ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc in Artificial Intelligence

Ayush Gole
Student 1D:x23224100

School of Computing
National College of Ireland

Supervisor: Arundev Vamadevan

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee I
reland
School of Computing

Student AYUSH GOl ..o
Name:
Student ID: ... X23224100.. ettt s e
Programme: ..MSc in Artificial Intelligence............ Year: ..2024-25...........
Module: ... MSc Research Project........ccccovvvvceeiee i e
Lecturer: ... ArundeVv VamadeVan........ccuvecee it see e sae e e s anenreens
Submission
Due Date: 12712728 s

A Comparative Study of CNN, RNN-LSTM, and Transfer Learning
Project Title: Models for Facial Emotion Recognition in context of gaming

Word Count: 967 ..o, Page Count: 10,

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: = ...l ANV GOlB.cc s

Date: = L2/12/24 e e

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Ayush Gole
x23224100

1 Introduction

This configuration manual have all details about hardware and software specifications that
has been used in this research process. The below sections shows steps that should be follow
to setup running environment for this research study. It also contain different application that
should configured and utilized.

2 System Specifications:

The system specification contains all the resources used in order to complete the research
study. The Figure 1 shows local system used to run this project while Figure 2 (A)show all
the run time utilized for research. Figure 2 (B) shows detailed information about memory
with detailed specification limits. All hardware accelerators have been utilized for research
and needs to be used with caution due to usage limit.

Device name Gole

Processor 13th Gen Intel(R) Core(TM) i5-1335U 1.30 GHz
Installed RAM 16.0 GB (15.6 GB usable)

Device ID 24E6BBAF-CI17A-404D-82ED-421BEFAOFI1C
Product ID 00342-42652-39255-AA0EM

System type 64-bit operating system, x64-based processor

Pen and touch No pen or touch input is available for this display

== Windows specifications

Edition Windows 11 Home Single Language

Version 24H2

Installed on 07-12-2024

OS build 26100.2314

Experience Windows Feature Experience Pack 1000.26100.32.0

Figure 2. System specifications

Runtime type

Python 3 v

Hardware accelerator @

@® cru (O T4GPU

O v28TPU

Figure 2 (A): Google Colab RunTime Types

Python 3 Google Compute Engine backend Python 3 Google Compute Engine backend (TPU)

Showing resources since 22:50 Showing resources since 22:49
System RAM Disk System RAM Disk
1.1/12.7GB 32.6/107.7GB 47/334.6GB 15.4/225.3 GB

Python 3 Google Compute Engine backend (GPU)
Showing resources since 22:50

System RAM GPU RAM Disk
1.5/12.7GB 0.0/15.0GB 32.6/112.6GB

Figure 2 (B): Google Colab Resources

Software Used:

* Microsoft excel: Used for custom dataset description.

*» Google Collab: Used for all processing and as code runtime environment
* Google Drive: Used to store models, datasets and handle while runtime

3 Dataset specification

This research study used 3 datasets:FER2013, CK , Custom dataset. It was introduced by
(Lucey et al.; 2010) using CK dataset for facial emotion detection. The dataset consists of
more than 950 face image data points. For research purpose we have used subset of CK
dataset CK48 here as shown in Figure 3 (). It is available to download at ck Dataset
Custom dataset is created by author of this research. It contains total 245 images. Figure 3(b)
shows custom dataset face image data and Figure 3 (c) shows Custom dataset game scene
image dataset. This is not publicly available dataset but can be accessed from research
resource or Drive link.

https://www.kaggle.com/datasets/shuvoalok/ck-dataset
https://drive.google.com/drive/folders/1baVXc_xjc4L4cJ58jhzz0zAz0iXNurit?usp=sharing

FER2013 is large dataset employed in this research. (Zahara et al.; 2020) introduced usage of
dataset for facial emotion recognition. FER2013 dataset contains more than 35 thousand
images and more than 28 thousand used for training purpose. Figure 3 (d) shows FER2013
dataset. The dataset is publicly available and can be downloaded from FER2013 DATASET

f==! [l 1 Gl ot o=l YsaN

anger contempt disgust fear happy sadness surprise

Figure 3 (a): Ck dataset

Anger Disgust fear happy Neutral sad surprise

Figure 3 (b) : Custom dataset - face data

Anger Disgust fear happy Neutral sad surprise

Figure 3 (c) : Custom dataset — game scene data

A B P e o) e Y

angry disgust fear happy neutral sad surprise

Figure 3 (d) : FER2013 dataset

4 Project Development

After collecting all data and storing it on drive or storage place, Colab notebook can be
launched. Click on File , followed by Open notebook. As all the code files are stored in
.ipynb file it can be opened easily and will contain all previous run results. You can mount
drive or use notebook storage space for uploading and accessing dataset. There is option to
run one by one or can be run simultaneously.

