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Abstract 

The aim of this study is to evaluate how effective deep learning is compared to traditional 

machine learning in predicting the Remaining Useful Life (RUL) wind turbine 

components. Various models for predicting wear of damage-sensitive gearbox bearings 

will be evaluated based on their computational requirements and prediction accuracy, and 

other relevant factors will also be considered in this research. While evaluating the model 

performances, the lowest value of Mean Absolute Error (MAE) achieved by Random 

Forest algorithm because it provides good performance and requires less computational 

cost. This research increases our knowledge of how to predict when machines will need 

repairs, and also shows how we can apply these ideas in real world predictive maintenance 

systems for wind turbines. 

 
 

1 Introduction 
 

Due to the increasing complexity and size of wind energy systems maintenance, the 

demand for strategies has increased. Remaining useful life (RUL) estimates are important for 

improving operational efficiency for wind energy components and helping to reduce losses 

required for sustainable energy production. According to Wind Europe, sustainability reduces 

operating costs and environmental impact by increasing the lifespan and efficiency of wind 

turbines. (WindEurope, n.d). The aim of this study is to investigate new opportunities and 

challenges brought by developments in artificial intelligence (AI) and especially deep learning. 

In this study, the performance of deep learning is compared with traditional machine learning 

methods to predict the Remaining Useful Life (RUL) of wind turbine parts (gearbox bearings 

and other important components subject to wear and degradation). 

Research on wind turbine maintenance prediction has shown that machine learning can 

increase the accuracy and reliability of RUL predictions. (Teng et al., 2016; Elasha et al., 2019).  

The aim of this study is to evaluate the effectiveness of various forecasting models in handling 

complex and active wind turbine data. 

The objectives of this research are to: 

1. Comparison of the accuracy of deep learning predictions for RUL with traditional 

machine learning models. 

2. How do these models perform in terms of performance and practical use? 

3. Explain how predictive maintenance processes can be improved by integrating these 

technologies with existing maintenance methods. 
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This study contributes existing scientific understanding by examining various forecasting 

models and comparing them with each other. This may be useful for wind energy companies 

to improve predictive maintenance sector. 

The study is structured as follows: 

• Chapter 2 examines past research on this topic to gain a better understanding of our 

technological advances and achievements. 

• Chapter 3 describes the research methodology (data collection, model training, 

evaluation). 

• Chapter 4 focuses on the design elements and technical framework used in this 

research. 

• Chapter 5 provides information about the implementation details and computational 

environment. 

• Chapter 6 evaluates the performance of the predictive models and their results. 

• Chapter 7 concludes the study and provides a summary of its main findings, some 

limitations, and suggestions for future research. 

This research in this area focuses on two main topics: traditional approaches to predictive 

maintenance with newer methods. We research all of these to prepare for future developments 

and make them reliable systems. 

 

2 Related Work 

2.1 Comparative Evaluation of Deep Learning and Traditional Machine 

Learning for Predicting Wind Turbine Component RUL 

 

There are two papers that will be important in determining whether deep learning is better 

than classical machine learning in predicting the RUL of components used in wind turbines. 

Teng et al. (2016) developed a unique method to characterize RUL in their study with gearbox 

bearings. It is a combination of neural networks with polynomial integration. This means they 

do not need long cycle data. This demonstrates the effectiveness of AI in predictive 

maintenance. However, Elasha et al. use neural networks and regression models to predict RUL 

using vibration information collected during operation, demonstrating the benefit of improving 

maintenance strategies.  

The accuracy and robustness of deep learning prediction models are on the rise for 

machine RUL prediction. Xiang et al. (2022) developed the multi-branch convolutional neural 

network (MBCNN) and automatic differential learning deep neural network (ADLDNN). From 

multi sensor measurements, the estimated RUL was determined using this formula. Despite the 

ability to work with NASA`s C-MAPSS dataset and the electromagnetic box containing 

seismic data, the model is costly and prone to overfitting. (Xiang, Qin, Liu, & Gryllias, 2022). 

