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Evaluation of the Detectron2 framework for Instance
Segmentation of Multi-Component Meal Images

Ayodeji Michael Adedeji
x23170476

Abstract

The task of instance segmentation of multi-component meal images presents a
unique challenge due to the complex visual characteristics of certain food compon-
ents, such as small areas, complex boundaries and the lack of visual distinction
between food components. These challenges are further complicated by the di-
versity of food globally, with differences in preparation and presentation. This study
uses a multi-stage segmentation approach with the Detectron2 framework on two
multi-component meal image datasets, UECFOODPIXComplete and FoodSeg103,
to assess the framework’s suitability at the task of instance segmentation for multi-
component meal images. Experimental results showed the framework achieved a
mean average precision score of 36.4% for the UECFOODPIXComplete dataset and
20.9% for the FoodSeg103 dataset. This research highlights the framework’s poten-
tial, challenges and areas of improvement at the task of instance segmentation of
multi-component meal images.

1 Introduction

1.1 Background

The rise of advanced computer vision techniques has created more possibilities for in-
novative applications in various domains, including medicine Park et al. (2015), aerial
imagery CV et al. (2023), nutritional and food analysis Wang et al. (2022). One of such
advanced techniques, instance segmentation, an extension of object detection that focuses
on the accurate segmentation of each object in an image, has become well-known for its
ability to detect and segment objects in complex visual scenes. An example of its use
is the segmentation of multi-component meal images, a challenging task with significant
effects for automated dietary assessment, portion control and nutrition monitoring.

Unlike general object detection, instance segmentation in food images requires a com-
plex understanding of overlapping food items, diverse textures, colours and irregular
shapes. The complexity is further increased by varying lighting conditions and the vari-
ability in food presentations and cooking styles. Multi-component meal images consist
of multiple food components, and require efficient segmentation techniques to accurately
detect and segment each food component. This task is essential for applications such as
calorie estimation, automated meal logging, and personalised diet planning, which rely
on the accurate identification and quantification of food items.
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Detectron2, an open-source platform developed by Facebook AI research, has emerged
as a leading framework for object detection and instance segmentation tasks. It of-
fers modular and state of the art architectures with effective customisation capabilities.
With in-built support for advanced models such as Faster R-CNN and Mask R-CNN,
Detectron2 has shown remarkable performance across various domains such aerial im-
agery, defect detection, mammography. However, its application in the domain of multi-
component meal segmentation remains under-explored. This study seeks to address this
gap by evaluating the performance of the framework at the task of instance segmentation
in multi-component meal images.

This research aims to analyse the performance of the Detectron2 framework, an ad-
vanced object detection and segmentation framework when presented with the unique
challenges of detecting and segmenting individual food components in multi-component
meal images. The goal of this research is to improve automated food recognition techno-
logies, which could help with practical applications like diet tracking and food logging.
This study also intends to offer useful ideas for future research in the ever growing area
of AI-assisted food analysis.

This research would analyse the performance of the Detectron2 framework on two
multi-component meal images datasets namely, FoodSeg103 and UECFOODPIXCom-
plete, two datasets that have been specifically designed for multi-component meal image
segmentation research.

1.2 Objectives and Research Question

The main objective of this research is to evaluate the performance of the Detectron2
framework using metrics such as mean Average Precision (mAP) and Average Precision
(AP) per-class. To achieve this, the Detectron2 framework would use the Mask R-CNN
model, a model well-known for its instance segmentation capabilities, with a ResNet-101
Backbone for feature extraction. The model is trained on two datasets namely, Food-
Seg103 and UECFoodPixComplete, with both datasets individually comprising of over
7,000 images and their respective masks. By assessing the effectiveness of the Detectron2
model in accurately segmenting multi-component meal images, this research aims to con-
tribute to the advancements in automated food recognition technologies and providing
insights for future research.

Based on the discussed objectives, this goal of this study is to answer the following
research question: How effective is the Detectron2 framework at the task of instance
segmentation in multi-component meal images, and what are its limitations at the task?

