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Abstract — This study investigates facial expression recognition (FER) as a foundational 
element of emotion recognition systems, which enhance human-machine interactions by 
enabling devices to interpret and respond to human emotions. Using the FER2013 dataset and 
Google’s MediaPipe Face Mesh, various machine learning models, including Convolutional 
Neural Networks (CNNs), Support Vector Machines (SVMs), k-Nearest Neighbors (KNN), 
Random Forests and Logistic Regression, were applied to assess their effectiveness in classifying 
facial expressions. Results indicate that CNN and Random Forest models achieved the highest 
accuracy, around 54% and 53%, respectively, with each model demonstrating unique strengths 
in emotion recognition tasks. This research highlights the role of preprocessing and class 
balance adjustments in improving model performance and offers insights into enhancing FER 
systems for real-world applications. 

Keywords — FER(Facial Expression Recognition), Face Mesh,  Convolutional Neural Networks 
(CNNs), Mediapipe, Support Vector Machines (SVM), K-Nearest Neighbors (KNN),  Logistic 
Regression 

1. Introduction 
Emotion recognition systems, especially those focusing on facial expression recognition 
(FER), play an increasingly vital role in enhancing human-machine interactions by allowing 
technology to interpret human emotions. Through emotion recognition, machines gain 
insights into users' psychological and emotional states, fostering empathetic responses that 
extend beyond functional interactions. This capability is particularly valuable in healthcare, 
where understanding patient distress can improve monitoring, and in education, where 
adaptive technologies can respond to student engagement levels. Traditional FER methods, 
such as the Facial Action Coding System (FACS) and machine learning algorithms like SVM 
and KNN, often face challenges in real-world scenarios, especially regarding accuracy across 
diverse populations. However, advancements in deep learning, particularly CNNs, have 
significantly improved FER performance by automatically extracting features and handling 
variability in lighting, facial angles, and expressions. This study investigates various machine 
learning techniques for FER, utilizing the FER2013 dataset and MediaPipe Face Mesh, 
aiming to identify the most effective model configurations for robust emotion recognition. 

