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Lidar – Infused YOLO: A Lidar infused computer
vision model to improve the object detection for

autonomous vehicle

Pragat Pravin Pagariya
x23141221

Abstract

This research aims at evaluating YOLOv8, YOLOv10, and Lidar-based models
in enhancing the precision of 3D objects’ detection in self-driving cars. In auto-
mobile detection, YOLOv8 has impressive and fast results; however, it struggles
with pedestrian, van, and other objects’ detection, leading to higher false-positive
and false-negative rates. YOLOv10 improves the detection accuracy of automobiles
and people; however, it is not good at detecting specific objects, including trams
and people sitting down. Average accuracies of Frustum PointNets (FPN) are mod-
erate, and better performance is obtained due to the inclusion of fully connected
layers, and thus they vary with the level of difficulty. The PointPillers model based
on Lidar technology provides high classification accuracy, which makes it 87 per-
cent. 15% and a Loss of 1.72. This effectively separates walkers, bikes, and autos
by using 3D bounding boxes in Lidar point cloud. The combined YOLO model
using Lidar data with the features of object recognition of YOLO reaches 98% ac-
curacy on the KITTI validation dataset. It is possible to identify item placement
and check the correctness of the model with the help of Bird’s Eye View (BEV)
photos, which contain information about the possible overlaps and misidentifica-
tion. The combination of Lidar to YOLO is a new innovation that can be used in
real-time 3D object detection for the purpose of self-driving cars. As it stands this
technology has the capability for future enhancement and can be applied to many
driving scenarios.

Keywords: YOLO, LIDAR Infused, Fusion, PointFillers, Bird Eye View, Autonom-
ous Vehicle

1 Introduction

The future development in LIDAR technology and the existence of new sophisticated
machine learning algorithms has improved the identification of items on the roadside
greatly. Modern LIDAR systems have higher resolution and range, enabling it identify
objects which are small as well as those which are far away. At the same time, deep
learning and neural networks have improved the way in which objects could be recognized
and classified with higher precision and shorter time required. Some of the methods like
PointNetVinodkumar et al. (2023)and VoxelNet, have brought a drastic change in the
processing of LIDAR data:

As can be seen above the autonomous vehicles have the sensors attached in the cars
that help to get the obstacles detected and that tries to take an independent decision.
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Figure 1: An example of how the autonomous vehicle work using different sensors (Source:
Dubizzle)

The Artificial Intelligence (AI) base system assists in making the decisions and creating
the driverless systems. These procedures work on the 3D point cloud data straight and
they do not require the conversion of the data to images or grids which sometimes loses
some information. The use of LIDAR for the detection of objects on the roadside in AVs
Li et al. (2023) Haghighi et al. (2024) not only increases safety through the likelihood
of collision detection and better positioning but also helps in the advancement of ITS.
The key purpose of such systems is to establish interaction between vehicles and the
surrounding infrastructure to improve traffic conditions and to reduce pollution.

1.1 Motivation

The need to improve on the functionality and safety of the autonomous vehicles (AVs) is
the main reason why this research had to be conducted. Two of the most critical features
of AVs and safety on the roads are object recognition on the roadside for the avoidance of
accidents and smooth driving. LIDAR technology is quite accurate in terms of providing
spatial measurements and proves to be quite effective in different environmental condi-
tions. Thus, there are some problems that still remain, for example, in the recognition
and analysis of complex situations. This research paper will be a pioneer in the field of
autonomous driving to expand the knowledge on the subject matter. Moreover, it aims
at decreasing the occurrence of traffic accidents, enhancing the traffic management, and
popularizing ITS technologies. Thus, the goal of this attempt is to fulfill the objective
of increasing the safety and dependability of self-driving cars and, therefore, the rate at
which they are adopted and integrated into society.

1.2 Research Aim

The use of LIDAR with other sensors like cameras and radar through a technique known as
sensor fusion has boosted the reliability of the object recognition systems. This is together
with other developments in technology that have been witnessed. Sensor fusion takes
advantage of each of the sensor types where the other has a weakness in order to build a
better overall picture of the driving scene. LIDAR, for example, can give accurate distance
measurements while radar is highly effective in severe weather situations. However, what
really camera can do is to provide detailed information about colour and texture of a
surface.
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1.3 Research Problem

At present, different kinds of YOLO models such as YOLOv8, YOLOv9, and YOLOv10
are available; each model has its advantages in object detection. However, there are some
cases and object classes for which none of these models can be applied. In this study,
the emphasis is made on the evaluation of these YOLO models on KITTI. The primary
objective of the work discussed in the paper is to reveal the effectiveness of the proposed
models by the criteria of the ability to distinguish cars, pedestrians, and others. It also
looks at how the LIDAR and YOLO datasets can be combined to improve real-time
processing and object detection. The goal is to enhance the current detection algorithms
through the fusion of multi-modal data and also by using better models thus increasing
the level of performance for application such as autonomous driving and real-time traffic
control.

