ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Programme Name

Busra Sevinc
Student ID: X22183957

School of Computing
National College of Ireland

Supervisor: Dr. Muslim Jameel Syed

‘-—
National College of Ireland \ National

MSc Project Submission Sheet
School of Computing

Student SO = IS L)Y/ L Lo
Name:

StUdEnt ID: X22183057. e s

Programme: MSC Artificial Intelligenceccccccovvenneen. Year: 2024.........ce..n. .
Module: Practicum (MSCAILL) ...ttt e
Lecturer: Dr. Muslim JameEel SYEA.......oo et
Submission

Due Date: 12.08.2024 ... e e

Project Title: Enhancing Wind Turbine Longevity: A Comparative Study of Deep
Learning and Traditional Machine Learning Techniques for Predicting
Remaining Useful Life.......oooiiiiiie e s e

Word Count: ..., Page Count: ...,

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: %

Date: L1 1.08.2024. ... e et —————————

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Collegeof
Ireland

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Forename Surname
Student ID:

1 Introduction

This configuration manual outlines the methodologies, system requirements, and data
manipulation methods employed in the study titled "Enhancing Wind Turbine Longevity".
The venture uses deep learning models as well as typical machine learning to forecast how
long any part of a wind turbine can be used before it becomes ineffective; this will thus
concentrate on improving maintenance strategies and operational efficiency. According to
predictive maintenance research done in this field, machine learning greatly enhances both
the reliability and accuracy of Remaining Useful Life (RUL) estimations (Teng et al., 2016;
Elasha et al., 2019). In order to ensure that predictions are strong enough for validation
purposes robustly validated against other models, evaluation metrics such as Mean Absolute
Error (MAE) are used for measuring performance. This manual facilitates serves as a
thorough guidebook for academics or practitioners, making it easier to replicate the study's
computer environment and model implementation.

2 Environment Evaluation

The study was conducted using a personal computer with the following specifications:
e Operating System: Windows 11 Home 64-bit (10.0, Build 22621)
(22621.ni_release.220506-1250), with regional language settings in English.

e System Manufacturer: ASUSTeK COMPUTER INC.

e System Model: ASUS TUF Dash F15 FX517ZE_FX517ZE

e BIOS Version: FX517ZE.315 (type: UEFI)

e Processor: 12th Gen Intel(R) Core(TM) i5-12450H (12 CPUs), operating at
~2.0GHz.

e Memory: A total of 16GB (16384MB) RAM was installed with 16006MB available
for OS tasks.

e Page File Memory: A total of 10116MB was used, with 14545MB available.
e DirectX Version: DirectX 12

3 System Requirements

Operating System: Compatible with Windows, macQOS, or Linux.
Processor: Intel i5 or equivalent.

RAM: 8 GB or higher recommended.

Storage: At least 10 GB of free space for data handling and processing.

4 Data Source and Simulation

Background:
The goal of this study is to forecast the Remaining Useful Life (RUL) of wind turbine
bearings, which are essential for reducing turbine downtime, using simulated data.

Data Simulations Process and Tools:

To model and analyse bearing stress, wear, and operational parameters including load,
lubrication, vibration, and temperature, simulations make use of MATLAB/Simulink
and ANSYS tools. This comprises:

e MATLAB/Simulink: For dynamic load modelling.

e ANSYS Mechanical and CFD: For stress and fluid dynamics simulations.

e ANSYS DesignXplorer: For optimization and parameter analysis.

e Data Set Description: The dataset "Wind Turbine Rotor RUL Prediction Data"
includes: Vibration Level, Rotor Temperature, Operational Hours, Maintenance
Frequency: Operational metrics of turbine rotors.

e RUL (Remaining Useful Life): Predictive metric for maintenance scheduling.

Purpose and Use of Data:

Model training and validation are supported by the simulated data, which improves
the predicted accuracy of maintenance plans and operational scheduling.

5 Data Preparation and Analysis

Figure 1: Import Libraries

ort chi2_contir
from ydata profiling import ProfileReport

ot as plt

mport scatter_matrix

st, f_regression

rain_test_split

, r2_score

t Gridsearc
t Sequential
t LSTM, Dense, Dropout

Figure 1 shows a snapshot of a Python script that imports different libraries for activities like
preprocessing, profiling, data manipulation, visualization, and creating machine learning
models.