1.3 Structure of the Report

This report is divided into the following sections: Section one provides an overview of
the research work, the research question and the objective of the research. Section two is
composed of the various related works on instance segmentation, food image analysis and
the applications of Detectron2. Section three is composed of the research methodology, it
focuses on the datasets used and the Detectron2 model. Section four and five respectively
detail the design specifications and implementation for the experiment. Section six con-
tains the results and evaluation of the experiment, including a discussion of the results.
Finally, section seven contains the conclusion and future work.
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2 Related Work

Various works have been done on instance segmentation and food image analysis, this
section provides insight on the previous and existing works, it also discusses the varied
application of the Detectron2 framework.

2.1 Instance Segmentation

Image segmentation, a subsection of the computer vision, is sub-divided into three tasks:
semantic segmentation, instance segmentation and panoptic segmentation. Semantic seg-
mentation focuses on the assignment of corresponding labels to each object instance in
images, with repeated object instances sharing the same labels Tang et al. (2021). In-
stance segmentation differs from semantic segmentation as it focuses on outlining each
object with a bounding box or a segmentation mask, with repeated object instances be-
ing outlined separately. Panoptic segmentation combines both approaches as it assigns a
semantic label and an instance id to each pixel in an image Kirillov et al. (2019).

Existing fully-supervised instance segmentation methods are divided into three cat-
egories based on their number of stages: single-stage, two-stage and multi-stage Gu
et al. (2022). Two-stage instance segmentation methods are often characterised by se-
quentially predicting object bounding box and segmenting instances within the predicted
object bounding box, a notable examples of this method is Mask R-CNN He et al. (2017).
Despite its strengths, this approach had limitations such as increased inference time due
its sequential process of two-stage instance segmentation methods, asides from this, bad
performance at the bounding box prediction stage often influenced the segmentation
stage. These limitations led to the development of single-stage and multi-stage instance
segmentation methods.

Single-stage instance segmentation methods focus on the parallel processing of object
detection and mask prediction. It had significant advantages as its parallel processing
often led to faster inference time and higher scalability, as discussed by Lin et al. (2020).
However, this single-stage method was still subject to one of the limitations of the two-
stage framework: the dependence of the segmentation stage on accuracy of the bounding
box predictions, notables examples of this method include YOLACT Bolya et al. (2019)
and SoloV2 Wang et al. (2020).

Multi-stage instance segmentation methods focus on the sequential refinement of the
results from both the bounding box prediction and segmentation stages Gu et al. (2022).
The methods employed techniques such as quality scoring and segmentation mask re-
finement were used improve the performance. Some of the multi-stage methods include
Hybrid Task Cascade, a multi-stage framework designed to approach instance segment-
ation by using information from both the object detection and segmentation processes
in various stages to enhance the instance segmentation task Chen et al. (2019). It also
includes a fully convolutional branch, enabling the method with the ability to distinguish
hard foreground objects from cluttered background, another notable mention is Mask
Scoring R-CNN, a method that employs a mask scoring technique to refine its generated
masks Huang et al. (2019).
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2.2 Food Image Analysis

Food image analysis is an exciting and growing field, driven by the need for systems
that can segment and detect food under diverse conditions. The technology plays a
key role in tasks such as diet tracking, calories estimation, and creation of personalized
nutrition plans. However, the task of segmenting and detecting food items in an image
is challenging due to the complexities such as the lack of diverse datasets, overlapping
items, and multi-component meals with varying textures and appearances.

To address these challenges, researchers have not only experimented with different
advanced models, with each offering its unique strengths, but have also worked to create
informational datasets. Datasets such as FoodSeg103 Wu et al. (2021), UECFoodPix-
Complete Okamoto and Yanai (2021), and Food101 Bossard et al. (2014), have been
curated to fulfil the need for diverse and detailed datasets for food image analysis.

Wu et al. (2021) developed two food image datasets, FoodSeg103 and FoodSeg154, to
address the lack of high quality food image datasets with accurate ingredient labels and
pixel-wise masks. Additionally, they also developed a segmentation model using a multi-
modality pre-training approach, which was then validated against three baseline semantic
segmentation methods: dilated convolution, feature pyramid, and vision transformer.
However, the dataset exhibited certain limitations, such as high intra-class variance i.e.
the same food items appeared in diverse forms due to factors such as cooking styles and
presentations. Furthermore, some food classes were significantly under-represented in the
dataset leading to an imbalance in the dataset.