1.4 Research Question

Research Question 1: How do different YOLOmodels compare in terms of performance
of objects detection in the images or videos for an autonomous vehicle response system?
Research Question 2: How can a fusion of LIDAR and computer vision (CV) based
deep learning models (YOLO) be optimized to improve real-time 3D object detection in
autonomous driving scenarios?

1.5 Thesis Structure

In the upcoming chapters we will be discussing different research for determine the en-
hancements done towards the LIDAR and also computer vision. In the chapter on meth-
odology, we will discuss in details about the different techniques. In the chapter on
implementation, we will about the proposed idea of LidarYOLO which will be an infused
lidar based deep learning model for enhanced autonomous vehicle working. In the results
and analysis, we will compare different methods and discuss the reason behind the results
obtained.

2 Literature Review

2.1 Range and depth perception

The use of BEV or RV models is applied for the task of 3D detection with the help
of LiDAR. The techniques of BEV are precise, but at the same time costly since they
require voxelization and 3D convolutions. Despite the fact that RV approaches are more
cost effective, they lack accuracy. In relation to the three-dimensional detection, there
is a RangePerception Wilson et al. (2024) that is based on RVs and it aims to be as
efficient as the battery electric vehicles (BEVs) while not lagging behind in performance.
The research reveals two difficulties with RV techniques: First of all, the difference of the
domain between 3D global coordinates and 2D range picture coordinates and second, the
vision corruption in the edge of the range images. The BEV-based method, CenterPoint,
takes longer in inference speed and average precision (AP) compared to other methods.
A generative model for range images from LiDAR is provided with the focus on the
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data-level domain transferNakashima et al. (2023). The model uses a differentiable ray-
drop effect and GANs that are based on the implicit picture representation to solve
such problems as variety and fidelity, which are characteristic of generative models based
on images and points. Preprocessing LiDAR data for its usage in Sim2Real semantic
segmentation is advised to be done on the restore and upsample processes. It is more
accurate than ray-drop effects When tests were carried out on the KITTI Raw dataset,
the suggested model was found to outperform the other generative models including r-
GAN, l-WGAN, vanilla GAN, and DUSty. As illustrated by the discussed point-based
and image-based models, they were surpassed by the suggested model. The evaluation
process of the model entails the application of SW distance, JSD, COV, and MMD.
While the earlier methods of range view representations are used, recent ones prefer
point- or voxel-based techniques. There are more recent techniques that are preferred
in LiDAR segmentation, and autonomous driving depends on it. This research presents
a novel method called RangeFormerKong et al. (2023). Its primary goal is to address
the three main problems with range view models: These are shape distortion, semantic
incoherence and many to one mapping. And with the strategic network design, data
augmentation, and post-processing methods developed by the researchers. The findings
indicate that RangeFormer outperforms some of the most advanced range view methods in
terms of mIoU scores. On the LiDAR semantic and panoptic segmentation benchmarks,
it outperforms voxel, point, as well as fusion-based approaches. Challenges of 3D LiDAR
semantic segmentation are: Future perception-aware multi-sensor fusion (PMF), is a new
approach to collaborative fusionZhuang et al. (2021). Self-driving cars and robotics are
some of the target uses of this approach because they require precise calculations. The
use of LiDAR point clouds in addition to the RGB pictures results in an improvement
in scene understanding. Thus, due to this disparity, PMF uses a systematic approach
to solve the problem of integration of these two modes. Projection of the point cloud
onto the camera coordinates enables joining RGB photos with the scene’s spatial depth
in PMF. This setup uses a two-stream network known as TSNet. It also becomes clear
that the PMF method is rather effective on different datasets, which indicates that it can
easily solve rather complex real-life problems. Better results demonstrate this. From the
nuScenes dataset, PMF attains a 0. An 8% increase in the mean Intersection over Union
(mIoU) is achieved, thus outperforming the state of the art.

2.2 Object detection using lidar

The integration of advanced sensors like radar, high-resolution cameras, and LiDAR has
been a key component of these upgrades, as it ensures precise environmental sensing.
Since LiDAR can detect objects up to 120 metres away and gives a view of the horizontal
field that includes 360 degrees, it is hard to overstate its importance in traffic accident
prevention and route planning. To enhance autonomous vehicles’ object identification
skills, this research made use of the KITTI and PASCAL VOC databasesFan et al.
(2021). Using the KITTI dataset, LiDAR segmentation (LS) was able to detect ROI in
images. But the PASCAL VOC dataset was used to train the object detecting YOLOv4
neural network. In order to prepare the LiDAR point clouds for the YOLOv4 network,
the system preprocesses them, segments the objects, and then performs 3D to 2D picture
matching. The LS-R-YOLOv4 outperforms the standard YOLO in terms of accuracy
(97.7%), recall (92.3%), and F-1 measure (95.2%).

