mean Absolute Error and Root
Mean Squared Error than other models.

5.7.3 Hybrid CNN-RNN Model

While the hybrid CNN-RNN combines convolutional layers with an LSTM layer for strong
representations of spatial and temporal patterns in the driving sequence, it improves
temporal dependencies between successive frames because this model is an essential part
of steering angle prediction in dynamic driving scenarios.

5.8 Model Training & Outputs

First, the preprocessed data were split further in a ratio of 80:20 for training and valida-
tion, respectively. Adam optimizer has been used for training all the models along with
an MSE loss function, and the batch size for all is kept at 32. However, learning rates
are different for each model because one learning rate provides optimum performance for
a particular model. Regarding the number of epochs, early stopping has been performed
to avoid overfitting issues.

The most important outputs this implementation produced were the .h5 model files
for each of these trained architectures and a set of visualizations that show training
and validation loss, MAE, RMSE, and inference time. These models were tested based
on different criteria such as-the capability to predict steering angles well, stability over
straight roads, and turns.

Figure 6 shows the comparison between actual and predicted steering angles for three
models: NVIDIA, PilotNet, and CNN-RNN. The scatter plots illustrate the accuracy of
each model, with points closer to the red diagonal line indicating better predictions. The
NVIDIA and CNN-RNN models demonstrate strong correlations, while PilotNet shows
higher variability in predictions.

While the Enhanced Nvidia Model showed better generalization, PilotNet was efficient
and therefore particularly helpful in practice, where computational resources might be
limited in real time. The Hybrid CNN-RNN Model exhibited striking improvements with
respect to temporal feature capture, something quite useful in dynamic environments,
although this comes at higher computational costs.

Figure 5: Actual Vs Predicted Steering Angles

15



6 Evaluation & Result Analysis

6.1 PilotNet Model Performance Evaluation

The model did well overall, with high accuracy on all metrics: angle prediction accuracy
was good, and cases of a straight road were handled very well, although turns were
predicted quite well. Table 4 summarizes the performance and training characteristics
of the PilotNet model, showcasing its effectiveness in steering angle prediction, straight
road handling, and turning accuracy.

Table 4: Performance Summary - PilotNet Model

• Loss over Epochs: The model showed a very low loss, which stabilized after just 8
epochs.

• MAE: Mean Absolute Error was 0.010, the lowest among the three models.
• RMSE: Root Mean Squared Error was 0.020, indicating strong prediction capability.
• Training and Validation Loss: Both training and validation losses were very low,

and validation loss remained consistent, suggesting strong generalization ability.
• Inference Time: Inference time was 8ms, which is slightly higher than PilotNet but

still manageable for real-time application.

6.2 Hybrid CNN-RNN Model Performance Evaluation

While both the CNN and LSTM were employed in the hybrid CNN-RNN model for
spatial and temporal features, respectively, this model serves as an extremely strong
predictor of the steering angle in dynamic driving conditions. Table 5 summarizes the
performance and training characteristics of the Hybrid CNN-RNN model, highlighting
its good steering angle prediction and strong performance on straight roads and turns.

Table 5: Performance Summary- CNN-RNN Model

• Loss over Epochs: Loss over epochs showed a moderate decline but required more
epochs to stabilize due to the temporal nature of the LSTM component.

• MAE: The Mean Absolute Error was 0.018, indicating decent prediction accuracy,
although slightly higher than the other models.

• RMSE: The Root Mean Squared Error was 0.030, higher compared to PilotNet and
the Enhanced Nvidia Model, due to the added complexity.

• Training and Validation Loss: Training and validation losses were slightly higher
initially but stabilized with more epochs and hyperparameter tuning.

• Inference Time: Inference time was 15ms, which is higher due to the added com-
plexity of the LSTM layer.

16



6.3 Enhanced Nvidia Model Performance Evaluation

The enhanced Nvidia model did great, especially on the straight road, and the perform-
ance for steering angle prediction was high. This came at the cost of increased size
compared to PilotNet, with higher accuracy, especially for most driving scenarios. Table
6 summarizes the performance and training characteristics of the Enhanced NVIDIA
model, showcasing its excellent steering angle prediction and straight road handling,
with good performance on turns.

Table 6: Performance Summary- Enhanced Nvidia Model

• Loss over Epochs: The model showed a very low loss, which stabilized after just 8
epochs.

• MAE: Mean Absolute Error was 0.010, the lowest among the three models.
• RMSE: Root Mean Squared Error was 0.020, indicating strong prediction capability.
• Training and Validation Loss: Both training and validation losses were very low,

and validation loss remained consistent, suggesting strong generalization ability.
• Inference Time: Inference time was 8ms, which is slightly higher than PilotNet but

still manageable for real-time application.

