~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Msc in Artificial Intelligence

Parkhi Bhardwaj
Student ID: 23163861

School of Computing
National College of Ireland

Supervisor:  Kislay Ra]




National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Parkhi Bhardwaj
Student ID: 23163861
Programme: Msc in Artificial Intelligence
Year: 2024
Module: MSc Research Project
Supervisor: Kislay Raj
Submission Due Date: 12/12/2024
Project Title: Configuration Manual
Word Count: 700
Page Count: [1

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Parkhi Bhardwaj

Date: 12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):




Configuration Manual

Parkhi Bhardwaj
23163861

1 Requirements Guide

In order to run the code, please follow all the steps written in this configuration manual.
This document describes all the necessary requirements like software and hardware re-
quirements, environment setup, and more.

2 Machine Hardware requirements

The following are the hardware requirements that will be needed primarily for the pro-
ject to work. The configurations of the machine were: 16gb RAM, 12th Gen Intel(R)
Core(TM) i7-12700H 2.30 GHz, 64-bit OS, Windows 11.

3 Machine Software requirements

The following software requirements are used to run the code. Jupyter Notebook is the
environment used for the code compiling. Python 3.12 is used as the language for this
project. Google drive/Gmail account is used to link to notebook. Microsoft excel is used
to store data as csv file. Overleaf was used to write the research project report and this
configuration manual.

4 Environment set up

Anaconda Navigator environment setup is used here. The next step is to Launch Jupyter
Notebook. The steps are also followed by images to help in better understanding of the
steps to be taken. Figure [1| describes the environment setup of Anaconda Navigator.

Figure 1: Anaconda Navigator



5 Data Selection Process

The dataset used for this research project is from the open source dataset website ht-

tps:/ /physionet.org/. The dataset is called MIT-BIH Arrhythmia

shows the overview of the dataset page on physionet.

PhysioNet Find Share About News

MIT-BIH Arrhythmia Database

George Moody @, Roger Mark @

Published: Fab 24, 2005, Version: 100

MIT-BIH Arrhythmia Database expanded (Fcb. 24, 2005, midright)

The entire MIT-BIH Arthy eely available on PhysioN than halfof
PhysioNet' incepion;the remaindr has now been posted.

ite the original publication:
of the MIT-BIH Arhyihmia Database. IEEE Eng in Med and Biol Share

20(3)45:50 (May Jur

[ )
Goldberger, A, Amar & Stanley, H.E. 2000
Py urce for complex

physiologic signals. el 101 (23), . e215-e:

Access

Background

Since 1975, ur Iaboratories at Boston's Beth lsael Hospital (now the Beth lsael Deaconess Medical

Figure 2: MIT-BIH Arrhythmia Dataset

6 Install Libraries

Database. Figur

The following libraries need to be installed for the research project. The results may vary
depending on the fact that some of the libraries have not been properly installed. The
below list includes all the libraries used. Snapshot of python file is given in Figure [3]

1.

2.

Pandas
Tensorflow
Numpy
Scikit-learn
Matplotlib
Seaborn
Plotly

Mixtend

In [28]:

import pandas as pd
import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

import plotly.express as px

import tensorflow as tf

from tensorflow. keras.models import Sequential

from tensorflow.keras.layers import SimpleRNN, GRU, LSTM, Dense, Dropout

from tensorflow.keras.callbacks import EarlyStopping, ReduceLRonPlateau, Modelcheckpoint

from sklearn.preprocessing import MinMaxscaler
from sklearn.model selection import train_test split

from sklearn.metrics import classification report, confusion matrix
from mlxtend.plotting import plot_confusion matrix

from sklearn.metrics import roc_curve, auc
from sklearn.preprocessing import label binarize

from sklearn.metrics import mean_squared_error

Figure 3: Install Libraries


https://physionet.org/
https://physionet.org/
https://physionet.org/content/mitdb/1.0.0/

7 Implementation and using the code files

A quick breakdown of the specific files that are in the folder. There are 4 jupyter note-
books in python for all the four models used. Each file performs data preprocessing
primarily then specific models are applied therefore, each jupyter notebook file is named
according to the architecture, see figurddl Below is the detail description of each file.

e RNN- This file builds RNN model and measure performance metrices.
e LSTM- This file builds LSTM model and measure performance metrices.
e GRU- This file builds GRU model and measure performance metrices.

e CNN-LSTM- This file builds hybrid CNN-LSTM model and measure performance
metrices.

@ localhost:8889/tree/Project

1e migration plan to Notebook 7 to learn about the new features and the actio

~ Jupyter

Files Running Clusters
Select items to perform actions on them.

(Jo -~  Wm/ Project
(i

& CNN-LSTM.ipynb
& GRU.ipynb

& | STM.ipynb

0O 0 0D

& RNN.ipynb

Figure 4: Project folder containing code files.