The paperHekimoglu et al. (2024)introduces MonoLiG, a new framework for mon-
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Figure 2: KITTI dataset based on LIDAR segmentation to be used in YOLOv4 model
for car and pedestrian prediction [8]

ocular 3D object identification with LiDAR guidance. Applying a semi-supervised active
learning technique enhances the system’s performance. In order to create a model, Mono-
LiG takes use of all of the available data modalities. Data selection and model training are
both aided by LiDAR. This is achieved at the inference step without any further overhead
being added. Information is retrieved and processed into pseudo-labels from unlabeled
data using a cross-modal architecture that involves a LiDAR instructor and a monocular
student during training. This training method delivers the best possible performance on
the KITTI 3D and bird’s-eye-view (BEV) monocular object identification benchmarks,
with an improvement of 2.02 points in BEV Average Precision (AP). The outcomes of
the evaluation as a whole are shown in these frames. The DD3D student model and
the PV-RCNN instructor model were both utilised for the active learning investigations
that were conducted on an NVIDIA Tesla V100 GPU. The proposed MonoLiG paradigm
outperforms the active learning and semi-supervised learning baselines by a substantial
margin. Modifying it for use with any monocular detector is a breeze. In order to produce
more accurate pseudo-labels, future research will combine additional modalities including
radar and temporal monitoring.

2.3 LIDAR in Autonomous vehicles and roadside object detec-
tion

The creation of a sensor fusion system allowed for the integration of thermal infrared
cameras with LiDAR sensorsChoi and Kim (2023). Regardless of the time of day, this
technology can detect and identify objects in low-light conditions with great precision.
The system uses a three-dimensional calibration target to externally calibrate the LiDAR
sensor and the thermal infrared camera. This procedure guarantees that their coordinate
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systems will be aligned into a single shared frame. The calibration process pays close
attention to the thermal image’s brightness distribution. Using a histogram, the 3D
calibration objective may be determined. To convert the coordinates from the three-
dimensional LiDAR world to the two-dimensional image from the thermal camera, the
calibration process makes use of the translation matrix (t) and the rotation matrix (R).
To achieve object detection, the YOLOv4 Convolutional Neural Network (CNN) model
is employed. Its quickly detecting stuff is well-known, and it can also localise and classify
things at the same time. By integrating the data from the thermal camera and the
LiDAR sensor, we can leverage the unique characteristics of each device to enhance the
detection accuracy. Using the three-dimensional point cloud data from the LiDAR sensor,
we can verify and enhance the items seen in the thermal image. The results show that
the suggested strategy improves memory and accuracy in object detection when tested
in both daytime and nighttime settings. Therefore, this proves that the method works
reliably in different kinds of visibility.

Figure 3: Sensor frames, thermal camera with LiDAR calibration for segmentation [3]

Use of LiDAR, a source of 3D spatial information Viswanath et al. (2023), allows
autonomous vehicles to map and plan routes, detect obstacles, and more, particularly
when travelling off-road. Areas and objects in point clouds can be identified using LiDAR
semantic segmentation that is based on machine learning. With all the many textures,
colours, and unclear boundaries in off-road environments, it might be challenging to carve
out geometric shapes. In order to anticipate for LiDAR point clouds, intensity values are
adjusted using an FCN equation. Neighbourhood prediction policies tune class intensity
levels close to class mode values. Predictions of puddles, grass, trees, bushes, and people in
RELLIS-3D sequences 0001 and 0002 average 47% mIoU. Research shows that the ”grass”
and ”puddle” classes perform better than the RELLIS-3D benchmarks. A comprehensive
system has been developed to digitally model roadways using LiDAR data and accurately
extract geometry informationWang et al. (2023). A new semantic segmentation network
is used to initiate the procedure. This network allows for the precise classification of road
surfaces and infrastructure within large-scale point clouds. Next, geometric features such
as road limits and centerlines can be extracted using key techniques like alpha-shape
and Voronoi diagrams. Accurate information on road geometry can be obtained by
utilising these features, along with a coordinate transformation matrix and the method
of least squares. By utilising Dynamo and Revit, the framework seamlessly combines
these components to create a digital modelling process aimed at constructing intricate
three-dimensional models of road scenarios and infrastructures.By utilising the Toronto-
3D and Semantic3D datasets, the techniques have been proven to be effective, yielding
remarkable results. The OA ratings for both datasets are 95.3% and 95.0% respectively,
while the IoU values for road surfaces are 95.7% and 97.9%.
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2.4 Summary of the Papers

Summary of different research papers followed for this research

Name Author Dataset Model Result
RangePerception:
Taming LiDAR
Range View for Ef-
ficient and Accurate
3D Object Detection

Bai, Y., Fei, B.,
Liu, Y., Ma, T.,
Hou, Y., Shi, B.,
and Li, Y.