Figure 2: Data Load

df = pd.read excel('Wind Turbine r RUL Prediction Data Large.xlsx', sheet name='Data’)
pd.set option('dis ax_columns’,)
df.head(5)

5 o=
/3.8

Vibration Level Rotor Temperature Operational Hours Maintenance Frequency RUL

13.179846 54.156811 0.000000 2 20014.044729
11.957460 80.612359 0.200002 0 19799.613037
11.868327 62.389137 0.400004 2 20018.527587
8.370583 49.259427 0.600006 19966.434739
9.497515 56.561055 0.800008 19947.663786

According to Figure 2, the wind turbine rotor RUL prediction data is loaded into a pandas
DataFrame from an Excel file titled
‘Wind_Turbine Rotor RUL Prediction Data Large.xlsx’ with all columns displayed for
initial inspection.

Figure 3: Data Information
df.info()

v 00s
<class "pandas.core.frame.DataFrame’>
RangeIndex: 100080 entries, @ to 99999

Data columns (total 5 columns):
Column Non-Null Count

Vibration Level 100000 non-null
Rotor Temperature 160000 non-null
Operational Hours 160000 non-null
Maintenance Frequency 186088 non-null
RUL 160080 non-null float64
dtypes: floate4(4), inte4(1)
memory usage: 3.8 MB

Figure 3 displays the output from df.info() for a pandas DataFrame, listing 100,000 entries
across five columns with data types and memory usage detailed.

Figure 4: Data Description

df.describe()

0.0s

Vibration Level Rotor Temperature Operational Hours Maintenance Frequency RUL

count 100000.000000 100000.000000 100000.000000 100000.000000 100000.000000
mean 10.007821 60.036388 10000.000000 1999110 10039.922698
std 1.995092 9.993803 5773.589295 1.412533 5774731116
min 0.295765 13.054122 0.000000 0.000000 0.000000
25% 8.667228 53.250352 5000.000000 1.000000 5041.871956
50% 10.007524 60.052501 10000.000000 2.000000 10039.482530
75% 11.349981 66.749050 15000.000000 3.000000 15035.904843
max 18.483544 102.858556 20000.000000 11.000000 20596.895886

Figure 4 displays the output from df.describe() for a DataFrame, summarizing statistics like
count, mean, standard deviation, min, quartiles, and max for columns including Vibration
Level, Rotor Temperature, Operational Hours, Maintenance Frequency, and RUL.

5.1 Exploratory Data Analysis
Figure 5: Identifying Missing Values

print{(df.isnull{).sum())
0.0s

vibration Level

Rotor Temperature
Operational Hours
Maintenance Frequency
RUL

dtype: int64

Figure 5 shows how many missing values there are in the data.

Figure 6: Identifying Outliers

print{ "Min wvib 1on s § ion 1] -min()
print{" i s df[” E ion "] -max
0.0s

vibration Lewvel: @.2957646936397662
vibration Lewvel: 18.483543825860739

print{"
print{ "™
0.0s

Rotor Temperature: 12.0541216838403241
Rotor Temperature: 162.8585564122173

print{" g ours: ", L = s].-mind{))
print{" ours: ", L = s] -maxd({))

0.0s

Operational Hours:
Operational Hours:

Figure 6 indicates the range of the Vibration Level, Rotor Temperature, Operational Hours
columns.

Figure 7: Identifying Outliers

print('Min Maintenance Frequen enance Frequency '].min())
print("V a E q : cy”] .max())
v 0.0s

Min Maintenance Frequency:
Max Maintenance Frequency:

print('Min RUL:", df['RUL"].min()
print('Max RUL:", df['RUL"].max()

v 0.0s
Min RUL: ©.0
Max RUL: 20596.89588614355

Figure 7 indicates the range of the Maintenance Frequency, Remaining Useful Life(RUL)
columns.

Figure 8: Identifying Outliers

vibration cap upper = np.percentile(df
vibration_cap_low np.percentile(df["\
df['vi on Level'] = np.clip(df["\ a

df.loc[df["Maintenanc '] » 1@, 'Maintenance Freg

print(
print('Maintena
print('RUL ra

7 0.0s

Adjusted Min and Max Vibration Level: 5.3398452129367905 14.661037438630405
Maintenance Frequencies greater than expected: 10.0
RUL range: 0.9 20596.89588614355

Figure 8 shows the limitation for the vibration level.