According to Cheng et al. (2020), they developed an integrated framework to predict the RUL 

substrate by combining Hilbert-Huang transform (HHT), convolutional neural network (CNN), 

and support vector regression (ε-SVR). Although it consumes a significant amount of 

computing power and requires parameter fine-tuning, this model produces the lowest 

prediction error rate (Cheng et al., 2020). Hu, Pi, and Li (2020) improved the accuracy of RUL 

prediction with a similarity-based deep learning model using long short-term memory (LSTM) 

networks based on historical data and high-quality authority, but through deviant models. (Hou, 

Pi, & Li, 2020). 
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2.2 Integrating Machine Learning and Condition Monitoring for 

Enhanced RUL Prediction in Wind Turbines: A Comparative Study 
 

Nielsen & Sorensen (2017) and Rezamand (Ed., 2010) have developed comparable 

methods for estimating the RUL, their techniques differ in that they use machine learning and 

monitoring data. According to Nielsen & Sørensen (2017), dynamic Bayesian networks and 

Markov models are used to improve RUL predictions. Our research question is answered by 

this model, which shows that conservation strategies can be flexible and projects can be 

adjusted to fit current RUL estimates. On the other hand, Rezamand et al.’s (2021) hybrid 

model uses SCADA vibration data with Bayesian algorithm to target different operating 

conditions around wind turbine bearings. This means that by taking environmental factors into 

account when estimating RUL, predictive maintenance can be more accurate and therefore 

operational efficiency can be increased. In summary, both studies show how deep learning and 

traditional machine learning techniques can be used on different parts of wind turbines to 

improve the prediction and efficiency of maintenance schedules. These advanced predictive 

models help improve maintenance schedules and optimize the operation of different parts of 

turbines. 

2.3 Advancing Predictive Maintenance: A Comparative Analysis of Deep 

Learning and Machine Learning Techniques in Wind Turbine RUL 

Prediction 

 

Pan et al. (2020) and Cheng et al. (2019) have attempted to predict RUL with their 

methods that provide more accurate estimates of maintenance activities in the industry. 

According to Pan et al. (2020), the combined use of Deep Belief Networks (DBN) and Self-

Organizing Maps (SOM) is optimized through a fruit fly optimization algorithm that reduces 

noise and abstraction compared to time and frequency domain analysis. The used improvement 

is particle analysis for RUL prediction accuracy. However, Cheng et al. (2019) incorporated a 

more sophisticated neuro-fuzzy inference system into their proposed particle filter algorithm. 

This approach eliminates the particle impoverishment problem and improves RUL 

determination for carriers. All these methods use a set of techniques to improve the operational 

efficiency of wind turbines through various maintenance strategies using computational tools 

such as deep learning implemented by Pan et al. (2020) and Machine Learning combined with 

fuzzy logic implemented by Cheng et al. (2019).  

2.4 Enhancing Predictive Maintenance with Deep Learning: Insights from 

Wind Turbine Research  
 

In a study by Li et al. (2019), they propose a fault detection method using deep neural 

networks that can provide precise diagnoses without using target domain data. Therefore, they 

demonstrate the potential of deep learning in addressing data distribution uncertainties 

generated from different sources. Additionally, Yücesan and Viana (2020) present a physics-

based fatigue model that uses data-driven knowledge integration with physics principles. This 

is just one example of combining multi-domain knowledge bases through deep learning to 
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improve prediction accuracyIn addition to demonstrating the power and practicality of deep 

learning systems. It also shows how they can be used to solve complex real-world problems in 

wind turbine maintenance.  

2.5 Machine Leaning and Hybrid Models 
 

Using machine learning and hybrid models, RUL has been estimated using both 

traditional regression methods and artificial neural networks (ANN) and other machine 

learning algorithms. For example, Li et al. (2019) used ANN to predict the RUL of rolling 

element bearings by combining polynomial and exponential regression models. Although this 

showed higher accuracy than pure regression models, it also depended on data quality and 

computational requirements (Li, Elasha, Shanbr & Mba,2019). Tayade et al. (2019) used a 

combination of principal component analysis (PCA), support vector regression (SVR), and 

random forest (RF) models to identify and select features from seismic data. However, RF was 

found to be more accurate than SVR, but both models showed computational complexity and 

generalization issues (Tayade et al., 2019). Elasha et al. (2019) used and regression models to 

analyze wind turbine gearbox bearing vibration data. They found that ANN performed better. 