Wang et al. (2022) noted the limitations of Convolution Neural Network(CNN) at
capturing the specific characteristics of food images for segmentation tasks and proposed
the development of Swin Transformer-based pyramid network to enhance food segmenta-
tion tasks by capturing richer background and boundary information. The goal was to use
a pyramid pooling module(PPM) that is capable of aggregating contextual information
from various regions of images to improve the feature representation of global information
in the images. The experiment was also conducted with the FoodSeg103 dataset, with the
results demonstrating significant improvements over existing traditional CNN models.

With a focus on addressing the speed-accuracy trade-off and limitations of existing
techniques at handling complex shapes, Nguyen et al. (2024) proposed a novel multi-
task neural approach for instance counting, detection and segmentation of food com-
ponents. The approach prioritised real-time performance while maintaining high seg-
mentation quality by using a shared deconvolution sub-network, selective pixel labelling
and parameter-free post-processing to reduce processing time and memory consumption.
The experiment was conducted with the Mixed Dishes, UECFOODPIXComplete and
FoodSeg103 datasets.

2.3 Detectron2 Framework

The Detectron2 framework, developed by Facebook AI Research, is a flexible framework
designed for object detection and segmentation tasks. It supports different computer
vision needs, such as object detection, semantic segmentation, instance segmentation and
panoptic segmentation. It is equipped with models such as Faster R-CNN, DeepLabV3+,
RetinaNet, Mask R-CNN and Panoptic FPN. Additionally, it offers advanced capabilities
such as the ability to refine the segmentation stage of two-stage models, such as Mask
R-CNN with PointRend to improve the mask precision Kirillov et al. (2020).
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Detectron2 has been used across various domains, demonstrating its versatility and
effectiveness in addressing domain-specific challenges. Butt et al. (2023) discussed the
usage of Detectron2 in bullet hole detection and scoring targets in shooting sports, obtain-
ing a mean Average Precision (mAP) value of 66.4%. In the security domain, Wadhwa
et al. (2023) used the framework for crowd counting.

Other applications include work by Rashmi et al. (2024), transfer learning was used
to fine-tune a Detectron2 model for cephalometric landmark annotation in radiographic
analysis, addressing needs in the medical imaging domain. In the agricultural sector,
Wang et al. (2023) used Detectron2 for the identification of rapeseed pods and its related
attributes. In the manufacturing sector, Anupama et al. (2024) also explored its usage
in car parts image segmentation.

The versatility of the Detectron2 framework in various domains, such as security,
sports, medical imaging, agriculture and manufacturing. Its versatility prompted the
need to evaluate its potential for multi-component meal image analysis, as the accurate
segmentation of varied and overlapping food items is essential for improving automated
food recognition technologies.

3 Methodology

This research uses the Detectron2 framework to design and implement a multi-stage
instance segmentation model for multi-component meal images. The training uses two
comprehensive food datasets: the FoodSeg103 and UECFoodPixComplete datasets. This
section provides a thorough documentation of the critical aspects of the research method-
ology, including detailed descriptions of the datasets used, the preprocessing techniques
applied in preparation for training, and the augmentation techniques used to enhance the
model’s capabilities. Additionally, it discusses details of the model configuration, includ-
ing the model’s architecture and the loss functions used to guide the model’s learning.
Finally, it discusses the training and validation process, including the metrics used to
assess the model’s performance.

3.1 Dataset

The effectiveness of segmentation models in real-world is reliant on the quality of the
datasets used for training and evaluation. For this research, the FoodSeg103 and UEC-
FoodPixComplete datasets were selected. The choice to use both datasets was driven
by the presence of diverse food categories and combined with pixel-level annotations and
real-world meal compositions. These factors, combined with being publicly available,
made both datasets the best choice for the research study.

3.1.1 FoodSeg103

The FoodSeg103 was designed specifically for food segmentation tasks, it was created as
a subset of a larger FoodSeg154 dataset Wu et al. (2021). The FoodSeg154 includes an
additional subset of Asian images and annotations, while the FoodSeg103 dataset focuses
on Western-style meals. The FoodSeg103 consists of 7,118 images and 103 ingredient
categories with their corresponding segmentation masks. The images were sourced from
an existing recipe dataset called Recipe1M Salvador et al. (2017).