6 Data Preparation

In the report’s data preparation part, it is shown different ways for dealing with outliers in
variables like Rotor Temperature, Vibration Level, Operational Hours, Maintenance
Frequency and RUL. One such way is calculating statistical thresholds through standard
deviations as well as percentiles for outlier detection and removal thus ensuring robustness of
the data for further analysis.

Figure 9: Handling Outlier Values for Rotor Temperature
Rotor Temperature

the code provided is a valid approach to handle outliers by removing data points that are beyond three standard deviations from the mean.

“-

mean_frequency = df['R

std_dev_frequency = df[’
v 00s

min_val = mean_frequency - 2 * std_dev_frequency
max_val = mean_frequency + 2 * std dev_frequency

df = df[(df['Rotor Temperature'] >= min val) & (df['Rotor Temperature'] <= max val)]

v’ 0.0s

Figure 9 deletes the data outside the Rotor Temperature column.

Figure 10: Handling Outlier Values for Vibration Level
Vibration Level

percentage identifiying outliers

‘#
mean_frequency = df["\
std_dev_frequency = df[

0.0s

min_val = mean_frequency - 2 * std_dev_frequency
max_val = mean_frequency + 2 * std_dev_frequency

count_indices = df[(i N 1°] < min_val) | ('vi ion '] > max_val)]['vi ion Level'].count()
#tal _count = df['V o 1'].count()

percentage of outliers = (count indices / total count)
print(outli ', percentage of outliers)

v 0.0s

Percentage of outliers: @.850280664039173535

Figure 10 shows the data outside the Rotor Temperature column.

Figure 11: Handling Outlier VValues for Vibration Level

®in_val = mean frequency - 2 * std dev_frequency
max_val = mean_frequency + 2 * std _dev_frequency

>= min_val) & (df['vibration L "] <= max_val)]

Figure 11 shows the data outside the Rotor Temperature column.

Figure 12: Handling

Operational Hours

Outlier VValues for Operational Hours

LA 1 s " logip(df[
print(’ s: ", df[1]-min(), df["O
0.0s

Adjusted Operational Hours: 9.8 9.98353755128617

cap_lower np.percentile(df[
cap_upper np.percentile(df[

df = df[(df["
print({ "N
print("’ Ac

0.0s

Number of rows after removing Operational Hours outliers: 85722
Adjusted Operational Hours: 5.3@82776479462535 9.893578520738142

Figure 12 deletes the data outside the outlier in the operational hours column to make
accurate predictions.

Figure 13: Handling Outlier Values for Maintenance Frequenc
Maintenance Frequency

threshold_ percentile np.percentile(df["Maint
print(percentil » threshold_ percentile)

mean_ftrequency = df["Mainte = 1 -meand()

std dewv frequency = df["Main nan "l.std()
threshold_std_dew mean_frequency + 3 * std _dev_frequency
print{'mM ", threshold_std_dew)

o 0.0s

29th percentile: 6.0
Mean + 3*std_dev: 6.241400665578194

final_threshold np.min{[threshold percentile, threshold_ std_dewv])

print(" Fir 1d fo t ion: ", final_ threshold)

outlier_indices i eque 1 > final_threshold
print({” ential owutli 1N ’ indices.sum)

= df[~outlier
primt{ "MNun of aftter re ywutlie H len(df))
e 0.0s
Final threshold for outlier detection: 6.8

Potential outlier indices: 367
Number of rows after removing outliers: 85355

Figure 13 deletes the data outside the outlier in the maintenance frequency column to make
accurate predictions.

Figure 14: Handling Outlier Values for RUL
RUL

cap lower = np.percentile(df['RUL"], 1)
cap upper = np.percentile(df['RUL"], 99)

df = df[(df["RUL" = cap lower) & (df['RUL'] <= cap upper)]
print("R ner of r atter re i UL outliers:", len(df))
print(’'Adju C » df['RUL"] .m » df['RUL"] .max())

0.0s

Number of rows after removing RUL outliers: 83647
Adjusted RUL: 427.9435282294177 19635.044839011541

Figure 14 deletes the data outside the outlier in the RUL column to make accurate
predictions.

7 Model Building

This part of the report is dedicated to building a model. Here we explain how to scale
features, divide data into training and testing sets and use different machine learning models.
We consider such specific models as Linear Regression and Random Forest, Gradient
Boosting, Support Vector Regression, XGBoost and LSTM Regressor. Each model is
described in terms of its configuration, training and evaluation processes where mean squared
error (MSE), mean absolute error (MAE) and R-squared metrics are applied for measuring
performance. Therefore this passage represents a step-by-step methodology that can be used
in predicting RUL for wind turbine components with advanced regression techniques.