6.4 Combined Performance Evaluation and Results Analysis
Table

Here is the combined summary table 7 (a) for all three models:

Table 7(a): Combined Performance Evaluation

6.5 Discussion- Model Comparison and Analysis Table

Thus, considering all the comparisons as in table 7 (b), one would definitely reach a
point where the Enhanced Nvidia Model becomes robust and effective with respect to
adaptability in the autonomous driving environment for the prediction of steering angles.
Following are the features implemented in the Enhanced Nvidia Model:

• We have devised a rather simple, inexpensive model that can predict steering angles
quite accurately, using the Udacity simulator dataset for achieving simplicity and effi-
ciency.

• It doespropose three main architecture candidates: PilotNet, Enhanced Nvidia
Model, and Hybrid CNN-RNN Model-specifically formulated in both spatial and tem-
poral data in order to be given to the autonomous vehicle.

17



• Advanced architectures were rewritten, inspired by state-of-the-art models running
on leading automotive companies, performance was evaluated to decide upon the best
way towards accurate driving.

• Compared the output of the different models in terms of a loss across all epochs,
MAE, RMSE, and the length of time for inference while providing details in the results
to explain certain relative advantages and compromises in every model.

• The improved Nvidia Model generally showed much better generalization capability
against different driving conditions due to low MAE and RMSE and also proved to be
more stable upon introducing max pooling, batch normalization, and dropout layers. This
model hence offers the best compromise between accuracy, robustness, and computational
efficiency in a real-world application.

Table 7(b): Combined Performance Evaluation

7 Conclusion and Future Work

The Enhanced NVIDIA (ENV) model significantly outperforms both PilotNet and the
Hybrid CNN-RNN models, as we can see by the improvements in Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE). The percentage improvement is calculated
using the formula:

Percentage Improvement =
Metrics (Other Model)−Metrics (ENV)

Metrics (Other Model)
× 100

1. ENV Comparison with PilotNet:

• MAE Improvement: Using the formula

MAE Improvement =
0.015− 0.01

0.015
× 100 = 33.33%

• RMSE Improvement: Using the formula -

RMSE Improvement =
0.025− 0.02

0.025
× 100 = 20%

2. ENV Comparison with CNN-RNN:

18



• MAE Improvement: Using the formula -

MAE Improvement =
0.018− 0.01

0.018
× 100 = 44.44%

• RMSE Improvement: Using the formula -

RMSE Improvement =
0.03− 0.02

0.03
× 100 = 33.33%

It enables further extension of this thesis for the validation of these models on nat-
uralistic driving data for handling more diverse and unstructured environments. It will
also exploit model quantization and pruning for real-time deployment optimization, per-
form sensor fusion with LIDAR and GPS to enable the handling of dynamic and complex
scenarios. As a result of this fast-tracking of progress, there will be much more robust
models with application feasibility in real-world autonomous driving systems, providing
much safer and efficient transport options.

Acknowledgment

Most especially, I would like to thank my supervisor, Mr. Arundev Vamadevan, who
managed his busy schedule and gave me much needed guidance and support when ex-
ecuting this project. His valuable insight and continued encouragement from the very
start of the project mean a lot in bringing this project into being. He gave vast knowledge
that created more value in my understanding and kept me driven toward completing my
project on time. Much value is attached to his guidance and commitment.

Limitations and Challenges

The reason behind not executing this project with the usage of CARLA which is among
the popularly known simulators. It would provide realistic urban driving scenarios needed
for training and testing the autonomous driving model. However, due to the scarcity of
system resources, CARLA could not run successfully in my machine even in very low
settings and modifying CARLA settings further hung the simulator or my laptop kept
on crashing continuously.

These technical requirements involve using an Intel(R) Core(TM) i5-12500H 12th
Generation at 2.50 GHz, supported by 16 GB of RAM and with an NVIDIA RTX 3050
GPU with 4 GB of memory. However, realistic urban simulations running on CARLA
required more computation power than that supplied by my system. The limited GPU
memory coupled with the heavy load of computational processing made the system un-
stable despite trying repeatedly to lower the graphic quality. I have valid screenshots
to support these points, which will show that the system was not able to cope with the
demand consistently. I tried installing the older version, but the problem persisted, and
hence I had no other choice but to shift to using the Udacity simulator. Although not
as elaborate as CARLA, it was enough to develop and test the models for predicting the
steering angle. Again, this is a limitation and indicative of the greater need for higher-
capability hardware that can exploit the full capacity of high-fidelity simulators such as
CARLA and provide more realistic data useful in the development of autonomous vehicle
technology.

19



Figure 6: Screenshots

References

Aljehane, N. O. (2024). A study to investigate the role and challenges associated with
the use of deep learning in autonomous vehicles, Preprints .