5



Figure 1: Meal images and individual food components in FoodSeg103

The images in the FoodSeg103 dataset were carefully selected based on the following
criteria: 1) Each image should consist of at least two ingredients(from the same or different
categories) with a maximum of 16 ingredients; and 2) The ingredients in the image should
be clearly visible and easy to annotate.

The creation of the FoodSeg103 dataset involved the extraction of the ingredient
categories from the Recipe1M dataset, a dataset with 800,000 food images, with each
image paired with ingredient labels and cooking recipes. The refinement of the ingredients
categories started with the selection of only the top-124 ingredient categories, before
subsequently consolidating the categories into 103 categories.

The annotation process for the dataset was careful and involved professional annotat-
ors and researchers to ensure high quality annotations. Each image was labelled by one
annotator, it involved the identification of the categories of ingredients in an image by a
human annotator, each ingredients are then tagged with the appropriate category label
before drawing the pixel-wise mask. The annotators were informed to ignore tiny image
regions with areas covering less than 5% of the whole image. After the initial annota-
tion phase, a refinement process that involved correction of mislabelled data, removal of
categories present in fewer than five images and the merger of visually similar categories
was undertaken. The categories were reduced from the initial 124 categories to 103, after
the refinement.

FoodSeg103 captures various scenarios, ranging from images with clear boundaries
between the food components to images with overlapping regions and complex composi-
tions.
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Figure 2: Distribution of Test and Train Datasets - FoodSeg103

The dataset is split into two subsets: the train set and the test set. The training set,
which constitutes 70% of the entire dataset, is used for the model training and learning to
extract features and learn patterns effectively. The test set, consists 10% of the dataset
and serves as the evaluation set, is used to access the model’s performance and to test
the model’s predictive capabilities to new data.

3.1.2 UECFoodPixComplete

The UECFoodPixComplete Okamoto and Yanai (2021) is a refined version of the UEC-
FoodPix dataset Ege et al. (2019). Due to being generated automatically from the bound-
ing box annotations, the segmentation masks in the UECFoodPix dataset contained
incomplete segmentation masks on the boundaries of some food regions. The UECFood-
PixComplete dataset was curated to address the limitations of the UECFoodPix dataset
with the addition of high quality and complete segmentation masks. By improving the
annotation quality and introducing pixel-wise segmentation, the UECFoodPixComplete
dataset offers a better quality dietary image dataset for segmentation research.

7



Figure 3: Meal images and individual food components in UECFoodPixComplete

The curation involved several careful steps including automated and manual methods.
Initially, a manual approach that involved the use of a web-based pixel-wise annotation
tool developed by Tangseng et al. (2017) was used to facilitate the synthesis and sep-
aration of food regions using super-pixels. Unlike the initial automated approach, this
manual approach allowed for precise boundary refinement and correction of mislabelled
regions.

Figure 4: Distribution of Test and Train Datasets - UECFoodPixComplete

The UECFoodPixComplete dataset consists of 10,000 high quality food images with
pixel-segmentation masks. The dataset consists of 103 food categories with the categories
covering a diverse range of cuisines. It is also split into the train and test sets for effective
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model development and evaluation. The train set consists of 90% of the dataset for the
model training and learning, while 10% of the dataset is reserved for the test set to
evaluate the model’s performance.

3.2 Data Preprocessing & Augmentation

To ensure the input data is in the standardised format required for the Detectron2 frame-
work and enhance the diversity and representativeness of the training data, different pre-
processing and augmentation techniques were applied to it. Preprocessing ensures that
our data is in the appropriate format for easy integration with the framework, while aug-
mentation assists by introducing variability, enabling the model to generalize effectively
to unseen conditions.

3.2.1 Data Preprocessing

The data preprocessing stage involved loading the image and their corresponding annota-
tions, extracting information using contours from the segmentation masks, and filtering
small or invalid contours. Each instance is encoded with its bounding box, segmentation
mask, and category ID, complying with Detectron2’s COCO-style dataset format. To ac-
celerate the generation of the training and test COCO-style dataset, parallel processing
was used. Finally, the preprocessed data and corresponding metadata were respectively
registered in the DatasetCatalog and MetadataCatalog of the Detectron2 framework.