Waymo Open
Dataset (WOD)

RangePerception (in-
corporating RAK and
VRM)

Superior AP, fastest infer-
ence speed

Generative Range
Imaging for Learning
Scene Priors of 3D
LiDAR Data

Nakashima K.,
Iwashita, Y. and
Kurazume, R.

KITTI Raw Data-
set

Implicit
Representation-based
GAN with Differenti-
able Ray-Drop

Superior fidelity, diversity
in range images, improved
Sim2Real segmentation

Perception-Aware
Multi-Sensor Fusion
for 3D LiDAR Se-
mantic Segmentation

Zhuang, Z., Li, R.,
Jia, K., Wang, Q.,
Li, Y. and Tan, M.

SemanticKITTI,
nuScenes

ResNet-34, SalsaNext Outperforms state-of-the-
art by 0.8% mIoU on
nuScenes

Real-Time Object
Detection for LiDAR
Based on LS-R-
YOLOv4 Neural
Network

Fan, Y.C.,
Yelamandala
C.M., Chen, T.W.
and Huang, C.J.

KITTI, PASCAL
VOC

LS-R-YOLOv4 High-accuracy real-time de-
tection

Monocular 3D Ob-
ject Detection with
LiDAR Guided Semi
Supervised Active
Learning

Hekimoglu, A.,
Schmidt, M. and
Marcos-Ramiro, A.

KITTI, Waymo DD3D (student), PV-
RCNN (teacher)

Improved BEV AP by 2.02
points, 17% labeling cost
savings

iDet3D: Towards
Efficient Interactive
Object Detection for
LiDAR Point Clouds

Choi, D., Cho, W.,
Kim, K. and Choo,
J.

KITTI, nuScenes iDet3D , IA-SSD
(with iDet3D)

Superior detection accuracy
, Improved mAP with user
clicks

Rethinking Range
View Representation
for LiDAR Segmenta-
tion

Kong, L., Liu, Y.,
Chen, R., Ma, Y.,
Zhu, X., Li, Y.,
Hou, Y., Qiao, Y.
and Liu, Z.

SemanticKITTI,
nuScenes,
ScribbleKITTI

RangeFormer (self-
attention based)

Superior to SoTA in se-
mantic and panoptic seg-
mentation (mIoU improve-
ments up to 9.8%)

A sensor fusion sys-
tem with thermal
infrared camera and
LiDAR for autonom-
ous vehicles and deep
learning based object
detection

Choi, J.D. and
Kim, M.Y.

Real data were ac-
quired

YOLOV4 Improved accuracy, day and
night reliable

Off-Road LiDAR
Intensity Based Se-
mantic Segmentation

Viswanath, K., Ji-
ang, P., PB, S. and
Saripalli, S.

RELLIS-3D -FCN 47% mIoU

Framework for Geo-
metric Information
Extraction and Di-
gital Modeling from
LiDAR Data of Road
Scenarios

Wang, Y., Wang,
W., Liu, J., Chen,
T., Wang, S., Yu,
B. and Qin, X.

Toronto-3D Improved SCF-Net. OA 95.3%, IoU 97.9%.

Table 1: Summary Research paper.

2.5 Research Niche

The research seeks to be at the forefront of combining YOLOv8 with sophisticated LIDAR
models, such Pointfillers etc., in order to create a groundbreaking YOLO model enriched
with LIDAR technology. This technique is anticipated to greatly improve the accuracy of
object identification and the ability to act in real-time in autonomous driving situations.
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This project aims to investigate the integration of advanced deep learning techniques
with high-resolution 3D spatial data from LIDAR in order to enhance navigation and
safety in autonomous cars. Unlike earlier studies that mostly concentrated on YOLOv4,
this research will explore the potential synergy between both approaches, providing a
state-of-the-art solution.

3 Methodology

From the above research summary table (table 1) we find that the maximum times that
the dataset that has been used is KITTI dataset and hence we will be using the same for
the analysis of our case s well. This will give us an apple-to-apple comparison of how our
proposed model is performing.