2. Literature Review 
2.1. An Overview of Emotion Recognition and Facial Expressions 
Facial expression recognition (FER) is pivotal in emotion recognition systems, significantly 
enhancing human-machine interaction by enabling devices to interpret and respond to human 
emotions effectively. This capability fosters more intuitive and personalized user experiences 
across various domains, including healthcare, education, and customer service. 
Understanding Human Behaviors 
Emotion recognition plays an essential role in interpreting human behaviors and enhancing 
social interactions, especially within the context of human-machine interaction. By 
recognizing emotions, machines gain the ability to interpret the psychological and emotional 
states of users, allowing them to engage in more meaningful interactions that go beyond 
traditional, purely functional responses. In environments such as healthcare, emotional 
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intelligence in machines can aid in patient monitoring, where understanding patient distress 
or comfort can be critical. Similarly, in educational settings, adaptive learning technologies 
using emotion recognition can tailor responses based on student engagement or frustration 
levels, creating a more supportive learning environment [1]. 
Emotion recognition contributes to a deeper understanding of human behaviors by analyzing 
non-verbal cues, such as facial expressions, body language, and vocal tones, which are all 
integral components of social interactions. These cues provide machines with insights into 
the subtleties of human communication, enabling them to better comprehend complex social 
signals that go beyond verbal communication. For instance, recognizing when a person feels 
confused or disengaged allows the system to adjust its response dynamically, ensuring a more 
empathetic interaction. This is particularly beneficial in customer service, where emotional 
understanding can lead to more personalized and satisfactory responses, fostering positive 
experiences and potentially increasing user retention [2]. 
In addition to enhancing individual interactions, emotion recognition systems can support 
group dynamics by tracking and analyzing emotions in collaborative or social settings. For 
example, emotion-aware systems can monitor group sentiments in collaborative workspaces, 
identifying moments of tension or cohesion, which helps facilitate smoother teamwork. This 
capability is valuable in remote work scenarios, where physical cues are limited, yet 
understanding team morale and engagement levels is crucial for effective management [3]. 
Moreover, emotion recognition has implications for the development of socially intelligent 
systems, which can aid individuals with social or communication difficulties, such as those 
on the autism spectrum. By accurately identifying and interpreting emotions in real-time, 
such systems can guide users in recognizing others' emotional states, thus enhancing their 
social engagement skills. Emotion recognition systems also offer significant potential for 
mental health applications, where recognizing signs of stress, anxiety, or depression can help 
flag users who may benefit from mental health resources or intervention [4]. 
Overall, emotion recognition technologies enhance not only human-machine interaction but 
also contribute to societal well-being by improving communication, empathy, and emotional 
awareness in various real-world applications. These systems make it possible for machines to 
participate meaningfully in social contexts, ultimately fostering better understanding and 
collaboration between humans and technology[1] 
Traditional Approaches in Facial Expression Recognition 
Traditional methods in facial expression recognition have focused on feature extraction and 
classification. Techniques such as the Facial Action Coding System (FACS) have been 
employed to decode individual muscle movements to categorize expressions. Machine 
learning algorithms like Support Vector Machines (SVM) and K-Nearest Neighbors (KNN) 
have also been utilized for classification tasks based on extracted features. However, these 
approaches often faced challenges in achieving high accuracy across diverse individuals and 
real-world scenarios.[5] 
Advancements in deep learning have significantly improved the efficacy of facial expression 
recognition systems. Convolutional Neural Networks (CNNs) and Recurrent Neural 
Networks (RNNs) have enhanced the ability to process and classify facial expressions 
accurately across diverse demographic groups and in dynamic, real-time environments. 
These models automatically learn features from vast datasets, allowing them to generalize 
across different lighting conditions, angles, and facial structures, thereby reducing the 
limitations of traditional approaches.[6] 



2.2. Applications of FER2013 
One of the most widely used datasets in FER is FER2013. Introduced during the ICML 2013 
Challenges in Representation Learning, FER2013 comprises approximately 30,000 grayscale 
images of faces, each sized at 48×48 pixels, annotated with seven emotion labels: anger, 
disgust, fear, happiness, sadness, surprise, and neutrality. This dataset has been instrumental 
in training and evaluating deep learning models for emotion classification tasks. FER2013 
serves as a benchmark for developing and testing various FER models. Researchers have 
utilized it to train convolutional neural networks (CNNs) and other deep learning 
architectures, achieving significant advancements in real-time emotion detection systems.[7] 
Its extensive use has facilitated improvements in human-computer interaction, sentiment 
analysis, and behavioral studies. 
2.3.  Face Mesh with Mediapipe 
Face mesh technology involves the computational modeling of human facial structures in 
three dimensions, enabling applications across computer vision, augmented reality (AR), and 
human-computer interaction. A prominent example is MediaPipe Face Mesh, developed by 
Google, which estimates 468 3D facial landmarks in real-time using a single camera input 
without the need for depth sensors. This system employs machine learning to infer 3D facial 
surfaces, facilitating real-time performance crucial for live applications. 
The underlying architecture of MediaPipe Face Mesh comprises two deep neural network 
models: a face detector that identifies facial regions within an image and a face landmark 
model that predicts 3D facial landmarks. This dual-model approach enhances accuracy and 
efficiency in facial feature detection.[8] 
Strengths of MediaPipe Face Mesh 
• Real-Time Performance: MediaPipe Face Mesh delivers real-time facial landmark 

detection, making it suitable for applications requiring immediate feedback, such as virtual 
reality and augmented reality environments. 

