
Configuration Manual: A Deep Learning
Feature-Ranked Backpropagation Framework

for Sustainability

MSc Research Project

Artificial Intelligence

Gaurav
Student ID: x23189487

School of Computing

National College of Ireland

Supervisor: Paul Stynes

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Gaurav

Student ID: x23189487

Programme: Artificial Intelligence

Year: 2024

Module: MSc Research Project

Supervisor: Paul Stynes

Submission Due Date: 12/12/2024

Project Title: Configuration Manual: A Deep Learning Feature-Ranked
Backpropagation Framework for Sustainability

Word Count: 936

Page Count: 5

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 11th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual: A Deep Learning
Feature-Ranked Backpropagation Framework for

Sustainability

Gaurav
x23189487

This configuration manual provides detailed information to ensure reproducibility and
consistency across environments. It has all the specific required software tools, settings,
and configurations required to replicate the experimental setup for training and evaluating
the proposed framework.

1 System Requirements

The code was tested on AWS Deep Learning AMI: g4dn.12xlarge instance with 48vCPUs,
196GB RAM and 4x16GB Nvidia Tesla T4 GPUs.

1.1 Hardware Requirements

1. CPU: 16-core or higher (multi-core processing preferred).

2. GPU: At least 1 NVIDIA GPU with 16GB VRAM (e.g., Tesla T4 or equivalent).
For distributed training, a minimum of 2 GPUs is recommended.

3. RAM: Minimum 16GB.

4. Storage: At least 500GB of available disk space for dataset storage, logs and output
model files.

1.2 Software Requirements

1. Operating System: Ubuntu 22.04 or Windows equivalent (tested on AWS Deep
Learning AMI with Ubuntu 22.04).

2. GPU Driver: NVIDIA Driver version 525 or higher(tested on 550).

3. CUDA Toolkit: Version 11.8 or higher(tested on 12.4).

4. cuDNN: Version 8.7 or higher(tested on 9.6).

1



2 Conda Environment Setup

The code is ran and tested in a contained Anaconda environemt which can be downloaded
from Download Anaconda1.

All the required packages and libraries on which the framework is dependent upon
can be found in environment.yml .

This environment file uses Anaconda as base. To create a conda environment simply
run:

conda env create -n <environment_name > -f environment.yml

conda activate <environment_name >

3 Data Preparation

This section guides you on how to download and prepare the dataset from starting to
final stage.

3.1 Dataset Source

Dataset used is ILSVRC 2012 from Imagenet which has over 1.2 million images corres-
ponding to 1000 different classes. The dataset is downloaded from HuggingFace, which
can be downloaded from ImageNet-1k dataset2.

Data can be downloaded directly from the website or by using the following script.
To use the script an AccessToken has to be created on the https://huggingface.co.

wget --header="Authorization: Bearer <access_token >" https ://

huggingface.co/datasets/ILSVRC/imagenet -1k/resolve/main/data/<

file_name >.tar.gz -O <file_name >.tar.gz

Note

We have only used training and validation data. The reason behind making this
call was: the test data is completely unlabelled, due to this calculating models
performance was difficult without manual validation.

3.2 File Extraction

To extract .tar.gz files:

tar -xzvf <file_name >.tar.gz

1Downlaod Anaconda: https://docs.conda.io/projects/conda/en/latest/user-guide/

install/index.html
2ImageNet-1k dataset: https://huggingface.co/datasets/ILSVRC/imagenet-1k/tree/main/

data

2

https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html
https://huggingface.co/datasets/ILSVRC/imagenet-1k/tree/main/data
https://huggingface.co
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html
https://huggingface.co/datasets/ILSVRC/imagenet-1k/tree/main/data
https://huggingface.co/datasets/ILSVRC/imagenet-1k/tree/main/data


3.3 Dataset Organization

After extracting the data you will find that all the images are in the same folder and distin-
guishing between the classes of images is impossible. To handle this, inside data preperation

folder, there are five scripts which servers their own purpose:

1. move train files to class folder.py and move val files to class folder.py

to organize training and validation datasets into class-based folders.