Figure 15: Scaling Dataframe

Scaling DataFrame (Min Max Scaling, Standard Scaling, etc)

scaler = StandardScaler()
columns to scale = ['vi ion Le » 'Rotor Temperature', 'Ope onal Hours", 'Maintena

df[columns_to scale] = scaler.fit transform{df[columns to scale])

v 0.0s

df .head(5)

/' 0.0s

Vibration Level Rotor Temperature Operational Hours Maintenance Frequency RUL
1015 0.198914 2.040458 -4.406076 -1.442543 1.728538
1026 -0.328444 0.987493 -4.393111 -1.442543 1.731350
1039 0.104016 2.136752 -4.377965 -1.442543 1.727826
1083 -0.552993 0.875271 -4.328067 -1.442543 1730161
1090 0.882560 -0.312080 -4.320316 -1.442543 1.727180

Figure 15 shows the scaling of the Dataframe.

Figure 16: Data Splitting

Data Splitting

y = df['RUL']

X train, X test, y train, y test = train test split(X new, y, test size=0.2, random state=42)

7/ 00s

Figure 16 shows the data splitting of the Dataframe.

Figure 17: Linear Regression and Random Forest

1r model
rf_model andomFores essor(n_estimators=100, random state=42)

1r model.fit(X train, y train)
rf model.fit(X train, y train)

y pred 1r = lr_model.predict(X test)
y_pred_rf = rf_model.predict(X test)

mae_lr = mean_absolute error(y test, y pred 1r)
mae_rf = mean_absolute error(y test, y pred rf)

mse 1lr = mean_squared_error(y test, y pred 1r)
mse_rf = mean_squared_error(y_test, y pred rf)

r2 Ir = r2 score(y_test, y pred 1r)

r2 rf = r2 score(y_test, y pred rf)

print(f"Li
print(f"R

print(f” ar n M)
print(f“Rando S I

print(f"Linear
print(f"R

Figure 17 shows the application of Linear Regression and Random Forest models.

Figure 18: Gradient Boosting
Gradient Boosting

gbr model = GradientBoostir (n_estimators=108, learning rate=e.1, max depth=3, random state=42)
gbr_model.fit(X train, y_train)

y_pred_gbr = gbr_model.predict(X_test)

+

mse gbr = mean squared error(y test, y pred gbr)
r2_gbr = r2_score(y_test, y_pred_gbr)
mae_gbr = mean_absolute_error(y_test, y_pred_gbr)

print(
print(f"” 3 ing (r2_gbr:
print(er s : {mae gbr:.

Figure 18 shows the application of Gradient Boosting model.

Figure 19: Support Vector Regressor
Support Vector Regressor

svr_model = SVR((kernel="rbf', C=10@, gamma=0.1, epsilon=®.1ﬂ
svr_model.fit(X train, y train)

y_pred svr = svr_model.predict(X test)

mse _svr = mean_squared error(y _test, y pred svr)
r2_svr = r2_score(y_test, y pred_svr)
mae_svr = mean_absolute_error(y_test, y pred_svr)

print(f"Suppor
print(f"
print(f"Suppo

Figure 19 shows the application of Support Vector Regressor model.

10

Figure 20: XGBoost Regression
XGBoost Regression

‘;
xgb model = xgb.XGBRegressor(objective = ', colsample bytree = 0.3, learning rate = 0.1,
max_depth = 5, alpha = 1@, n est 100)

xgb_model.fit(X_train, y_train)
y pred xgb = xgb model.predict(X test)

mse_xgb = mean_squared_error(y_test, y_pred_xgb)
r2_xgb = r2_score(y_test, y pred_xgb)
mae_xgb = mean_absolute_error(y_test, y pred xgb)

print(f”
print(
print(f

Figure 20 shows the application of XGBoost Regression model.