• Resource Efficiency: The solution employs lightweight model architectures and GPU 
acceleration, enabling efficient operation on devices with limited computational resources. 
Comprehensive Landmark Detection: By providing a dense set of 3D landmarks, it 
enhances the accuracy of facial feature analysis, which is crucial for applications like 
emotion recognition and facial expression analysis. 

Limitations of MediaPipe Face Mesh 
• Dependence on Image Quality: While effective with low-resolution images, the accuracy 

of landmark detection can be compromised under poor lighting conditions or significant 
occlusions. 

• Limited Expression Recognition: Although it captures detailed facial landmarks, 
MediaPipe Face Mesh does not inherently classify facial expressions or emotions. 
Integrating additional models is necessary for comprehensive emotion recognition. 

3. Research Methodology 
3.1. Dataset 
FER2013 (Facial Expression Recognition 2013) dataset is a dataset used for recognizing 
facial expressions and was created as part of a competition held on Kaggle in 2013. This 
dataset is widely used in applications such as facial expression classification and emotion 
analysis.[9] 



• Images: Consists of grayscale facial images with a resolution of 48x48 pixels. 
• Labels: Includes seven different emotional expression classes: happy, sad, surprise, angry, 

fear, disgust, and neutral. 
• Dataset Splits: Divided into three subsets: training, validation, and test sets. These subsets 

are used for training models, evaluating performance, and measuring the overall 
effectiveness of the model. 

• Total Number of Images: Contains a total of 35,887 facial images. [Figure 1.] 
• Training Set: Approximately 28,709 images 
• Validation Set: 3,589 images 
• Test Set: 3,589 images 

3.2. Creating a Face Mesh with MediaPipe 
Mediapipe, developed by Google, works by detecting faces in images and identifying 
specific landmarks on the face, such as eyes, nose, and mouth. Using deep learning models 
and efficient algorithms, it constructs a 3D facial mesh based on 468 key landmarks, 
allowing for detailed facial analysis in real time.[10] 
Advantages Over Pixel-Based Methods 
• Real-Time Efficiency: Mediapipe is optimized for fast processing, ideal for applications 

that need quick responses like augmented reality. 
• 3D Landmark Precision: By capturing 3D coordinates, Mediapipe provides more accurate 

facial movement and expression tracking than pixel-based methods. 
• Lower Computation Needs: Compared to pixel-based approaches, Mediapipe is highly 

efficient, achieving accurate results with fewer resources. 
3.3. Convolutional Neural Networks (CNNs) 
Convolutional Neural Networks (CNNs) are a type of deep learning model specifically 
designed to process and interpret visual data, such as images. Originally inspired by 
biological processes in the human visual cortex, CNNs have become fundamental in tasks 
that involve recognizing spatial hierarchies in data, making them highly effective for image 
classification, object detection, and semantic segmentation.[11] 
A CNN primarily comprises several layers: convolutional layers, pooling layers, and fully 
connected (dense) layers. Together, these components allow CNNs to capture and learn 
features across various levels of complexity. 
• Convolutional Layers: These layers apply a set of learnable filters (kernels) to the input 

image, performing convolution operations that extract various features such as edges, 
textures, and patterns. 

• Activation Functions: Following each convolutional layer, activation functions like ReLU 
(Rectified Linear Unit) introduce non-linearity into the model, enabling it to learn complex 
patterns. 

Figure: 1



• Pooling Layers: Pooling operations, such as max pooling, reduce the spatial dimensions of 
the feature maps, thereby decreasing computational load and controlling overfitting. 

• Fully Connected Layers: These layers integrate the features learned by the convolutional 
and pooling layers to perform the final classification or regression tasks. 

3.4. k-Nearest Neighbors (KNN) 
KNN is a simple, instance-based algorithm for classification and regression. It classifies data 
points based on the labels of the k-closest neighbors in the feature space. The algorithm 
measures distance (usually Euclidean) to find the closest points.[12] 
• Euclidean Distance: The Euclidean distance between two points x and y is: 

 

• Classification Rule: A data point is assigned to the most common class among its k-nearest 
neighbors. 