(Elasha, Shanbr, Li, & Mba, 2019). Pandit and Xie (2023) created Sparrow Search Algorithm 

(SSA) to optimize the parameters for optimization in terms of RF, GPR, and SVM on on high 

speed shaft bearings using Gaussian process regression model which produces more accurate 

rates. (Pandit & Xie, 2023). 

2.6 Regression-Based Models 
 

Regression-based RUL prediction models use operational data and regression methods 

to predict machine life. In their study, Vieira et al. (2024) used support vector regression (SVR), 

gradient boosting regression (GBR), etc. with SCADA system data to develop a RUL 

prediction framework for wind turbines. This method has very good sensitivity, but it requires 

a lot of preprocessing steps and also suffers from data uncertainty and generalization (Vieira 

et al., 2024). Studies like this show that regression methods work well under certain conditions, 

but a lot of work needs to be done before the data can be processed and validated for different 

study conditions. 

2.7 Research Niche 
 

Previous studies used Various techniques to predict RUL of Wind Turbine components. 

The objective of this research was to investigate and compare different methods used by 

these researchers on same dataset. 

 

 

 

3 Research Methodology 
 

The aim of this study is to compare deep learning with traditional machine learning to 

predict RUL for bearings used in wind turbines. This study also aims to propose predictive 
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maintenance strategies that can reduce maintenance costs and increase total energy production 

by improving operational efficiency. 

3.1 Business Understanding 
 

The aim of this study is to compare deep learning with traditional machine learning to 

predict the RUL value of bearings used in wind turbines. This study also aims to propose 

predictive maintenance strategies that can reduce maintenance costs and increase overall 

energy production by improving operational efficiency. 
 

Background and Simulation Process 

 

This study focuses on the important roles of wear- and stress-resistant electrical conductors. 

This study uses ANSYS to conduct Finite Element Analysis (FEA) and Computational Fluid 

Dynamics (CFD) to simulate various operating conditions and accurately determine the RUL.  

 

Key Steps in the Simulation Process: 

3.1.1 Simulation Considerations: 

o Load and Stress: Different loads depending on the operating conditions. 

o Lubrication and Wear: The effect of lubrication quality over time. 

o Vibration and Temperature: Their effects on conductivity degradation. 

o Historical Data: Integration of operational history for word simulation. 

3.1.2 Simulation Tools and Techniques: 

o MATLAB/Simulink and ANSYS: For dynamic load modelling and stress analysis. 

o Python/R: Creating custom simulations to model bearing degradation, leveraging 

statistical and machine learning libraries for data analysis. 

3.1.3 Model Execution and Refinement: 

o Objective Specification: Defining expected bearing life characteristics for predictions. 

o Simulation Execution: Creating multiple scenarios to test stress distribution and 

potential failure points. 

o Validation and Refinement: Changing simulation parameters based on real-world 

scenarios to enhance prediction accuracy. 

Tools and Techniques 

• ANSYS Workbench: Serves as the central platform for simulations to provide a 

complete analysis of bearing performance. 

3.2 Data Understanding 

Primary data collection includes processes such as familiarizing yourself with the data, 

identifying data quality issues, discovering initial hypotheses about the data, or identifying 

appropriate subgroups to generate hypotheses about the hidden data. 

3.2.1 Data Collection: Simulations from MATLAB/Simulink and ANSYS were used to 

create a dataset that simulates the operational stresses and deterioration patterns of 

wind turbine bearings. 

3.2.2 Predictive Maintenance of Wind Turbine Components: There are 100,000 

observations with no missing values in five key features designed to support 
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predictive maintenance modelling of power electronic components. Each column in 

the dataset is important to understand what affects the remaining life (RUL) of wind 

turbine components.   Here's an overview of the dataset structure: 

o Vibration Level (float64): It indicates mechanical stability and potential wear by 

measuring the vibration intensity of turbine components. 

o Rotor Temperature (float64): It shows the records for rotor temperature, important 

for monitoring conditions that may affect turbine operation and component life. 

o Operational Hours (float64): It shows the total operating hours of the turbine, an 

important factor in assessing component wear and operational stress. 

o Maintenance Frequency (int64): It indicates the number of maintenance actions 

performed. This column reflecting the upkeep and preventive care of the turbine. 

o RUL (float64): This column estimates the remaining useful life of turbine components 

and it is serving as the target variable for our AI models. 