4.1 Importing Library:

All the required python libraries and packages are displayed in Figure 4. The colab
platform comes with several preinstalled version and libraries. If necessary, please
install required libraries in your environment. Thes libraries are freely available and
can be easily installed from official python site.

https://www.kaggle.com/datasets/msambare/fer2013

#import all required libraries

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import load model, Model

from tensorflow.keras.layers import Input, Dense, Concatenate, Flatten
from tensorflow.keras.utils import to categorical

from tensorflow.keras.preprocessing.image import img to array, load img
from sklearn.preprocessing import LabelEncoder

from sklearn.metrics import accuracy score

import os

from keras.models import load model

from keras.layers import Input

from tensorflow.keras.layers import Concatenate
#Import Required libraries

import tensorflow as tf

from tensorflow.keras.applications.vggle import VGG16, preprocess_input
from tensorflow.keras.layers import Dense, Flatten

from tensorftlow.keras.models import Model

from tensorftlow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from tensorflow.keras.applications import ResNet5@

from tensorflow.keras.layers import GlobalAveragePooling2D

from tensorflow.keras.layers import Dropout

from tensorflow.keras.layers import LSTM, Dense, Dropout, TimeDistributed, Flatten

_from tensorflow.keras.preprocessing.seaguence import pad sequences
import cv2
from sklearn.preprocessing import LabelEncoder

from sklearn.model selection import train test split
from tensorflow.keras.callbacks imbort ReducelLROnPlateau
import dlib
import matplotlib.pyplot as plt

Figure 4: Packages used in Project

4.2 Importing Files:

As Code environment is google colab, all dataset and files are stored in drive for easy
access. Figure 5 shows importing process of Google Drive where data is stored and
how files are accessed throughout research. As multiple code files used in this
research models should be saved in desired storage space and should be imported.
Figure 5 shows method loading of pretrained models in this project.

from google.colab import drive

drive.mount(’/content/drive")

Define data directory path

data dir = '/content/drive/MyDrive/uUntitled folder/Custom dataset/Game scne/Test4’

4

Load datasets

datasetl path = '/content/drive/MyDrive/Untitled folder/Custom dataset/Face/Preporcessed’
dataset3 path = '/content/drive/MyDrive/uUntitled folder/CK+48/CK+48"

dataset3 path = '/content/drive/MyDrive/Untitled folder/FER2013/FER2013/train’

Replace with the path to your root directory containing the emotion folders

root dir = '/content/drive/MvDrive/Untitled folder/Custom dataset/Game scne/Train'
Load the pre-trained models

face_emotion_model = load model('/content/drive/MyDrive/Untitled folder/Custom dataset/Method 2 models/Model2gamescene.h5")
game_scene_emotion_model = load_model('/content/drive/MyDrive/Untitled folder/Custom dataset/Method 2 models/Model6custom CK.h5")

Figure 5: Importing Files

4.3 Preprocessing and data validation:

Data validation is important part of exploration. Figure 6 shows code implementation
for Data validation techniques used.

Convert the image to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

Load the shape predictor
predictor = dlib.shape predictor('shape predictor 68 face landmarks.dat"')

Detect face landmarks
detector = dlib.get frontal face detector()
dets = detector(gray, 1)
for k, d in enumerate(dets):
shape = predictor(gray, d)

Extract the coordinates of eyes, lips, and nose

eyes = [(shape.part(36).x, shape.part(36).y), (shape.part(45).x, shape.part(45).y)]
lips = [(shape.part(48).x, shape.part(48).y), (shape.part(54).x, shape.part(54).y)]
nose = [(shape.part(30).x, shape.part(30).y)]

Plot the original image with landmarks
plt.imshow(cv2.cvtColor(img, cv2.COLOR BGR2RGB))
for x, y in eyes:
plt.scatter(x, y, c="'r")
print(f"Pixel ({x}, {yH)")
for x, y in lips:
plt.scatter(x, y, c='g")
print(f"Pixel ({x}, {y})")
for x, y in nose:
plt.scatter(x, y, c='b")
print(f"Pixel ({x}, {yH")
plt.show()

Flip the 1mage
flipped_img = cv2.flip(img, 1)

Plot the flipped image with landmarks
plt.imshow(cv2.cvtColor(flipped img, cv2.COLOR_BGR2RGB))
for x, y in eyes:

plt.scatter(img.shape[1] - x, y, c='r")

print(f"Pixel ({img.shape[1] - x}, {y})")
for x, y in lips:

plt.scatter(img.shape[1] - x, y, ¢="g")

print(f"Pixel ({img.shape[1] - x}, {y})")
for x, y in nose:

plt.scatter(img.shape[1] - x, y, c='b")

print(f"Pixel ({img.shape[1] - x}, {y})")
plt.show()

Print the pixel coordinates where the dot is plotted but not in the image outside
for x, y in eyes + lips + nose:
if x < @ or x »>= img.shape[1] or y < @ or y >= img.shape[0]:
print(f"Pixel ({x}., {v}) is outside the image")
Figure 6 : Data validation

Preprocessing: As custom datset contain different sizes and colored datapoints.
Preprocessing techniques like resize and imread and data exported as shown in Figure
7 for both face and game scene image dataset.