3.5. Support Vector Machine (SVM) 
SVM is a supervised algorithm for classification. It works by finding a hyperplane that best 
separates data points into different classes. SVM chooses this hyperplane to maximize the 
margin, or distance, between classes. Mathematically, this separating hyperplane can be 
represented as:  

 
where w is the weight vector, x is the input vector, and b is the bias term. 
3.6. Logistic Regression 
Logistic Regression (LR) is a widely used statistical method for binary classification 
problems, though it can be extended to multiclass classification using techniques like one-vs-
rest. Unlike linear regression, which is suited for continuous target variables, LR predicts the 
probability that a given input belongs to a particular class. It achieves this by modeling the 
log-odds of the outcome as a linear combination of the input features. 
At the core of logistic regression lies the sigmoid function: 

 

3.7. Random Forest 
Random Forest is a powerful machine learning algorithm widely used for classification and 
regression tasks. It works by creating multiple decision trees from random subsets of the 
training data and combining their predictions to improve accuracy and robustness. Each tree 
independently makes a prediction, and the final output is based on the majority vote in 
classification or the average prediction in regression. 

4. Implementation 
4.1. Report on Face Mesh Extraction with MediaPipe 
This report evaluates various preprocessing techniques applied to a dataset of 48x48 images 
to improve MediaPipe's face mesh extraction performance. The preprocessing techniques 
involve different combinations of resizing, adding borders, or keeping the original image 
size. The effectiveness of each approach was assessed by the failure rate across training, 
validation, and testing datasets, with a breakdown by emotion labels. 
MediaPipe FaceMesh Configuration 

f (x, y) =
n

∑
i=1

(yi − xi)2

f (x) = wx + b = 0

f (x) =
1

1 + e−x



The following parameters were configured for the mp_face_mesh.FaceMesh model in 
MediaPipe to optimize face mesh detection: 
• static_image_mode: True - This mode processes each frame as a static image, making it 

suitable for individual image processing rather than video. 
• max_num_faces: 1 - The model is set to detect a maximum of one face per image. 
• refine_landmarks: True - Enables refined landmarks, which improve the detail and 

accuracy of the detected face mesh. 
• min_detection_confidence: 0.8 - The model will only process detections with a 

confidence level of 0.8 or higher. 
• min_tracking_confidence: 0.8 - A high threshold for tracking confidence ensures that 

tracked faces meet a high reliability criterion. 

Overview of Techniques 
1. Adding a 48-pixel border, then resizing to 128x128 
2. Adding a 48-pixel border, then resizing to 250x250 
3. Only resizing to 128x128 
4. Only adding a 48-pixel border 
5. Original size (48x48) 
6. Resizing to 192x192, then adding a 100-pixel border 

Table 1: MediaPipe Face Mesh Extraction Failure Rates 

Observations 
• High Failure Rate for Small or Resized Only Images: Techniques that used the original 

48x48 size or simple resizing to 128x128 had the highest failure rates, consistently above 
66%. 

• Moderate Success with Added Borders and Moderate Resizing: Adding a 48-pixel border 
(with or without resizing to 128x128 or 250x250) yielded a moderate improvement, 
lowering the failure rate to around 27%. 

• Best Performance with 192x192 Resizing and 100-pixel Border: The most effective 
technique was resizing to 192x192 and adding a 100-pixel border, with failure rates around 
19%, indicating a substantial improvement in mesh extraction. 