This generated dataset is 3.8 MB in size and provides a solid foundation for exploratory 

analysis and advanced predictive modelling in our research. 

3.2.3 Exploratory Data Analysis: 

 

Figure 1: Histogram of Columns 

 
Figure 1 showing the distributions and performance patterns for important variables such as 

vibration level, rotor temperature, operating hours, maintenance frequency and remaining 

service life (RUL) is important for understanding the maintenance and efficient operation needs 

of wind turbines. 
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Figure 2: The Box Plots 

 
 

Figure 2 is showing distribution of key columns and showing potential outliers. 

 

Figure 3: Correlation Matrix 

 

Figure 3 shows the relationship between columns. There is no 1 to 1 relationship between 

columns except operational hours and RUL which is expected. 
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Figure 4: Summarize Exploration Steps 

 
 

Figure 4 shows the complete predictive modelling process for wind turbine maintenance. It 

starts with data collection and preprocessing. Then it goes through model generation and 

evaluation, and finally ends with the selection and refinement of a final model. 

3.3 Data Preparation 
 

This step includes all the steps to create the final dataset from the initial raw data. This is 

done by selecting elements, cleaning the data, creating new variables by manipulating the entire 

dataset. 

• Data Cleaning:  Handling the outliers and missing values as found during exploratory 

data analysis. 

• Feature Engineering: Creating additional attributes to enrich the dataset and hence 

improve predictive models. 

• Data Scaling and Splitting: Normalizing the data so that every feature contributes 

equally. Additionally dividing dataset into training set(s) and test set(s) to prepare for 

modelling phase. 
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Figure 5: Data Preprocessing 

 
 

Figure 5 was created for this phase which shows the steps followed during data pre-processing. 

The diagram includes steps such as dealing with missing values; eliminating duplicates; 

treating outliers in important variables like operation hours, rotor temperature and maintenance 

frequency. Finally, data is scaled before splitting into train-test sets to ensure strong model 

training and evaluation. 

3.4 Modelling 
 

Different types of modeling methods are chosen and to find best result hyperparameter 

optimization is applied on best model. 

• Model Training:  Various machine learning models and deep learning models used 

for model training step to compare and find best performing model. 

• Hyperparameter Tuning:  GridSearchCV library used to find best hyperparameters 

on models. 

3.5 Evaluation 

 

In evaluation step, metrics such as MAE, MSE, RMSE, and R² can be used. In this study 

only MAE used because the results are more distinguishable from each other than other 

metrics. 

• Performance Evaluation: Mean Absolute Error (MAE) is main Evaluation metric. 

• Model Comparison: Comparison of models by MAE. The lower MAE means better 

accuracy of RUL. 
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Mean Absolute Error (MAE) 

• Description: Measures the average absolute difference between predicted values and 

actual observations. 

• Formula: 
𝟏

𝑛
∑ |𝑦𝑖 − 𝑦�̂�|
𝑛
𝑖=𝟏  

• Interpretation: A MAE of 0 indicates perfect accuracy. Higher values signify larger 

errors. 

 

4 Design Specification 

4.1 Techniques and Architecture 

The prediction model for determining the remaining useful life (RUL) of wind energy 

components is based primarily on a robust methodology that includes external control, 

performance and model selection at its best through training and evaluation. 

4.1.1 Handling Outliers: The outlier detection approach uses a statistical threshold, where 

elements above three standard deviations from the mean are considered outliers and 

are removed. This ensures that the method and fits the prediction models. 

• Rotor Temperature and Vibration Levels: Each variable was carefully examined to 

extract different data. This was done by calculating the addition and subtraction of twice 

the standard deviation and discarding values that exceeded this limit. 

(mean ± 2 standard deviations). 

• Operational Hours: In this step a logarithmic scale was previously used to transform 

the operational hour data to better examine skewness and further refine the data by 

removing outliers beyond the 1st and 99th percentiles. 