Figure 21: LSTM Regressor
LSTM Regressor

X_train_reshaped = X_train.reshape((X_train.shape[0], 1, X_train.shape[1]))
X_test_reshaped = X_test.reshape((X_test.shape[@e], 1, X test.shape[1]))

model = Sequential([
LSTM(5@, input_shape=(X_train_reshaped.shape[1], X_train_reshaped.shape[2]), return_sequences=True),
Dropout(e.2),
LSTM(25, return_sequences=False),
Dropout(0.2),
Dense(1

model . compile(optimizer="adam’, loss="mean_squa

history = model.fit(X_train_reshaped, y train, epochs=18@, batch_size=28, validation_data=(X_test reshaped, y test), verbose=1, shuffle=False)
y_pred_1stm = model.predict(X test reshaped).flatten()

mse_lstm = mean_squared error(y_test, y pred_lstm)
r2_lstm = r2_score(y test, y pred lstm)
mae_lstm = mean_absolute_error(y_test, y pred_lstm)

8 Model Evaluation and Comparison

In this part, we give a close look to many predictive models : Linear Regression, Random
Forest, Gradient Boosting, Support Vector Regression (SVR), XGBoost and LSTM. They are
assessed with the help of several key performance metrics such as Mean Absolute Error
(MAE), Mean Squared Error (MSE) and R? for determining their prediction ability on
Remaining Useful Life (RUL). GridSearchCV is applied as a technique to improve Random

11

Forest model’s performance greatly. For each model, we use visualizations to show actual vs.
predicted values of RUL which makes it easy to comprehend their predictive powers at one
glance. Furthermore, in doing feature importance analysis especially with Random Forests;
critical variables affecting forecasts can be established easily. Plotting MAE scores across
different models helps us know which one would work best in practice through a
comprehensive comparative study.

Figure 22: Linear Regression and Random Forest
Linear Regression MAE: ©.3254
Random Forest MAE: ©.0015
Linear Regression MAE: 8.1529
Random Forest MAE: ©.0000
Linear Regression MAE: 0.8464
Random Forest MAE: 1.0000
Figure 22 shows the results obtained from the Linear Regression and Random Forest models.

Figure 23: Gradient Boosting

Gradient Boosting MSE: ©.0001
Gradient Boosting R"2: ©.9999
Gradient Boosting MAE: ©.0063
Figure 23 shows the results obtained from the Gradient Boosting model.

Figure 24: Support Vector Regression
Support Vector Regression MSE:
Support Vector Regression RA2:
Support Vector Regression MAE:

Figure 24 shows the results obtained from the Support Vector Regression model.

Figure 25: XGBoost Regressor
XGBoost Regressor MSE: 0.0071

XGBoost Regressor RM2: ©.9928

XGBoost Regressor MAE: ©.0719
Figure 25 shows the results obtained from the XGBoost Regressor model.

12

Figure 26: LSTM
Epoc
3346/3346 [== = 2ms /step] val loss:
Epoch 88/100

2ms/step 2 val loss:
Epoch 89/100
3346/3346 [== = 2ms /step 2 val loss: 3.8460e-64
Epoch 96/100

2ms/step 2 val loss: 5.9879e-0©4
Epoch 91/100
3346/3346 [== = s 2ms/step 2 val loss: 5.9439e-64
Epoch 92/100
3346/3346 [-= = 2ms/step 2 val_loss: 2.6317e-©4
Epoch 93/100
3346/3346 [s 2ms/step 3 val loss: 3.4899e-064
Epoch 94/100
3346/3346 [2ms/step 2 val loss: 3.6309e-04
Epoch 95/100
EEVLGYEEY. N s 2ms/step 3 val loss: 4.9518e-04
Epoch 96/100
3346/3346 [== = s 2ms/step 2 val loss: 4.1171e-64
Epoch 97/100
EEVLGYEEY N s 2ms/step 3 val loss: 2.0849e-04
Epoch 98/100
EEV Y EEY.IG s 2ms/step c val loss: 2.7150e-64
Epoch 99/1006
EEVLGYEEY N s 2ms/step 3 val loss: 3.0126e-04
Epoch 1e00/100
3346/3346 [- 8s 2ms/step 3 val loss: 1.8225e-04
523/523 [= - 1s 877us/step
LSTM Regressor MSE: ©.8002
LSTM Regressor R™"2: ©.9998
LSTM Regressor MAE: ©.00389

Figure 26 shows the results obtained from the LSTM model.

Figure 27: Model Fine Tuning

param grid = {

grid_search = GridSearchcv(estimator=rf_model, param grid=param_grid, cv=3, scoring="neg_mean_abso r*, verbose=2, n_jobs=-1)
grid search.fit(X train, y train)

print(" D: = ", grid search.best_params_)
print(" .Af}" . format(-grid_search.best score))

est parameters: {'max_depth®: 20, 'max_features': ‘auto’, 'min_samples_leaf': 1, 'min_samples split': 2, 'n_estimators': 200}
est MAE score: ©.0018

Figure 27 shows the Model Fine Tuning process code and the result of the best parameters
obtained.