Emotional Breakdown of Failures 
Failure rates vary across different emotion categories (0-6). Techniques using only resizing or 
the original size had consistently higher failures across all emotions, while the best technique 

Technique Train Failures (%) Val Failures (%) Test Failures (%)

48 Border + Resize to 128x128 8141 (28.4%) 1047 (29.2%) 987 (27.5%)

48 Border + Resize to 250x250 7953 (27.7%) 1019 (28.4%) 959 (26.7%)

Resize to 128x128 Only 19667 (68.5%) 2451 (68.3%) 2398 (66.8%)

Add 48 Border Only 7894 (27.5%) 1014 (28.3%) 950 (26.5%)

Original Size (48x48) 19782 (68.9%) 2465 (68.7%) 2439 (67.9%)

Resize to 192x192 + Add 100 
Border 5553 (19.3%) 700 (19.5%) 668 (18.6%)



(192x192 resizing with a 100-pixel border) showed improvement across each emotion 
category. 

I’ll now generate graphs to visualize these findings, including: 
1. Failure Rate by Technique for Each Dataset (Train, Validation, Test) 
2. Failure Breakdown by Emotion for the Best Technique (192x192 with 100 Border) 

Graph 1. Failure Rate by Technique for Each Dataset 

Graph 2. Failure Breakdown by Emotion for the Best Technique 
(0: Angry, 1: Disgust, 2: Fear, 3: Happy, 4: Sad, 5: Surprise, 6: Neutral.) 



The graphs provide a clear visual representation of the findings: 
1. Failure Rate by Technique for Each Dataset: The first plot shows that the 192x192 

resizing with a 100-pixel border technique achieves the lowest failure rates across all 
datasets, with other techniques showing higher and less consistent performance. 

2. Failure Breakdown by Emotion for the Best Technique: The second plot indicates how 
failure rates for the 192x192 with 100 border technique are distributed across different 
emotion categories. The majority of failures remain relatively balanced, though certain 
categories like "4" and "2" see slightly higher failures. 

5. Evaluation 
5.1. CNN Model Results Report 
Table 2: CNN Performance Summary 

• Overall Accuracy: 0.54 
• Macro Average: 

• Precision: 0.45 
• Recall: 0.41 
• F1-Score: 0.40 

• Weighted Average: 
• Precision: 0.53 
• Recall: 0.54 
• F1-Score: 0.50 

Based on these results, the model’s accuracy is 54%. There is a noticeable disparity in 
performance between classes. For example, while Class 3 has a high success rate (Precision 
0.71, Recall 0.88), Classes 1 and 2 perform significantly lower. 

Class Precision Recall F1-Score Support

Angry 0 0.58 0.24 0.34 362

Disgust 1 0.00 0.00 0.00 40

Fear 2 0.33 0.04 0.08 366

Happy 3 0.71 0.88 0.79 781

Sad 4 0.38 0.35 0.36 485

Surprise 5 0.74 0.66 0.70 352

Neutral 6 0.38 0.71 0.50 535



Table 3: CNN Confusion Matrix 

• There is significant misclassification among classes. For example, 0 is frequently 
misclassified as 4 and 6. 

• 1 shows poor classification performance, with most samples misclassified. This indicates 
the model struggles to distinguish this class. 

• 3 demonstrates the highest classification success; however, confusion remains high among 
other classes. 

5.2. Logistic Regression Model Results Report 
Table 4: Logistic Regression Performance Summary 

Class Precision Recall F1-Score Support

Angry 0 0.40 0.33 0.36 362

Disgust 1 0.00 0.00 0.00 40

Fear 2 0.25 0.05 0.09 366

Happy 3 0.73 0.85 0.79 781

Sad 4 0.39 0.25 0.30 485

Surprise 5 0.63 0.69 0.66 352

Neutral 6 0.40 0.70 0.51 535



• Overall Accuracy: 0.53 
• Macro Average: 

• Precision: 0.40 
• Recall: 0.41 
• F1-Score: 0.39 

• Weighted Average: 
• Precision: 0.49 
• Recall: 0.53 
• F1-Score: 0.49 

The logistic regression model achieved an accuracy of 53%, with varied performance across 
different classes. 3 stands out with the highest success rate, while other classes, particularly 
1, show low performance due to poor precision and recall. 