4.1.2 Feature Engineering: This step creates new features that represent the interaction of 

various operating parameters, such as increasing rotor temperature and vibration 

levels, to quantify the effect of RUL. 

4.1.3 Visualisation of Clean Data: With removal of Outliers, vibration level and rotor 

temperature come close to normalized representation. Other features are slightly 

changed compared to their previous plots. 
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Figure 6: Visualization of Clean Data 

 
Figure 6 shows the state after the correct outliers are deleted. 

4.2 Model Selection and Hyperparameter Tuning 
 

This section describes simple machine learning and deep learning techniques as well as 

computational methods used to estimate RUL for wind turbine. Before training the models, all 

features are normalized to ensure that the data scale is the same across all models. 

4.2.1 Standard Scaling: Because some models can operate on a scale, all numerical 

functions are normalized so that the mean and unit variance are equal, thus the 

weights of the inputs are equal. 

4.2.2 Ensemble Methods 

• Linear Regression:  This is a traditional machine learning technique, works like a real 

model but is part of an ensemble learning strategy where its predictions are combined 

with other models, hence improving predictive performance and stability. 

• Random Forest: It is a classic machine learning clustering technique that combines 

predictions from multiple decision tree models to improve accuracy when dealing with 

overfitting problems. 

• Gradient Boosting: This is a powerful technique for ensembles creating new models 

that correct the errors made by pre-trained models each time, thus effectively reducing 

the variances and variances. 

4.2.3 Advanced Machine Learning and Deep Learning Models 

• Support Vector Regression (SVR): SVR works well with non-linear data by using 

kernel functions that handle higher dimensional spaces necessary for complex datasets. 
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• XGBoost Regression:  Known for its power and performance in the Gradient Boosting 

family, XGBoost can handle a variety of data and distributions well, making it ideal for 

classification and regression tasks. 

• Long Short-Term Memory (LSTM) Networks: LSTM was specifically chosen 

because it can capture long-term dependencies in time series data points, which are 

important for accurately estimating RUL based on historical sensor readings. 

4.2.4 Hyperparameter Tuning 

Hyperparameter tuning is applied to minimize MAE value by searching combination of 

hyperparameters with GridSearchCV. By finding optimal hyperparameters, the lowest MAE 

achieved. 
 

5 Implementation 

5.1 Environment Evaluation  
 

The study was conducted using a personal computer with the following specifications: 

• Operating System: Windows 11 Home 64-bit (10.0, Build 22621) 

(22621.ni_release.220506-1250), with regional language settings in English. 

• System Manufacturer: Asustek COMPUTER INC. 

• System Model: ASUS TUF Dash F15 FX517ZE_FX517ZE 

• BIOS Version: FX517ZE.315 (type: UEFI) 

• Processor: 12th Gen Intel(R) Core(TM) i5-12450H (12 CPUs), operating at ~2.0GHz. 

• Memory: A total of 16GB (16384MB) RAM was installed with 16006MB available 

for OS tasks. 

• Page File Memory: A total of 10116MB was used, with 14545MB available. 

• DirectX Version: DirectX 12 

5.2 System Requirements 

• Operating System: Compatible with Windows, macOS, or Linux. 

• Processor: Intel i5 or equivalent. 

• RAM: 8 GB or higher recommended. 

• Storage: At least 10 GB of free space for data handling and processing. 

5.3 Python Environment 
 

The project is implemented in Python, and the following versions of Python and libraries are 

used: 

• Python Version: 3.8 or newer Python 3.8 supports all required libraries and features 

used in this project, offering improved module handling and stability. 

Key Libraries and Versions 

• NumPy (1.19.5): Provides support for large, multi-dimensional arrays and matrices, 

along with a large collection of mathematical functions to operate on these arrays. 

• Pandas (1.1.5): Used for data manipulation and analysis, providing data structures and 

operations for manipulating numerical tables and time series. 

• Matplotlib (3.3.4): A plotting library for creating static, interactive, and animated 

visualizations in Python. 
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• Scikit-Learn (0.24.1): Used for machine learning and statistical modelling including 

classification, regression, clustering, and dimensionality reduction. 

• TensorFlow (2.4.1): An end-to-end open-source platform for machine learning to 

easily build and deploy ML powered applications. 