Download the dataset and upload in to the same folder. Two .csv files containing
dataset is shown in figurd]

O [ mitbih_test.csv

O [ mitbih_train csv
Figure 5: Dataset in the project folder

In order to run the code, open the python notebook files one by one and run the code.
Each code contains all the preprocessing steps like data importing, data preprocessing,
data balancing, data scaling, data visualization code. Below are the few snapshots of
data preprocessing.



# Load dataset
train_data = pd.read_csv('mitbih_train.csv', header=None)
test_data = pd.read_csv('mitbih_test.csv', header=None)

print(f"Number of samples in train data: {train_data.shape[0]}")
print(f“Number of samples in test data: {test_data.shape[®]}")

Number of samples in train data: 87554
Number of samples in test data: 21892

# Dataset balancing
train_data[187]=train_data[187].astype(int)
equilibre=train_data[187].value_counts()

print(equilibre)
187

] 72471

a 6431

2 5788

1 2223

3 641

Name: count, dtype: inté4

Arrhythmia Dataset(
Number of Samples: 109446
Number of Categorie
sampling Frequency: 125Hz

Data Source: Physionet's MIT-BIH Arrhythmia Dataset
Classes: ['N': @, "S': 1, "V': 2, "F': 3, 'Q": 4]

Figure 6: Data Loading and balancing

m (7]

out[7]

m 8]

n (9]

1n [10]

m (7]

out(7]

1 (8]

™ (9]

n [10]

# Explore the dataset
train_data.head()

] 1 2 3 4 s s 7 s 9 .. 178 175 180 181 192 183 184 185 186 187
0 0OTTSAT 0926471 068TIT3 0245088 0154412 019TITS 0151961 00BGAA 00384 004020 00 00 00 00 00 00 00 00 00 O
4096014 086343 Q4BT6I8 0196581 D0JADT7 0125356 00DOTI5 O0BSHIG OOMAO74 0082621 . 0O 00 0D 00 00 00 00 00 00 O
2 1000000 0B50450 018642 0070210 D.0T0270 0050450 0.SETST 0043243 005405 0.045648 . 00 00 0D 00 00 00 0D 00 00 O
3 0925414 Q665745 0541426 0276263 D161 00TTHME 0071623 0080773 006288 00801 . 00 00 0D GO 00 00 0D 00 00 O
4 0967135 1000000 0530986 0596554 D3IGHA0S 0248025 0145540 DOG02 O1TITI 0150235 . 00 00 00 00 00 00 0D 00 00 O
5 rows x 188 columns
print(f"Missing values in train data: (train data.isna().sun().sum()}
print(F'Missing values in test data: {Test_data.isna().sum().sum()}")
Missing values in train data: @
Missing values in test data:
uplicated values in train data: {train_data.duplicated().sun()}"
uplicated values in test data: {test_data.duplicated().sun()}")
Duplicated values in train data: o
Duplicated values in test data: 0
print (train_data.iloc[:, -1].value_counts()) # Check class distribution in train data
187
# Explore the dataset
train_data.head()
0 1 2 3 4 5 s 7 s 9 .. 178 179 180 181 182 183 184 186 186 187
0 077941 0.926471 06BTITI 0245096 0154412 019116 0151961 0.0BS7E4 00SGE2 Q.049020 . 00 00 0D 00 00 00 00 00 00 O
4 080014 086348 04GTI8 0196581 0OGDIT 0125356 00BTIS 00BN OOTAOTA 0082621 00 00 00 00 00 00 00 00 00 O
2 1000000 QB50450 Q186486 0070210 D700 00045 0OSETSI 0043243 004054 Q045046 . 00 00 0D 00 00 00 00 00 00 O
3 0025414 QBEST48 0541426 0276243 DAG61H 007TME 0071623 0080773 006298 00801 . 00 00 00 0O 00 00 0D 00 00 O
00 00 00 00 O

4 0967135 1000000 0.630306 0596954 DIGHH0D 0246025 0145540 OOGS02 0TI 0150235 . 00 0O 00 00 00
5 fows x 188 columns

print(f'Missing values in train data: (train data.isna().sun().sum()}")
print(f"Missing values in test data: {test_data.isna().sum().sum()}")

missing values In train data: @
Missing values in test data: ©

print(£"buplicated values in train data: {train_data.duplicated().sun()}")
print(f"buplicated values in test data: {test_data.duplicated().sun()}")

Duplicated valves in train data: o
Duplicated values in test data: @

, -1].value_counts()) # Check class distribution in train data

print (train_data.iloc:

187

Figure 8: Exploring dataset



In [12]: test_classes = test_data.iloc[:, -1].unique()
train_classes = train_data.iloc[:, -1].unique()
labels

8: "Normal®,

rtial Premature",

remature ventricular contraction”,

3: "Fusion of ventricular and normal”,

4: "Fusion of paced and normal"