3.1 KITTI Dataset

The KITTI dataset Geiger et al. (2013) offers a comprehensive assortment of data that
allows for the development and assessment of detection algorithms under realistic condi-
tions. This dataset is crucial for the progress of 3D object detection technologies. The
collection include both left and right color images, which are necessary for visual object
detection. These photographs are part of the resources it includes. These images en-
able three-dimensional vision, enhancing depth perception and improving the accuracy
of item localization within the scene. The KITTI dataset include Velodyne point cloud

Figure 4: A sample of KITTIE dataset
with point cloud Figure 5: A sample of KITTIE dataset

with point cloud

data, which captures intricate three-dimensional spatial data of the surroundings, making
it a significant component of the dataset. This data provides a comprehensive view of
the scene that enhances the visual information gained from color images. It is essential
for accurately detecting three-dimensional objects and determining their spatial location.
The dataset also provides camera calibration matrices to ensure accurate integration of
two-dimensional pictures with three-dimensional point clouds. These matrices are essen-
tial for mapping the visual data captured by cameras to the spatial coordinates retrieved
from the LiDAR sensor.
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Figure 6: Advancements towards the publication about the architecture of YOLO model
Jiang et al. (2022)

3.2 Computer Vision based YOLO Models

YOLO Jiang et al. (2022), an acronym for ”You Only Look Once,” comprises a set of
convolutional neural network (CNN) models designed specifically for real-time visual ob-
ject recognition. YOLO models tackle object recognition by treating it as a regression
problem, directly converting image pixels into bounding box coordinates and class prob-
abilities. This sets them apart from conventional methods that repeatedly apply the
model to different parts of the image. YOLO models are highly effective for real-time
applications due to their unique technique, allowing them to achieve fast detection speeds
without sacrificing accuracy.

Figure 7: Structure of YOLO model Lan et al. (2018)

With each new iteration of the YOLO family, there are notable enhancements interms
of performance, speed, and accuracy. From its humble beginnings, the YOLO family has
undergone remarkable evolution. The latest versions, from YOLOv8 to YOLOv10, are
at the forefront of this evolution, enhancing their detection skills. These versions include
new approaches and improvements to the architecture.

3.3 YOLOv8

YOLOv8 Sohan et al. (2024) is an improvement over its predecessors with several ar-
chitectural enhancements intended to improve the effectiveness and efficiency of object
detection. This version of YOLOv8 also includes improved backbone networks as one of
the major improvements over the previous version. These networks supplement a sig-
nificant contribution by improving the procedure of feature abstraction from the input
images leading to improved and complex feature maps. Thus, when YOLOv8 is integ-
rated with feature pyramid networks (FPN), its object detection at multiple scales is
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enhanced. Thus, using this approach, it is possible to effectively and without signific-
ant errors recognize objects of various sizes and forms. YOLOv8 incorporates different
activation functions and normalization that helps in improving the model to perform
well under different conditions of detection. Thus, the YOLOv8 has a high speed while

Figure 8: YOLOv8 architecture (Source: TowardsDatascience)

maintaining a good level of detail due to the presence of enhanced features. In addition,
it allows distinguishing objects at various scales and incorporates the anchor boxes as
the templates for accurate positioning and measurement of objects. It is even better
equipped to tell between objects that look alike since it can also categorize objects and
give the confidence level of the detected objects. As compared to its counterparts it has
better feature representation, multi-scale detection, and overall it has better balance of
speed and accuracy. It does this by using a low complexity and high speed back bone
network with grouped convolutions and pointwise optimization.

3.4 YOLOv10

The last and the most developed type of the YOLO series is known as YOLOv10 Wang
et al. (2024). With the help of the modern approaches in deep learning, it is possible
to achieve a high level of object detection, or if you like, expand the possibilities of this
technique to the limit. Self-supervised learning methods are another aspect that has
been integrated into YOLOv10, and this is a major characteristic of this version. By
using these tactics, the model is able to get information from large volumes of unlabelled
data and therefore enhances its generality and det affliction strength in many detection
strategies. In addition, YOLOv10 incorporates complex data augmentation procedures,
making it possible to improve the model’s performance regarding the variations in the ob-
jects’ layout, illumination, and overlapping. With the help of these strategies, the model
shall be able to maintain its robustness and reliability regardless of the various detection
scenarios. As a key feature, the YOLOv10 model uses a new dual-head architecture that
addresses the one-to-many and one to one assignments in an optimal manner. This ar-
chitectural design helps in reducing the latencies and enhancing the rate of the prediction
and post-processing procedures related to Non-Maximum Suppression (NMS). This archi-
tecture has a highly preferable performance in the real-time applications like self-driving
cars where the real-time object detection is mandatory. YOLOv10 is less complex than
the other variants of YOLO in terms of detection pipeline and implementation. This is
made possible by the removal of the need for NMS post-processing.
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Figure 9: YOLOv10 network diagram Wang et al. (2024)