3.2.2 Data Augmentation

Various augmentation techniques were applied to increase the diversity of the model
and improve the performance of the model by simulating different real-world scenarios.
Firstly, images were resized to various scales while maintaining their aspect ratios, using
a method that randomly selects one of several predefined shortest edge lengths. This
approach standardises the image dimensions, and also introduces variability to prevent
the model from over-fitting to specific image sizes.

Other augmentation techniques used include horizontal flipping to introduce variabil-
ity in the object orientation, while brightness, contrast, saturation and hue adjustments
using colour jittering were used to replicate changes in the lighting conditions and image
quality. Random rotations were also used to replicate the slight misalignments that often
occur when taking pictures. Random cropping is used to focus on smaller parts of im-
ages, helping the model learn to identify objects even when they are only partially visible.
Finally, the addition of Gaussian noise helps simulate poor lighting conditions that are
found in some real-world images, this would enable the model to handle lower-quality
images.

The use of these techniques allows the model to adapt to different food presentations,
lighting and environment; improving the model’s ability to generalise to unseen data.

3.3 PointRend

To meet the multi-stage segmentation requirements, the instance segmentation model
is developed using the Detectron2 framework. Within this framework, the PointRend
neural network module is used to improve the precision of the instance segmentation task.
For instance segmentation tasks, PointRend can be incorporated with existing instance
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segmentation architectures like Mask R-CNN Kirillov et al. (2020). By incorporating
PointRend with Mask R-CNN, a mask refinement stage is introduced, allowing the model
to segment better, particularly for overlapping and smaller objects, as well as object
boundaries and regions with fine details.

Figure 5: PointRend for Instance Segmentation Kirillov et al. (2020)

3.4 Loss Functions

To address the imbalanced class distributions in the dataset and improve the pixel-level
segmentation accuracy, the following loss functions Dice loss, Focal loss and weighted
cross-entropy loss were combined.

total loss = 0.5 ·WCE+ 0.5 · Focal Loss + Dice Loss (1)

where WCE is the Weighted Cross-Entropy Loss function to address class imbalance,
Focal Loss is the Focal Loss function to focus on classes that are difficult to classify,
Dice Loss is the Dice Loss function for improve segmentation accuracy.

3.4.1 Dice Loss

Due to the imbalanced distribution of some classes in the dataset, the Dice loss function
was in the computation of the total loss to optimise the overlap between the predicted
and ground truth segmentation masks, ensuring more accurate segmentation for less-
represented food components.

DL(y, p̂) = 1− 2yp̂+ 1

y + p̂+ 1
(2)

where y is the ground truth binary mask and p̂ is the predicted probability mask.

3.4.2 Focal Loss

The focal loss function is also used in the calculation of the total loss. It helps the model
focus its learning on classes that are harder to classify and reduces the impact of correctly
classified classes, improving the segmentation accuracy for underrepresented classes.

10



FL(pt) = −αt(1− pt)
γ log(pt) (3)

where pt is the predicted probability for the correct class. αt is the balancing factor to
handle class imbalance, set to 0.25. γ is the focusing parameter that reduces the loss for
correctly classified examples, set to 2.0.

3.4.3 Weighted Cross-Entropy Loss

The default classification loss function, cross-entropy loss function is modified to account
for the class imbalance by assigning different weights to each class. The weights were
calculated based on the inverse frequency of the class occurrences in the dataset, to
ensure that underrepresented classes were given more significance.

4 Design Specification

The model for this research was developed by fine-tuning a pre-trained PointRend model
on the FoodSeg103 and UECFoodPixComplete datasets. PointRend, designed to improve
segmentation accuracy, is capable of integrating with various segmentation architectures
to perform segmentation tasks. The specific pre-trained model used for this research was
configured to extend the Mask R-CNN architecture by adding a mask refinement stage,
using a point-based approach with a point-head module.

The pre-trained model uses ResNet-50 as its backbone, ResNet-50 is a deep convolu-
tional neural network with 50 layers. It is designed to allow models learn patterns and
extract features from images. It functions as the feature extraction layer by focusing on
the extraction of features using details such as colour, shape and edges. In the context
of this research work, this layer allows the pre-trained model to learn patterns specific
to the various food components in a meal image, allowing it to extract individual food
components from the multi-component meal images.