+
In [13]:
train_counts = train_data.iloc[:,-1].value_counts{).rename{labels)
plt.fipure(figsize=(8, &))
ax = sns.barplot(x=train_counts.index, y=train_counts.values)
# Annotate each bar with the count
for i, p in enumerate(ax.patches):
ax.annotate(f' {train_counts[i]}",
(p.get_x() + p.get_width() / 2., p.get_heignt()),
ha='center', va='bottem’,
Fontsize=1@)
plt.title( Number of images per class in train data')
plt.xlabel( ' Classes'})
plt.ylabel( Number of samples')
plt.xticks(rotation=98)
plt.show()
Figure 9: Data Visualization
Number of images per class in train data
72471
70000
60000
., 50000
&
=2
E
3
P 40000
o
@
£
E 30000
z
20000
10000
6431 5788
2223
[
— = < M _
g g £ 3 E
£ £ £
2 g £ £ 2
° € g =
g 5 & |5
© S = =
- o ] =
o 2 € =
£ i < g
-] € €
g g g
G v s
I~ 2 £
g H

&
Classes

Figure 10: Visualization graph




Tn [15.

trein_clesses = train data.ilocl:, -1].unlque()

plt.figure(Figsize=(22, 15))

ta[train_data.dloc(:, -1] == cls].iloc[8, :-1]) & Exclude the Lab
Estqlabels. values()) 1]} )

plL.xticks{rotatien=a5)

pIt.tight_Layout()
p1L.show(}

Figure 11: Classes

7.1 Model Training

Each code file contains the implementation of the model. Starting with training the
data set and then validating and finally testing. Performance metrics like accuracy,
precision, recall and Fl-score are then evaluated. Below is the snapshot of the RNN
model implemented.

In [32]: | def build_rnn_model():
nodel - Sequential()

SimpLeRNN(255, input_shape-(%_train.shape[1], 1), return_sequences=True)) # T

bropout (5.3))

(SimpleRnn(125, return_sequences-True)) ¢ Adde

bropout (0.3)

nodel add (simpLeRNN (53))

nodel.add (bropout (9.3))

nodel.add (ense(s, activation-’softmax'))

return mode!

another RN L

In [33]: ran_nodel = build_rnn_model()

In [32]: ran_nodel. compile(opt

In [35]: early_stopping - Earlystopping (momitor='val_loss’,
patience-1a,
restore_best_neights-True)

Feduce_Ir - ReduceLronPlateau(monitor-'val_loss’,

callbacks = [early_stopping, reduce_Ir, model_checkpoint]

In [38]: ran_history = ran_model.fit(x_train_scaled, y_train,
epoch

63,
data-(x_val, y_val),
callbacks- callbacks)

Epoch 1/28

1575 114ns/step - accuracy: @.7069 - loss: 1.0231 - val.accuracy: 0.8276 - val_loss: 0.6739 - le

1715 125ms/step - accuracy: @.8274 - loss: 0.6764 - val.accuracy: 0.8276 - val_loss: 0.6595 - le

——— 1555 113ms/step - accuracy: ©.8395 - loss: 8.6596 - val_accuracy: @.8276 - val_loss: .6515 - le

——— 1585 113ms/step - accuracy: ©.8273 - loss: 8.6667 - val_accuracy: @.8276 - val_loss: .6597 - le

arning_rate: 0.0018
Epoch 5/28
1369/1369 =mmmmme—ee- 1585 115M5/5tep - BCCUTACY: 0.8273 - 10ss: 0.6658 - val accuracy: ©.5276 - val_loss: 0.6537 - le

Figure 12: RNN Model

Results are given below:



In [23]: # Predict on the test set
y_test_pred_rnn = rnn_mcdel.predict(X_test_new).argmax(axis=1)

343/343 ———————————— 4s 1ms/step

In [22]: # Evalugte ANN Model on Test Data
ran_test_less, rnn_test_acc = rnn_model.evaluate(X_test_new, y_test_new, verbose-g)
print{f"RMN Test Loss: {rnn_test_loss:.4f}")
print{f"RNN Test Accuracy: {rnn_test_acc:.2f}")

RNN Test Loss: 8.6320
RNN Test Accuracy: @.8276

In [25]: # classification report for RMW
print{"RMN Classificaticn Report:")
print{classification_report(y_test_new, y_test_pred_rnn))

RNN Classification Report:
precision recall fi-score  suppert

e.2 @.83 1.e0 8.31 2853
1.2 e.e9 8.ee B.0@ 278

2.2 e.e9 8.8@ 8,88 724

EX:] 0.e8 @.88 8.88 a1

EX:) e.e9 8.00 8.8@ 584
accuracy 8.83 18945
macro avg @.17 @.20 8.18 18946
weighted avg @.68 @.83 8.75 18346

Figure 13: RNN model result

The same has to be done for other python notebooks- LSTM, GRU, CNN-LSTM in
order to obtain desired results. Once these steps are done the code will execute well and
make it possible to consider the model performances and its evaluation.

Thank you for reading.

References



	Requirements Guide
	Machine Hardware requirements
	Machine Software requirements
	Environment set up
	Data Selection Process
	Install Libraries
	Implementation and using the code files 
	Model Training