2. Use combine data.py to merge the datasets.

3. If needed, reduce the number of classes as per requirement using reduce combined classes.py .
This step can be ignored if training and testing on complete dataset.

3.4 Dataset Split

Split the dataset into training, validation, and testing sets using split dataset.py with
a 60:20:20 ratio respectively.

4 Configuration Settings

The complete process of training, testing and evaluation is controlled from one file:
config.yaml .

4.1 config.yaml File

The experimental parameters can be configured:

4.1.1 Data Settings

• train dir: Path to training data folder (e.g., ../data/train).

• val dir: Path to validation data folder (e.g., ../data/val).

• test dir: Path to test data folder (e.g., ../data/test).

4.1.2 Model Settings

• model type: Options are ’alexnet’, ’resnet’, ’vggnet’.

• num classes: Total number of output classes (e.g., 50). This should match the
number of classes selected during Step 3.

• architecture: ’standard’ for full backpropagation or ’selective’ for selective
backpropagation.

• batch size: Number of batches the data should be split in.

3



4.1.3 Training Parameters

• learning rate: Initial learning rate (e.g., 0.0001).

• num epochs: Number of training epochs (e.g., 50). However, the is equipped with
Early Stopping to overcome the the problem of overfitting if it arises due to large
number of epochs.

• high percentage: Starting percentage of weights to update (e.g., 50). Used when
‘architecture‘ set to ‘selective‘.

• low percentage: Final percentage of weights to update (e.g., 20). Used when
‘architecture‘ set to ‘selective‘.

• percentage schedule: Schedule for percentage adjustment (’linear’ or ’exponen-
tial’). From high to low. Used when ‘architecture‘ set to ‘selective‘.

4.1.4 Logging

• log dir: Directory for saving logs (e.g., logs). All the logs, metrics, results are
saved in this directory based on the type of model. For example, alexnet standard
model is training, log dir:logs/alexnet standard/.

• log interval: Frequency of logging (e.g., 10 iterations).

4.1.5 Distributed Training Setup

PyTorch’s Distributed Data Parallel (DDP) was used to handle multi-GPU training. It
haas the following key configurations:

• world size: Number of GPUs to use (e.g., 4).

• backend: Communication backend (’nccl’ for NVIDIA GPUs).

• Environment variables:

export MASTER_ADDR=localhost

export MASTER_PORT =12355

5 Execution

The code uses a single ‘main.py‘ file which is used for training, testing and evaluation
purposes.

5.1 Training and Testing

After configuration settings, to ‘train and test‘ a model of your choice, run the fol-
lowing command(without graphs generation for metrics):

python main.py --config config.yaml

If graphs for metrics are required as well, run the following command

python main_ --config config.yaml --generate_graphs

4



6 Logging and Results

1. Training and validation metrics (e.g., accuracy, loss) are logged in ‘log dir‘ as
CSV files.

2. Testing reults are logged in the ‘log dir‘ .

3. Training and testing logs are saved in the ‘log dir‘ as ‘.log‘ files.

4. Generated graphs are saved in ‘graphs dir‘ .

5. Trained model weights are saved in the ‘checkpoints‘ directory.

To ensure reproducibility of the results, random seeds are used in ‘train.py‘ and

‘test.py‘ files.

import random

import numpy as np

import torch

random.seed (42)

np.random.seed (42)

torch.manual_seed (42)

References

5


	System Requirements
	Hardware Requirements
	Software Requirements

	Conda Environment Setup
	Data Preparation
	Dataset Source
	File Extraction
	Dataset Organization
	Dataset Split

	 Configuration Settings
	mycolorconfig.yaml File
	Data Settings
	Model Settings
	Training Parameters
	Logging
	Distributed Training Setup


	Execution
	Training and Testing

	Logging and Results