The model also uses a Feature Pyramid Network layer to generate feature maps at
different scales. This improves the model’s ability to detect and segment the individual
food components with varying sizes in the multi-component meal images. Additionally,
the model’s architecture also features a Region Proposal Network layer used to propose
the probable regions with food components in the images, using the feature maps gener-
ated by the Feature Pyramid Network layer. The proposals generated by the Regional
Proposal Network layer are then refined by an RoIAlign layer.

Subsequently, the model classifies the refined regions, refines the bounding boxes,
generates the initial segmentation mask for the image and finally, PointRend refines the
generated masks for a more accurate instance segmentation.

5 Implementation

The training involved fine-tuning the pre-trained model for 50,000 iterations with a batch
size of 8. The selection of these values was influenced by the need to give the model
sufficient time to learn, considering the complexity of the datasets, as well as resource
utilisation and to allow for better convergence. The learning rate was set to 0.001 for
faster convergence, with step decays applied at iterations 15,000 and 18,000 by a factor
of 0.1 to allow for finer adjustments as training progressed. Additionally, early stopping
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was used to avoid over-fitting; training was set to stop if the validation loss showed no
improvement after 25 consecutive iterations. Some of the model training parameters are
show in Table 1 below.

Parameter Value
Batch Size 8

Base Learning Rate 0.001
Maximum Iteration 50,000
Learning Rate Decay 0.1
Learning Rate Steps 15,000 & 18,000

Table 1: Model Training Parameter

The experiments were conducted on Google Colab with the following specifications:
Intel(R) Xeon(R) CPU @ 2.20GHz, 83.5GB of RAM, a single NVIDIA Tesla A100 with
40GB of memory, and 235.7 GB of disk space.

6 Evaluation

The metric used to monitor the model’s performance for this instance segmentation task is
the mean Average Precision(mAP). The mAP metric suits this experiment as it provides
a good measure of the model’s ability to detect, classify and segment the food components
in a multi-component meal image. The mAP combines the precision and recall of the
model’s predictions to evaluate the model’s performance, it is calculated at different
Intersection over Union(IoU) thresholds. The IoU measures the overlap between the
ground truth masks and predicted masks, the formula is shown below:

IoU =
Area of Overlap

Area of Union
(4)

The mAP metric is calculated as the mean of the average precision values at different
recall levels for predictions that meet or exceed a series of IoU thresholds, usually ranging
from 0.50 and 0.95 in increments of 0.05. The formula for the mAP is shown below:

mAP =
1

N

N∑
c=1

AP(c), (5)

where N is the number of food categories, and AP(c) is the Average Precision for category
c, calculated as:

AP(c) =
1

T

T∑
t=1

APt(c), (6)

where T is the number of IoU thresholds, and APt(c) is the Average Precision for category
c at IoU threshold t, defined as:

APt(c) =

∫ 1

0

Precisiont(r) dr, (7)

with Precisiont(r) being the precision at recall r for the given IoU threshold t.
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6.1 Experiment 1: Detectron2 and FoodSeg103

The results for the experiments with the FoodSeg103 dataset are shown in Table 2. Plots
of the total loss and mean average precision across various iterations are also displayed
in Figures 6 and 7.

IoU Threshold Area mAP%
0.50 All 28.2
0.75 All 22.4

0.50-0.95 All 20.9
0.50-0.95 Small 10.0
0.50-0.95 Medium 19.1
0.50-0.95 Large 24.9