Table 5: Logistic Regression Confusion Matrix 

 

The 
confusion matrix indicates high misclassification rates among certain classes: 
• Class 0 is frequently confused with Class 6. 
• Class 1 is heavily misclassified, indicating poor performance in identifying samples from 

this class. 
• Class 3 shows the best performance, with a high number of correctly classified instances. 



5.3. K-Nearest Neighbors (KNN) Model Results Report 
Table 6: K-Nearest Neighbors Performance Summary 

• Overall Accuracy: 0.42 
• Macro Average: 

• Precision: 0.39 
• Recall: 0.38 
• F1-Score: 0.38 

• Weighted Average: 
• Precision: 0.42 
• Recall: 0.42 
• F1-Score: 0.42 

The KNN model yielded an accuracy of 42%, with the highest performance observed in 3, 
while other classes, such as 0, 4, and 6, show lower precision and recall values. 

Table 7: K-Nearest Neighbors Confusion Matrix 

Class Precision Recall F1-Score Support

Angry 0 0.28 0.33 0.30 362

Disgust 1 0.31 0.28 0.29 40

Fear 2 0.27 0.26 0.26 366

Happy 3 0.59 0.70 0.64 781

Sad 4 0.32 0.25 0.28 485

Surprise 5 0.61 0.47 0.53 352

Neutral 6 0.34 0.35 0.35 535



The confusion matrix shows: 
• 0 and  4 are frequently misclassified across other classes. 
• 3 has the highest number of correctly classified instances, indicating better performance on 

this class. 
• Misclassifications are high in classes with similar features or where the boundaries are less 

clear. 
5.4.Support Vector Machine (SVM) Model Results Report 
Table 8: Support Vector Machine Performance Summary 
• Overall Accuracy: 0.46 

• Macro Average: 
• Precision: 0.39 
• Recall: 0.33 
• F1-Score: 0.28 

• Weighted Average: 
• Precision: 0.46 
• Recall: 0.46 
• F1-Score: 0.37 

The SVM model achieved an accuracy of 46%, with 3 demonstrating the highest precision, 
recall, and F1-score. Conversely, classes such as 0, 2, and 4 show low recall and F1-scores, 
indicating significant misclassifications. 

Class Precision Recall F1-Score Support

Angry 0 0.43 0.08 0.14 362

Disgust 1 0.00 0.00 0.00 40

Fear 2 0.33 0.01 0.01 366

Happy 3 0.63 0.89 0.74 781

Sad 4 0.29 0.00 0.01 485

Surprise 5 0.73 0.49 0.58 352

Neutral 6 0.30 0.86 0.45 535



Table 9: Support Vector Machine Confusion Matrix 

The confusion matrix shows: 
• 3 and 6 have higher numbers of correctly classified instances, while other classes exhibit 

significant misclassifications. 
• 0, 2, and 4 are frequently misclassified as 6. 
5.5.Random Forest Model Results Report 
Table 10: Random Forest Performance Summary 

• Overall Accuracy: 0.53 

Class Precision Recall F1-Score Support

Angry 0 0.43 0.28 0.34 362

Disgust 1 1.00 0.38 0.55 40

Fear 2 0.43 0.22 0.29 366

Happy 3 0.68 0.84 0.75 781

Sad 4 0.37 0.33 0.35 485

Surprise 5 0.73 0.65 0.69 352

Neutral 6 0.41 0.59 0.49 535



• Macro Average: 
• Precision: 0.58 
• Recall: 0.47 
• F1-Score: 0.49 

• Weighted Average: 
• Precision: 0.53 
• Recall: 0.53 
• F1-Score: 0.52 

The Random Forest model achieved an accuracy of 53%, with the best performance observed 
in Class 3 (precision, recall, and F1-score are relatively high), while Classes 1 and 2 show 
variable performance due to imbalanced precision and recall values. 