Function to preprocess an image

def preprocess image(img_path):
img = cv2.imread(img_path, cv2.IMREAD GRAYSCALE)
img = cv2.resize(img, (150, 100))
return img

Iterate through each emotion folder
for emotion folder in os.listdir(root dir):
emotion_path = os.path.join(root _dir, emotion_folder)

Create output folder for the emotion
output emotion_path = os.path.join(output dir, emotion_ folder)
os.makedirs(output _emotion_path, exist ok=True)

Iterate through images in the emotion folder
for image file in os.listdir(emotion_ path):
image path = os.path.join(emotion path, image file)

Preprocess the image
preprocessed _img = preprocess_image(image path)

save the preprocessed image in the output folder
output file = os.path.join(output emotion path, image file)

cv2.imwrite(output file, preprocessed img)

print("Image preprocessing complete!™)

#define Preprocessing function
def preprocess image(img path, output path):
img = cv2.imread(img_path, cv2.IMREAD GRAYSCALE)
img = cv2.resize(img, (48, 48))
cv2.imwrite(output path, img)
Figure 7: Preprocessing

4.4 Modelling:
In this research 3 main methods used. All machine learning models are deep learning:
CNN, RNN-LSTM and CNN transfer learning. As show in below implementations.
For multi input CNN, make sure to train CNN models created with multi dataset
combinations and save and later import them in order to combine them as shown
below for final model part. In case of Transfer learning also similarly models should
be saved and imported later as combination. For RNN-LSTM case, model features are
saved and fed as input to LSTM models. All these implementations shown below.

A. Method 1: Multi-input CNN
Multi-input CNN model is implemented in research. CNN model used shown in
Figure 8. For Mult input combination of CNN implemented shown in 11.

print("Creating the CNN model...")
model3 = Sequential([
Input(shape=(img_height, img width, 1)), # Use Input layer
Conv2D(64, (3, 3), activation="relu'),
MaxPooling2D((2, 2)),
Conv2D(128, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Flatten(),
Dense(256, activation='relu'),
Dense(len(le.classes_), activation='softmax')

1)

Compile the model
print("Compiling the model...")
model3.compile(optimizer="RMSprop', loss='sparse categorical crossentropy', metrics=['accuracy'])

Train the model with a smaller batch size if necessary
print("Starting model training...")
from tensorflow.keras.callbacks import ReducelROnPlateau

adjusting learning rate
reduce lr = ReducelROnPlateau(monitor='val loss', factor=0.5, patience=2, min_lr=le-3)

#train model
history = model3.fit(
train_datagen.flow(X_train, y_train, batch_size=16), # Adjusted batch size
epochs=20,
validation_data=(X_test, y_test),
callbacks=[reduce_lr]

Figure 8: CNN model

B. Method 2: Transfer Learning
Transfer learning methods used in this research are of two pretrained models
VGG16 and RESNET CNN. Figure 9 shows CNN VGG16 pretrained model.
Figure 10 shows CNN ResNet pretrained model. While this model is implemented
in method 3 and method 1 its part of transfer learning so shown here.

from tensorflow.keras.applications.vggl6 import VGG16, preprocess_input
base_model = VGG16(weights="imagenet’, include_top=False, input_shape=(img_width, img_height, 3))
from tensorflow.keras.layers import Dropout
Freeze the base model layers
for layer in base model.layers
layer.trainable = False

Add custom top layers

= base_model.output

= GlobalAveragePooling2D() (x)

= Dense(8, activation="relu')(x)

= Dropout(8.5)(x)

= Dense(7, activation="softmax')(x) # Adjust the number of classes as needed

®omoX X X #

Create the final model
model7 = Model(inputs=base_model.input, outputs=x)
model7.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=08.01), loss='categorical_crossentropy', metrics=['accuracy'])
for _ in range(len(train_generatorl) + len(train_generator4)):
next (combined_generator)
model7.fit(combined generator,
steps_per_epoch=max(len(train_generatorl), len(train_generator3)),
epochs=5,
validation_data=combined_generator,
validation_steps=max(len(train_generatorl), len(train_generator3)))

Figure 9 : Transfer learning VGG16

base model = ResNet58(weights="imagenet', include top=False, input_shape=(img_width, img height, 3))
from tensorflow.keras.layers import Dropout
Freeze the base model layers
for layer in base_model.layers[-18:]:
layer.trainable = False