4 Design Specification

4.1 Lidar Feature Clouds : Frustrum PointNets

The Frustum PointNets Qi et al. (2018) use a complex method for the detection of 3D
objects by combining the 2D object detection and 3D point cloud data. This algorithm
works in a two-step process to improve the detection accuracy and speed of the algorithm.
This use a 2D object identification network like YOLO or Faster R-CNN at the start of
the process to detect objects in 2D images. After that, these detections are converted
into 3D frustums that are triangular prismatic areas that stretch from the image plane
into the three-dimensional space. This translation is realized by using the parameters of

Figure 10: Pipeline for Frustrum PointNets (Source: https://stanford.edu/ rqi/frustum-
pointnets/)

the camera calibration and the depth data obtained by LiDAR. Therefore, it enables dir-
ect mapping of two-dimensional detections to the three-dimensional environment. These
frustums can be used as the region of interest (ROI) for the succeeding three-dimensional
processing. This helps in directing the computational resources to the likely areas of find-
ing the objects. The second step makes use of a unique neural network called PointNet
that is used for processing unordered three-dimensional point clouds. PointNet produces
a complete description of the point cloud contained in each frustum by taking each point
and fusing its features. Thus, this skill allows for the determination of geometric proper-
ties and the generation of recommendations for three-dimensional objects. Subsequently,
from the point cloud data analysis, the network generates accurate bounding boxes for
three-dimensional objects along with their class labels.

The final step in the process is combining the updated 3D recommendations with the
initial 2D detections. By integrating the 3D bounding boxes with the 2D object detec-
tions, we achieve accurate localization and categorization of objects in three dimensions.
Frustum PointNets enhance object detection by effectively combining two-dimensional
and three-dimensional data. Due to its capability to optimize computing efficiency and
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improve detection accuracy, this approach is especially advantageous for applications
that need accurate localization of 3D objects, such as advanced robotics and autonomous
driving.

4.2 Lidar Feature Clouds :PointPillars

With the use of LiDAR point cloud data, PointPillars Lang et al. (2019) is an advanced al-
gorithm that greatly improves the efficiency and accuracy of processing three-dimensional
object detection. This program utilizes a unique approach to effectively handle the chal-
lenges that come with managing extensive 3D point clouds. Specifically, the main purpose

Figure 11: Pointpillars Lang et al. (2019)

of PointPillars is to take the three-dimensional point cloud and convert it into something
that can be processed more easily. The first step includes partitioning the point cloud
into columns, or as practitioners call it, “pillars,” in which each of the vertical columns
is associated with a specific part of the 3D scene. The voxelization technique adopted
here makes the points in the cloud to be more organized and efficient in processing hence
the improvement. Each of the pillars consist of a set of 3D points transformed into 2D
points as they create an image like representation of the actual point cloud. After this, a
convolutional neural network (CNN) is applied on the pseudo-image in two dimensional
space. Feature extractors are used by PointPillars. These feature extractors employ two
dimensional convolutions to analyze the pseudo-image and to extract the features. This
technique is effective in capturing the spatial dependencies or relationships within each
pillar and the properties of the items. It then transforms this information to a feature map
that is useful for object detection. Finally, in the last step, the characteristics that are
extracted undergo a detection head. This component can be considered as being in charge
of the prediction of the classes of the objects and the bounding boxes of these objects as
well. In addition, the detection head should be mainly responsible for features interpret-
ation in order to correctly identify and locate the objects within the three-dimensional
space. PointPillars has the ability to convert complex point clouds into a form that can be
easily handled using two dimensional models. This leads to improvement in the effective-
ness of detecting 3D objects with a significant boost in efficiency. Besides, this approach
makes the calculations easier, which, in turn, improves the algorithm to recognize the
objects and their categories. When it comes to applications that need to be processed
and have high accuracy in as short as possible time, for example, autonomous driving or
robot vision systems, then this method works as a charm.
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4.3 Mean Average Precision (mAP)

It is imperative to point out that Mean Average Precision (mAP) Tychsen-Smith and
Petersson (2018) is a critical measure used to evaluate the detection algorithms, such as
YOLO models and PointPillars. This is especially a key consideration in the field of 3D
object recognition for self-driving car and similar application domains that demands high
accuracy. mAP, or mean Average Precision, gives a comprehensive measure of a model’s
capabilities for object detection and localization by taking into account the accuracy of
object categorization as well as the precision of the bounding box predictions.