Table 11: Random Forest Confusion Matrix 

The confusion matrix shows: 
• 3 has the highest number of correct classifications, indicating a strong performance in this 

class. 
• Misclassifications are notable for 0, 4, and 6, which are often confused with each other and 

with neighboring classes. 
• 1 demonstrates the highest precision but lower recall, reflecting that while correctly 

classified when predicted, it is rarely identified. 



6. Conclusions 
Table 12: A a comparative summary of the different models performance 

Overall Insights 
• Best Overall Performance: CNN and Random Forest achieved the highest accuracy (54% 

and 53%, respectively). CNN performed well in distinguishing complex patterns, 
particularly for Class 3, while Random Forest offered a robust and interpretable model with 
good handling of majority classes. 

• Weakest Model: KNN, with an accuracy of 42%, struggled the most with class separation, 
especially among classes with similar feature distributions. This model may not be suitable 
for datasets with overlapping class boundaries. 

• Class Imbalance Issues: Most models, including Logistic Regression, SVM, and KNN, 
displayed weaknesses in handling underrepresented classes, often resulting in low recall 
and precision for these categories. 

Recommendations 
• Model Selection: For datasets with complex, non-linear relationships and sufficient data, 

CNN would be recommended. If interpretability and robustness to noisy features are 
priorities, Random Forest could be preferred. 

• Future Improvements: Consider addressing class imbalance through techniques like 
resampling or adjusting class weights, and apply feature engineering and hyperparameter 
tuning, particularly for Random Forest and SVM, to further enhance model performance. 

This study evaluated the performance of various machine learning models for facial 
expression recognition (FER), with CNN and Random Forest models achieving the highest 
accuracy at 54% and 53%, respectively. CNNs demonstrated superior capability in 

Model Accuracy Key Strengths Key Weaknesses

CNN 54% High precision and recall for 
Class 3, good at capturing 
complex patterns

Inconsistent across classes, 
struggles with underrepresented 
classes (e.g., Class 1)

Logistic 
Regression

53% Simple model, decent 
performance for high-
support classes

Low recall for minority classes, 
limited in capturing complex 
relationships

KNN 42% Better performance on Class 
3, simple and interpretable

Sensitive to scaling and feature 
overlap; struggles with multiclass 
separation

SVM 46% High recall on Class 3 and 
Class 6

Poor performance on minority 
classes; misclassifies frequently 
with other classes

Random 
Forest

53% Good performance for Class 
3, captures feature 
importance, robust to noise

Moderate performance overall; 
some confusion between similar 
classes (e.g., Class 0, 4, and 6)



identifying complex patterns, making them especially effective for distinguishing nuanced 
expressions within diverse datasets. Random Forest models, on the other hand, offered 
robustness and interpretability, excelling in managing the majority classes and making them a 
suitable choice when model transparency and stability are prioritized. 
Among the models tested, k-Nearest Neighbors (KNN) performed the weakest, with an 
accuracy of 42%, struggling particularly with class separation in cases where feature 
distributions overlapped. This limitation suggests that KNN may not be well-suited for 
datasets where class boundaries are ambiguous. Additionally, class imbalance posed 
challenges across most models, including Logistic Regression, SVM, and KNN, leading to 
reduced recall and precision in underrepresented classes. Addressing these imbalances is 
critical to enhancing model performance, especially for accurately detecting less common 
emotional expressions. 
Recommendations for future work include selecting CNNs for datasets with complex, non-
linear patterns and sufficient data. For applications where interpretability and resilience to 
noisy data are important, Random Forest may be preferred. Further improvements could 
involve addressing class imbalance through resampling or class weight adjustments and 
applying feature engineering and hyperparameter tuning, particularly for Random Forest and 
SVM models. These enhancements are essential to creating more reliable, accurate, and 
adaptable FER systems for real-world applications, ultimately advancing the field of emotion 
recognition and human-machine interaction. 
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