13

Figure 28: Model Validation

best rf _model = grid search.best estimator_

y pred best rf = best rf model.predict(x test)
best mse rf = mean_squared_error(y_test, y pred best rf)
best r2 rf = r2_ score(y_test, y pred best rf)
best mae rf = mean absolute error(y test, y pred best rf)

print (" im] ? P f:.af}" at(best_mse_rf))
print(r y
print(

~ 4s

Optimized Random Forest MSE: ©.0000
Optimized Random Forest R"2: 1.0000
Optimized Random Forest MAE: ©.8015

Figure 28 shows the result obtained by applying the best parameters obtained.

Figure 29: Feature Importance

feature importances = rf model.feature importances

features = selected features
t NameError:

e {i+1}" for i in ran X_new.shape[1])]

es(data=feature importances, index=features)

sorted_importances = importances.sort_values(ascending= se)

plt.figure(figsize=(10,6))
sorted_importanc lot(kind
a m Forest Model®)

Figure 29 Code written to determine Feature Importance.

14

Figure 30: Show All Results

time cycles = np.arange(len(y test))

.figure(figsize=(6, 4))

plot(time cycles, y test, 'k-', label="Actual RUL")

.plot(time cycles, y pred 1lr, 'b--', label="Predicted RUL (Linear Regression)")
.fill between(time cycles, y test, y pred 1lr, color="blue’, alpha=8.1)
.title(f'Linear Regression (MAE: {mae 1lr:.4af})")

xlabel('Time Cycles")

.ylabel('RUL (cycles)')

.legend()

.grid(True)

.show()

.figure(figsize=(6, 4))

plot(time cycles, y test, 'k-', label="Actual RUL")

.plot(time cycles, y pred rf, 'g--', label="Predicted RUL (Random Forest)")
.fill between(time cycles, y test, y pred rf, color="green', alpha=0.1)
.title(f'Random Forest (MAE: {mae rf:.4f})")

xlabel('Time Cycles"')

.legend()

.grid(True)

.show()

Figure 30 Code written to display all applied models on the graph.

Figure 31: Show All Results

.figure(figsize=(6, 4))

.plot(time_ cycles, y test, 'k-', label="Actual RUL")

.plot(time cycles, y pred xgb, 'r--', label="Predicted RUL (XGBoost)")
.T11ll between(time cycles, y test, y pred xgb, color='red’, alpha=06.1)
.title(f'XGBoost (MAE: {mae xgb:.4af})")

.xlabel('Time Cycles”)

.legend()

.grid(True)

. show()

.figure(figsize=(6, 4))

.plot(time_ cycles, y test, 'k-', label="Actual RUL")

.plot(time_cycles, y pred gbr, 'b--', label="Predicted RUL (Gradient Boosting) ")
.fill between(time cycles, y test, y pred gbr, color="blue’, alpha=6.1)
.title(f'Gradient Boosting (MAE: {mae gbr:.4f})")

.xlabel('Time Cycles”)

.legend()

-grid(True)

. show()

.figure(figsize=(6, 4))

.plot(time cycles, y test, "'k-', label="Actual RUL")

-.plot(time_cycles, y pred svr, 'g--', label="Predicted RUL (SVR)')

.Till between(time cycles, y test, y pred svr, color='green', alpha=e.1)
.title(f'SVR (MAE: {mae svr:.4f})")

.xlabel(' Time Cycles")

.legend()

.grid(True)

.show()

Figure 31 Code written to display all applied models on the graph.

15

Figure 32: Comparison All Models

E'], marker='o0"', linestyle="-'

i, txt in
plt.annotate

xticks(rotatio

grid(True)

tight layout()
t.show()

Figure 32 is the code for comparing all applied models in a single graph.

i

16

, color="b")

), textcoords

References

Elasha, F., Shanbr, S., Li, X. & Mba, D. (2019). 'Prognosis of a wind turbine gearbox bearing
using supervised machine learning', Sensors, vol. 19, no. 14, art. 3092,

Teng, W., Zhang, X., Liu, Y., Kusiak, A. & Ma, Z. (2016). 'Prognosis of the remaining useful
life of bearings in a wind turbine gearbox’, Energies, vol. 10, no. 1, art. 32.

17