The Mean Average Precision (mAP) is given by:

mAP =
1

|classes|
∑

c∈classes

|TPc|
|FPc|+ |TPc|

While evaluating and comparing the efficiency of various algorithms for 3D object
recognition for our project such as YOLO models and PointPillars, the mean average
precision (mAP) is a very useful measure. Both YOLO models, due to their speed and

Figure 12: Comparison of different YOLO models Alif and Hussain (2024)

efficiency, and PointPillars, which has a unique approach to the processing of LiDAR
point clouds, can be compared using mAP to calculate the performance of each of the
models. The reader can then determine the object categorization and localization models’
precision and accuracy by evaluating their mAP scores. These may help in the process
of optimizing and improving the system since it is identified and well understood. This
statistic ensures that the chosen model does not only perform well in specific circum-
stances, but also consistently perform well in many circumstances. This statistic is useful
for creating dependable and stable object detection in self-driving car technologies, which
is essential for their operation.

4.4 3D Bounding Box IoU

The Intersection over Union (IoU) Tychsen-Smith and Petersson (2018) is also important
when calculating the precision of the bounded boxes in relation to the ground truth boxes
for the detection of three dimensional objects. The 3D Bounding Box IoU evaluation gives
a very accurate quantification of the efficiency of the detection algorithm in localizing an
object in three-dimensional space. It achieves this using a quantitative measure of the
intersection over union of predicted and ground truth 3D boxes. Intersection over Union
(IoU) can be calculated by making a product of the volume of the intersection of the
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bounding boxes predicted and the ground truth bounding boxes and dividing this by
the volume of the union of the two bounding boxes. A perfect match is indicated by a
score of 1 and this totally covers this type of ratio, which is on a scale of 0 to 1. When

Figure 13: IOU – Intersection Over Union explanation (Source: Medium)

reviewing your models’ ability to incorporate spatial factors into the object detection
process, 3D Bounding Box IoU should be included as a criterion in your project. In
general, this issue is critical when working with complex three-dimensional terrains and
when combining information from various sources.

5 Implementation

Figure 14: Proposed Lidar Infused Yolo

Step 1: Image Acquisition – From the detailed literature review we found that KITTI
dataset can be used for the analysis. In the real time the data can be an infused camera
which will monitor and pick the images. Following tasks is used then

a. LIDAR infusion
b. Computer Vision
Step 2: Fusion – Since two different dimensions are used, fused depths and features

from the above step is taken into the considerations and feed into the deep Learning
models

a. Fustrum :
Step1: 2D Object Detection – Here it uses a pre-trained 2D object detector (e.g.,

EfficientNet) in which it generate 2D bounding boxes on different RGB images. These
kinds of 2D bounding boxes act as proposals for the subsequent 3D processing.
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Step 2: Frustum Generation – The algorithm for the Fustrun then Convert the
2D bounding boxes into 3D frustums, this then define sthe search space in the point
cloud. This conversion aligns the 2D proposals with the corresponding 3D points from
the LIDAR data.

Step 3: PointNet Segmentation – It then uses PointNet architecture to segment the
points in each frustum. This step is a binary classification of points being either object or
background. Bounding Box Regression. Internally it uses pointnet++ on the segmented
points to get final 3D bounding boxes. This will adjust the object’s position , orientation
and the size of 3D space.

b. Point Pillers:
Step 1:Pillar Generation – Another method used for comparison is to convert the 3D

point clouds into a set of pseudo-images, called pillars. This involves dividing the point
cloud into vertical columns (pillars) and encoding the features of points within each pillar.

Step 2: Feature Extraction – It then extracts features from the pillars using one of a
convolutional neural network. Each pillar’s features are encoded into a fixed-size vector.

Step 3: 2D Convolution – It then applies a standard 2D convolutions to the pseudo-
images generated from the pillars. This step processes the encoded pillar features to
extract higher-level spatial features.

Step 4: Detection Head – This also uses a detection head to generate 3D bounding
boxes from the feature maps. The detection head predicts the object classes and refines
the bounding box coordinates.

c. Infusion :
Step 1: Data Fusion : Combining Lidar and RGB Data – We plan to integrate Lidar

point cloud data with RGB images to create a comprehensive input representation. This
kind of fusion helps in utilizing the strengths of both data types for improved detection
accuracy.

Step2: Alignment and Preprocessing – Another important step is to align the Lidar
data with the corresponding RGB images to ensure synchronized input for the model.
Step 3: YOLO Backbone : Modified Architecture – We will then propose to utilize a
modified YOLOv8 architecture to process the fused Lidar and image data. The backbone
is adapted to handle multi-modal inputs effectively.

Step 4: Feature Extraction – It will extract features from the combined data using
the YOLO backbone, which processes both the depth information from Lidar and the
visual features from the images.

Step 5: 3D Detection – 3D Bounding Box Prediction: We have to add a detection
head that predicts 3D bounding boxes using the extracted features. This head refines
object positions and classifies them in the 3D space.