5.4 Machine Learning and Deep Learning Standard Hyper Parameter 

Settings 
 

Table 2 shows the different machine learning and deep learning models used in this study 

and their set of hyperparameters. This is a set of values that should be tuned for optimal 

performance based on the model used. 

 

Table 2: Details the Standard Hyperparameters Used Across Various Machine Learning and 

Deep Learning Models 

Model Hyperparameters Tuning 

Random Forest n_estimators 100 

 max_depth Not specified 

 min_samples_split Not specified 

 min_samples_leaf Not specified 

 max_features Not specified 

 random state 42 

Linear Regression n_estimators 100 

 max_depth Not specified 

 min_samples_split Not specified 

 min_samples_leaf Not specified 

 max_features Not specified 

 random state 42 

Gradient Boosting n_estimators 100 

 learning_rate 0.1 

 max_depth 3 

 random state 42 

 min_samples_split Default 

 min_samples_leaf Default 

Support Vector 

Regression (SVR) 

kernel `rbf` 

 C 100 

 gamma 0.1 

 epsilon 0.1 

XGBoost Regression n_estimators 100 

 learning_rate 0.1 

 max_depth 5 

 alpha 10 

 colsample_bytree 0.3 

LSTM units per layer [50,25] 

 epochs 100 

 batch_size 20 

 dropout 0.2 

 input_shape 
 

Specified per dataset 

dimensionality 

Models were implemented using the hyper parameter values shown in Table 2. 
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5.5 Hyperparameter Tuning 

This section of the report explains how we use hyperparameters to optimize our machine 

learning models. 

5.5.1 GridSearchCV Optimization 

 

The GridSearchCV technique from scikit-learn library was used to explore the 

parameter sets for the Random Forest Model. 

Parameter Grid: 

• n_estimators: [50, 100, 200] 

• max_features: ['auto', 'sqrt', 'log2'] 

• max_depth: [None, 10, 20, 30] 

• min_samples_split: [2, 5, 10] 

• min_samples_leaf: [1, 2, 4] 

Optimization Results: 

• Best Parameters: 

o n_estimators: 200 

o max_depth: 20 

o max_features: 'auto' 

o min_samples_leaf: 1 

o min_samples_split: 2 

• Best MAE Score: 0.0015 

The grid search process tested a total of 324 different combinations, and the selected 

configuration minimized the absolute error (MAE). 

 

6 Evaluation 

6.1 Performance Measures and Their Appropriateness 
 

In this study, we used MAE as the main evaluation criterion to measure the accuracy levels in 

estimating the RUL of wind turbine parts. 

6.2 Experiment 1: Linear Regression 

Figure 7: Linear Regression Result 
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Figure 7 shows that there is a significant difference between the predicted RUL and the actual 

RUL, especially on the uptrends. Due to this high MAE, linear regression may not be able to 

capture the latent factors properly. 

6.3 Experiment 2: Random Forest 
 

Figure 8: Random Forest Result 

 

According to Figure 8, a Random Forest has the lowest MAE value. The predictions are very 

close to the true RUL for all time variables, indicating that the model captures the complex 

patterns and relationships in the data well. 

6.4 Experiment 3: XGBoost Regressor 
 

Figure 9: XGBoost Regressor Result 

 

According to Figure 9, XGBoost shows low MAE performance. While it is not as good as 

Random Forest in terms of MAE, it is better than linear regression. 
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6.5 Experiment 4: Gradient Boosting 
 

Figure 10: Gradient Boosting Result 

 

According to Figure 10, despite the MAE is higher than Random Forest MAE value, this model 

is still considered good. The graph shows that the Multiplier is approaching the true RUL with 

some minor deviations visible, but the performance is quite accurate. 

6.6 Experiment 5: SVR (Support Vector Regression) 
 

Figure 11: SVR Result 

 

According to Figure 11, Random Forest and Gradient Boosting has a lower MAE result than 

SVR.  