Add custom top layers

= base_model.output

= GlobalAveragePooling2D() (x)

= Dense(256, activation="relu')(x)

= Dropout(0.5)(x)

= Dense(7, activation='softmax')(x) # Adjusting the number of classes as per emotions

ER -

Create the final model
modell = Model(inputs=base_model.input, outputs=x)

Compile the model
modell.compile(optimizer="adam', loss='categorical crossentropy', metrics=["'accuracy'])
for _ in range(len(train_generatorl) + len(train_generator2)):
next (combined_generator) # Consume data until exhaustion
Train the model
modell.fit(combined generator,
steps_per_epoch=max(len(train_generatorl), len(train_generator2)),
epochs=5,
validation_data=combined_generator,
validation_steps=max(len(train_generatorl), len(train_generator2)))

Figure 10 :Transfer learning RESNET 50

C. Method 3: RNN-LSTM
Figure 11 shows RNN-LSTM model implementation. RNN-LSTM is
implemented along with transfer learning models which are same as show in
figure 10. And features are saved for same.

Assume game_features and face_features are your extracted features
game_features = features2 # Example shape
face_features = features # Example shape

Pad the facial features to match the game features sequence length

face_features_padded = pad_sequences(face_features, maxlen=5, dtype='float32', padding='post', truncating='post')

#Reshape the features to have the same sequence length

game_features_reshaped = game_features.reshape(game_features.shape[@], game features.shape[1l], -1) # (193, 5, 4%2048)
face_features_reshaped = face_features_padded.reshape(face_features_padded.shape[@], face_features_padded.shape[1], -1) # (981, 5, 2*2848)

Align the number of samples
min_samples = min(game_features_reshaped.shape[@], face_features_reshaped.shape[@8])

Truncate both feature sets to the minimum sample size

game_features_aligned = game_features_reshaped[:min_samples]

face_features_aligned = face features_reshaped[:min_samples]

#combine learnt features

combined_features = np.concatenate((game_features_aligned, face_features_aligned), axis=-1)

num_samples = combined features.shape[@] # Number of samples after truncation

num_classes = 7

labels = np.zeros(num_samples)

labels[num_samples // 2:] = 1

modeld = Sequential()

modeld.add(LSTM(256, return_sequences=True, input_shape=(combined_features.shape[1], combined features.shape[2])))
model4.add(Dropout(8.5))

model4d . add(LSTM(128))

model4.add(Dropout(@.5))

model4._add(Dense(1, activation='sigmoid')) # Adjust output layer based on task for future adjust according to future dataset classes

Compile the model
model4.compile(loss="binary_crossentropy', optimizer="adam', metrics=["'accuracy'])
modeld.fit(combined features, labels, epochs=5, batch_size=32)

Figure 11 : RNN LSTM model

Combining models:
Define input layers
face_input = Input(shape=(48, 48, 1))
game_scene_input = Input(shape=(15@, 180, 1))
Get outputs from each model
face_output = face model(face_input)
game_scene_output = game_scene_model (game_scene_input)
from tensorflow.keras.layers import Concatenate
If the output is a list, access the first element
if isinstance(face output, list):
face_output = face_output[@]
if isinstance(game_scene_output, list):
game_scene_output = game_scene_output[@]
num_classes_face = face_output.shape[-1]
num_classes_scene = game_scene_output.shape[-1]
if num_classes_face != num_classes_scene:
Create a Dense layer to match the number of classes
game_scene_output = Dense(num_classes face, activation="softmax')(game_scene_output)
Concatenate the outputs
combined_output = Concatenate()([face_output, game_scene_output])
x = Dense(128, activation='relu')(combined output)
x = Dense(64, activation='relu')(x)
NUM_CLASSES = 7

final_output = Dense(NUM_CLASSES, activation='softmax')(x) # NUM_CLASSES is the total number of emotions

Create the final model

final model = Model(inputs=[face_input, game_scene_input], outputs=final output)

Compile the model
final_model.compile(optimizer="'adam', loss='categorical crossentropy', metrics=['accuracy'])

Print the summary of the model
final model.summary()

Figure 11:

References

Lucey, P., Cohn, J. F., Kanade, T., Saragih, J., Ambadar, Z. and Matthews, I. (2010). The
extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-
specified expression, 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition- Workshops, pp. 94-101

Zahara, L., Musa, P., Prasetyo Wibowo, E., Karim, I. and Bahri Musa, S. (2020). The facial
emotion recognition (fer-2013) dataset for prediction system of micro-expressions face using
the convolutional neural network (cnn) algorithm based raspberry pi, 2020 Fifth International
Conference on Informatics and Computing (ICIC), pp. 1-9.

10