Table 2: Average Precision (AP) values at different IoU thresholds and areas
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Category AP Category AP Category AP
candy 6.085 egg tart 0.000 french fries 42.583
chocolate 33.626 biscuit 28.825 popcorn 21.124
pudding 0.000 ice cream 37.413 cheese butter 4.804
cake 20.461 wine 28.187 milkshake 34.400
coffee 58.321 juice 35.859 milk 28.504
tea 9.019 almond 16.754 red beans 2.075
cashew 5.631 dried cranberries 13.299 soy 30.249
walnut 24.576 peanut 1.040 egg 16.344
apple 19.721 date 0.000 apricot 2.356
avocado 7.340 banana 49.870 strawberry 52.356
cherry 31.355 blueberry 61.108 raspberry 38.140
mango 1.099 olives 17.080 peach 12.557
lemon 57.874 pear 3.858 fig 1.211
pineapple 16.630 grape 40.019 kiwi 27.332
melon 6.733 orange 36.399 watermelon 1.882
steak 29.649 pork 10.940 chicken duck 24.315
sausage 9.814 fried meat 4.479 lamb 6.188
sauce 36.394 crab 4.785 fish 15.657
shellfish 24.926 shrimp 13.301 soup 31.959
bread 36.456 corn 69.087 hamburg 0.000
pizza 6.955 hanamaki baozi 0.703 wonton dumplings 0.000
pasta 34.522 noodles 26.616 rice 47.060
pie 15.608 tofu 5.451 eggplant 10.835
potato 38.132 garlic 11.246 cauliflower 39.502
tomato 53.605 kelp 0.000 seaweed 10.668
spring onion 3.621 rape 20.832 ginger 3.868
okra 0.000 lettuce 19.850 pumpkin 23.882
cucumber 36.432 white radish 7.052 carrot 58.411
asparagus 30.613 bamboo shoots 0.000 broccoli 66.338
celery stick 44.590 cilantro mint 37.804 snow peas 8.751
cabbage 33.383 bean sprouts 4.311 onion 9.143
pepper 8.994 green beans 44.643 French beans 50.923
king oyster mushroom 0.000 shiitake 5.545 enoki mushroom 0.000
oyster mushroom 0.000 white button mushroom 10.404

Table 3: Average Precision (AP) values per food category
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Figure 6: Total loss across various iterations

Figure 7: Segmentation mAP across various iterations

6.2 Experiment 2: Detectron2 and UECFoodPixComplete

The results for the experiments with the FoodSeg103 dataset are shown in Table 4. Plots
of the total loss and mean average precision across various iterations are also displayed
in Figures 8 and 9.

IoU Threshold Area mAP%
0.50 All 44.0
0.75 All 38.9

0.50-0.95 All 36.4
0.50-0.95 Small 0.7
0.50-0.95 Medium 40.8
0.50-0.95 Large 47.1

Table 4: Average Precision (AP) values at different IoU thresholds and areas
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Category AP Category AP Category AP
rice 55.619 eels on rice 64.000 pilaf 35.179
chicken-’n’-egg on rice 51.134 pork cutlet on rice 18.371 beef curry 49.678
sushi 24.562 chicken rice 29.162 fried rice 57.056
tempura bowl 35.128 bibimbap 44.890 toast 41.361
croissant 64.585 roll bread 28.784 raisin bread 46.379
chip butty 17.828 hamburger 56.590 pizza 55.557
sandwiches 44.453 udon noodle 66.084 tempura udon 40.077
soba noodle 42.613 ramen noodle 33.228 beef noodle 18.898
tensin noodle 38.724 fried noodle 30.880 spaghetti 26.809
Japanese-style pancake 38.238 takoyaki 15.901 gratin 61.709
sauteed vegetables 19.963 croquette 47.733 grilled eggplant 14.205
sauteed spinach 62.179 vegetable tempura 21.889 miso soup 51.039
potage 57.560 sausage 21.454 oden 29.176
omelet 13.252 ganmodoki 8.366 jiaozi 39.697
stew 50.671 teriyaki grilled fish 26.673 fried fish 22.378
grilled salmon 41.648 salmon meuniere 12.882 sashimi 13.787
grilled pacific saury 33.493 sukiyaki 23.560 sweet and sour pork 56.362
lightly roasted fish 4.985 steamed egg hotchpotch 40.285 tempura 16.807
fried chicken 25.094 sirloin cutlet 24.289 nanbanzuke 22.433
boiled fish 11.372 seasoned beef with potatoes 23.322 hambarg steak 10.144
beef steak 38.117 dried fish 68.941 ginger pork saute 31.605
spicy chili-flavored tofu 52.343 yakitori 45.480 cabbage roll 26.294
rolled omelet 24.980 egg sunny-side up 30.794 fermented soybeans 34.449
cold tofu 16.889 egg roll 44.148 chilled noodle 56.542
stir-fried beef and peppers 33.998 simmered pork 23.156 boiled chicken and vegetables 71.457
sashimi bowl 30.545 sushi bowl 48.628 fish-shaped pancake with bean jam 61.140
shrimp with chill source 40.180 roast chicken 13.391 steamed meat dumpling 43.294
omelet with fried rice 41.415 cutlet curry 9.911 spaghetti meat sauce 48.072
fried shrimp 15.112 potato salad 30.930 green salad 23.324
macaroni salad 37.463 Japanese tofu and vegetable chowder 31.598 pork miso soup 42.410
chinese soup 20.316 beef bowl 58.335 kinpira-style sauteed burdock 25.224
rice ball 11.250 pizza toast 64.615 dipping noodles 57.047
hot dog 67.596 french fries 26.904 mixed rice 62.195
goya chanpuru 39.285 beverage 45.501