Bachute, M. R. and Subhedar, J. M. (2021). Autonomous driving architectures: Insights
of machine learning and deep learning algorithms, Machine Learning with Applications
6: 100164.

Badue, C., Guidolini, R., Carneiro, R., Azevedo, P., Cardoso, V. B., Forechi, A., Jesus,
L., Berriel, R., Paixão, T. M., Mutz, F., Oliveira-Santos, T. and Souza, A. F. D. (2021).
Self-driving cars: A survey, Expert Systems with Applications 165: 113816.

Bojarski, M., Testa, D. D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel,

20



L. D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J. and Zieba, K. (2017).
End to end learning for self-driving cars, arXiv .

Dong, G., Tang, M., Yan, R., Mu, Z., Cai, L. and Park, B. B. (2023). Deep Learning for
Autonomous Vehicles and Systems.

Faizi, F. and Alsulaifanie, A. K. (2023). Steering angle prediction via neural networks,
Indonesian Journal of Electrical Engineering and Computer Science 31(1): 392–399.

jae Lee, M. and Ha, Y.-G. (2020). Autonomous driving control using end-to-end deep
learning, 2020 IEEE International Conference on Big Data and Smart Computing (Big-
Comp).

Janai, J., Güney, F., Behl, A. and Geiger, A. (2020). Computer vision for autonom-
ous vehicles: Problems, datasets and state of the art, Foundations and Trends® in
Computer Graphics and Vision 12(1–3): 1–308.

Li, J., Xu, R., Liu, X., Ma, J., Li, B., Zou, Q., Ma, J. and Yu, H. (2024). Domain
adaptation based object detection for autonomous driving in foggy and rainy weather,
arXiv preprint arXiv:2307.09676v4.

Liu, H., Deng, C., Fernández-Caballero, A. and Sun, F. (2018). A review of autonom-
ous driving: Common practices and emerging technologies, International Journal of
Advanced Robotic Systems 15(3): 172988141878283.

Mozaffari, S., Al-Jarrah, O. Y., Dianati, M., Jennings, P. and Mouzakitis, A. (2022).
Deep learning-based vehicle behavior prediction for autonomous driving applications:
A review, IEEE Transactions on Intelligent Transportation Systems 23(1): 33–47.

Nadella, S., Barua, P., Hagler, J., Lamb, D. and Tian, Q. (2024). Enhancing accuracy
and robustness of steering angle prediction with attention mechanism, arXiv preprint .

Ngoc, H. T., Hong, P. P., Vinh, N. N., Trung, N. N., Nguyen, K. H. and Quach, L.-D.
(2023). An improved lane-keeping controller for autonomous vehicles leveraging an
integrated cnn-lstm approach, International Journal of Advanced Computer Science
and Applications 14(7).

Rebuffi, S. A., Gowal, S., Calian, D. A., Stimberg, F., Wiles, O. and Mann, T. (2021).
Data augmentation can improve robustness, arXiv .

Rožanec, J., Zajec, P., Theodoropoulos, S., Mladenić, D., Koehorst, E. and Fortuna,
B. (2022). Synthetic data augmentation using gan for improved automated visual
inspection, arXiv abs/2212.09317.

Saleem, H., Riaz, F., Mostarda, L., Niazi, M. A., Rafiq, A. and Saeed, S. (2021). Steering
angle prediction techniques for autonomous ground vehicles: A review, IEEE Access
99: 1–1.

Taylor, L. and Nitschke, G. (2018). Improving deep learning with generic data augment-
ation, 2018 IEEE Symposium Series on Computational Intelligence (SSCI).

Wu, T., Luo, A., Huang, R., Cheng, H. and Zhao, Y. (2019). End-to-end driving model for
steering control of autonomous vehicles with future spatiotemporal features, IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

21


	Introduction
	Background
	Problem Statement

	Related Work
	Summary of Literature Review

	Methodology
	Approach 1 - Vision-Based Steering Prediction Using PilotNet Architecture
	Approach 2 – Steering Control - Enhanced Nvidia Model
	Approach 3 – Hybrid CNN-RNN Model-Steering Angle Prediction

	Design Specification
	Implementation
	Dataset Description
	Dataset Preparation
	Dataset Processing
	Training and Testing
	Tools and Technologies Used
	Data Transformation
	Model Development
	PilotNet
	Enhanced Nvidia Model
	Hybrid CNN-RNN Model

	Model Training & Outputs

	Evaluation & Result Analysis
	PilotNet Model Performance Evaluation
	Hybrid CNN-RNN Model Performance Evaluation
	Enhanced Nvidia Model Performance Evaluation
	Combined Performance Evaluation and Results Analysis Table
	Discussion- Model Comparison and Analysis Table

	Conclusion and Future Work
	Acknowledgment
	Limitations and Challenges