6.7 Experiment 6: LSTM 
 

Figure 12: LSTM Result 

 

According to Figure 12, The LSTM model was not preferred because it could not reach the 

sensitivity of the Random Forest model. 
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6.8 The performance metrics for each predictive model 
 

Table 3: Table Summarizing the Performance Metrics for each Predictive Models 

Model MAE 

Linear Regression 0.3254 

Random Forest 0.0015 

Gradient Boosting 0.0719 

Support Vector Regression  0.0063 

XGBoost 0.0530 

LSTM 0.0089 

Random Forest 0.0015 

 

Table 3 shows the performance on MAE. These figures demonstrate the accuracy and precision 

of wind turbine component RUL prediction. 

The optimized random forest model achieved the best result with a MAE of 0.0015. This means 

that the model made the correct prediction for all cases of the dataset it worked on.  

Figure 13: Mean Absolute Error of Various Models 

 
 

Figure 13 shows the MAE for various forecast models and shows the average error of the 

forecasts: 

• Linear Regression (MAE: 0.3254) has the highest error, indicating poor performance. 

• Random Forest (MAE: 0.0015) Original and optimized have shown the lowest error 

indicating their high precision. 

• Gradient Boosting (MAE: 0.0063) and LSTM Regressor (MAE: 0.0089) also 

perform well with low errors. 

• Support Vector Regression (MAE: 0.0530) and XGBoost Regressor (MAE: 0.0719) 

exhibit moderate errors. 
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The optimized random forest is considered as the best model as it has the lowest possible error 

and can be used for accurate predictions. 

6.9 Feature Importance 
 

Figure 14: Feature Importance 

 
Figure 14 shows the feature importance in the random forest model predicting RUL of wind 

turbine components. According to the chart, “Operational Hours” is the most important 

predictor; how long a part has been operating gives information about its remaining lifespan. 

This bar chart shows what drives this model's decision and shows areas for improvement by 

evaluating different features. 

6.10 Method Utilization to Address the Research Question Discussion 

We used a various method to determine whether deep learning is effective in predicting 

RUL in wind turbine components compared to traditional machine learning methods. We do 

this by creating large simulation data sets that reflect the operating conditions of wind turbine 

components under various loads. This study also evaluates the predictive power of each method 

based on MAE. Additionally, this process includes fitting the models through hyperparameter 

tuning and validating the performance on different hyperparameters for a lower MAE score, 

hence better accuracy. So what we've done here is taken a systematic approach that allows us 

to gain useful insights into our predictive maintenance strategies to improve the efficiency of 

sustainable wind energy systems. In this way we compared various machine learning and deep 

learning models on same dataset to find which method performs best for predicting RUL. 
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7 Conclusion and Future Work 

7.1 Conclusion 

In this study, RUL prediction in wind turbine components was investigated using machine 

learning and deep learning models. Different forecast models were evaluated using large data 

sets to assess how well they perform to estimate RUL of wind turbine components. 

The aim of this research is to improve the accuracy of predictive maintenance models and 

increase the lifespan of wind turbine components through advanced predictive analytics. This 

study included different models and compared them in terms of performance using MAE 

metric. The random forest model has best prediction accuracy with the lowest MAE and 

achieves the best performance. 

7.2 Key Findings 

1. Model Performance: The optimized random forest model turned out to be the most 

accurate model, demonstrating its reliability and robustness in controlled environments. 

2. Technological Implications: The results showed that incorporating machine learning 

into maintenance policies is crucial as it significantly increases efficiency and 

minimizes downtime. 

3. Limitations: Despite its success, some limitations are acknowledged that may hinder 

scalability or global applicability, such as the reliance on large amounts of high-quality 

data and computing power. 

7.3 Future Work 

Future research can contribute significantly to current research by considering the 

following areas: 

1. Real-Time Data Processing: The developed models must be able to cover the dynamic 

structure of the real data to be more sensitive than the systems used to predict errors 

before they occur. 

2. Commercialization Potential: The optimized random forest model is effective; it can 

also be used in various industries within the renewable energy sector. In-depth market 

research and testing under real conditions on a small scale is an important part. 

3. Ethical and Sustainable Use: In future planning, the ethical issues of artificial 

intelligence need to be re-evaluated in organizational environments in order to develop 

smart and sensitive solutions that comply with world standards and norms. 

Subsequent studies will expand on the fundamental work of this project by examining these 

areas and ultimately expanding the field of predictive research into future energy savings to 

improve efficiency, reliability, and cost. 
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