Table 5: Average Precision (AP) values per food category

Figure 8: Total loss across various iterations
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Figure 9: Segmentation mAP across various iterations

6.3 Discussion

The results obtained from the instance segmentation tasks for multi-component meal
images using the Detectron2 framework on the FoodSeg103 and UECFOODPIXComplete
dataset offered key insights about the effectiveness of the framework.

The model achieved an mAP value of 20.9% across all thresholds with the FoodSeg103
dataset. It also achieved an mAP value of 28.2% at IoU threshold of 0.50 and 22.2% at
IoU threshold of 0.75. Comparatively, the model performed better with the UECFOOD-
PIXComplete dataset, as it achieved an mAP value of 36.4% across all thresholds, 44%
achieved at IoU threshold of 0.50 and 38.9% achieved at IoU threshold of 0.75. The dis-
parity in the performance of the model with different datasets indicates that the model
encountered difficulties with the FoodSeg103 dataset, with the most probable problem
being the complexity of the FoodSeg103 dataset, as the meal images in the FoodSeg103
dataset relatively had more overlapping food components and complex compositions.

Furthermore, the model performed better for food components with large areas, as
evidenced by the AP values at different sizes. With the FoodSeg103 dataset, an mAP
value of 24.9% was achieved for food components with large area, 19.1% for food compon-
ent with medium area and 10% for food components with small area. A similar pattern
was observed with the UECFOODPIXComplete dataset, as the corresponding mAP val-
ues for food components with large, medium and small area are 47.1%, 40.8% and 0.7%,
respectively. These metrics points to a significant limitation of the Detectron2 frame-
work at handling food components with small areas, a critical factor in food analysis,
considering the small size of certain food components.

An analysis of the category-specific average precision values also highlights the varying
performance of the model across different food components. In the FoodSeg103 dataset,
food components such as corn, broccoli and blueberry had high AP values, while the
model failed to detect and segment food components such as egg tart, hamburg and
wonton dumplings. Similarly, in the UECFOODPIXComplete dataset, food components
such as dried fish, hot dog and udon noodle had high AP values, while food components
such as lightly roasted fish and cutlet curry had low AP values. The varying performance
across different food components can be attributed to the limitation of the model at
detecting and segmenting categories with less distinctive visual features and complex
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boundaries, despite the applied data augmentation techniques.
Finally, the results of these experiments highlights the model’s limitations in deal-

ing with food components with small area, less distinctive visual features and complex
boundaries, leading to potential avenue of model improvement.

7 Conclusion and Future Work

This project focused on evaluating the performance of the Detectron2 framework at the
task of instance segmentation for multi-component meal images. To achieve this, a multi-
stage segmentation approach with a pre-trained PointRend model was used. The model
extends the Mask R-CNN architecture with an additional mask refinement stage and was
fine-tuned using the FoodSeg103 AND UECFOODPIXComplete datasets. The mAP and
average precision per class metrics were used to evaluate the performance of the model.

The model obtained an mAP of 36.4% with the UECFOODPIXComplete dataset
and 20.9% with the FoodSeg103 dataset. These results highlights the challenges and
opportunities in the application of the framework to complex food datasets. While the
framework showed the potential to become a viable tool at the task of detecting and
segmenting multi-component meal images, its effectiveness is poor when handling food
components with small areas, complex boundaries and lack visual distinctiveness.

To improve its viability, future work should focus on improvements to address these
limitations, approaches such as using existing knowledge of food textures and shapes
could significantly improve the performance, especially for challenging food components.
These improvements would enable the framework handle the complexities associated with
multi-component meal images more effectively and make way for extensive applications
in food image analysis.
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