Step 6: Multi-Modal Fusion – The detection head integrates information from both
Lidar and image features to improve the accuracy of object localization and classification.

Step 3:Fitting the Deep Learning module to understand the different objects and
segment

Step 4: Deep Learning Module – The features from both the module is extracted
and trained n a feed forward networks and the insights are drab into the feature maps

5.1 Computer Vison based YOLO models

The basic idea of implementing YOLO is to subsample the input image into a set of
cells and for every cell determine the probability of the object being in that cell and the
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parameters of the cell’s bounding box. The YOLO process may be dissected into many
sequential steps:The YOLO process may be dissected into many sequential steps:

Step 1: Pre-processing of the input image where the picture goes through a convo-
lutional neural network (CNN) to get the features of the picture.

Step 2: The characteristics are then passed to a sequence of fully connected layers
that predict the probabilities of the different classes as well as the coordinates of the
bounding box.

Step 3: The picture is divided into cells and each of them receives the task to predict
several groups of bounding boxes and probabilities for classes.

Step 4: Detection network generates the set of the bounding boxes and the probab-
ilities of classes for each cell.

Step 5: The localization is done by using following formulation Further, the bounding
boxes are post processed using technique called as Non-Maximum Suppression to remove
the overlapping boxes and select the box with highest probability.

The final output entails ordinary bounding boxes and class probabilities for each
object there is on the picture.

5.2 Lidar Depths Algorithm 1: Fustrum PointNets

Frustum PointNets is a 3D extension to an object detection architecture called PointNet
that efficiently works with LIDAR information. It works by dividing point clouds in
the 3D space once it translates them into 2D frustums based on the 2D bounding box.
It affords great accuracy in the localization and identification of objects within three-
dimensional space, which is very imperative for the path finding of the freelance autos.

Step 1: Data Gathering and Preparation – KITTI is chosen as the input data source,
which contains RGB images, point clouds collected by the LIDAR and ground truth labels
for 3D object detection. First, it is necessary to prepare the LIDAR data to match the
RGB images and then divide them to get training, validation, and testing datasets.

Step 2: Model Training – The trained Frustum PointNets structure with the use of
the above discovered 2D bounding boxes as frustum proposals. A binary cross entropy loss
should be applied to the segmentation since it results in amazing predictions when applied
to the segmentation while using smooth L1 losses for the bounding box regressions.

5.3 Lidar Depths Algorithm 2: PointPillars

Figure 15: Pointpillers architecture [20]
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The best 3D object detection on KITTI PointPillars in the house (Google AI Blog)
D3Feat preprocesses raw point clouds into pseudo-image representation, which enables
the use of 2D convolutional neural networks (CNNs) for 3D detection. While this is being
an efficient and effective approach, especially for real-time applications like autonomous
driving.

Figure 16: Pillar Network

Pillar Layer: Convert raw point clouds into pillars using the PillarLayer class,
which voxelizes the point cloud data.

Pillar Encoder: Encode the pillars using a neural network to extract meaningful
features. The features of each pillar are encoded into a fixed-size representation.

Backbone and Neck: Use convolutional layers to process the pseudo-images and
extract higher-level features. The backbone processes the encoded pillar features through
multiple layers of convolutions.

Detection Head: Predict 3D bounding boxes from the feature maps. The detection
head is responsible for generating the final 3D bounding box predictions and classifying
the objects.

5.4 Proposed Lidar-Infused Yolo model

The proposed YOLO- LIDAR hybrid comprises the incorporation of Lidar data into the
YOLO object detection model to boost detection and localization. This is a combination
of Lidar that provides detailed depth information and YOLO, which is a powerful object
detection model.

Stage 1: Lidar to Camera Transformation – To convert a point from the Lidar to
the camera image space, four transformations are performed:Stage 1: Lidar to Camera
Transformation Summary – To convert a point from the Lidar to the camera image space,
four transformations are performed:

Sub Step 1: Lidar to Camera 0: The Lidar n-point is first passed through a rigid
transformation which is a rotation followed by translation to get the Lidar point in camera
0 frame of reference.

Sub Step 2: Camera 0 to Camera 2: As in the previous step, one more rigid trans-
formation is made in order to translate the point from Camera 0 to Camera 2 (or to any
other chosen camera).

Sub Step 3: Rectifying Transformation: Perform a rectification on the obtained
stereo images, in other words warp them in such a way that they are rectified.

Sub Step 4: Camera Projection Transformation: After that, project the 3D point
into 2D image space in order to obtain the (u, v) values. These can be chained into
a single transformation matrix T cam2velo to move Lidar points from the point cloud
coordinate space to camera space using homogeneous transformation.

Sub Step 5: Transformation Matrices: Here we require Lidar to Camera Reference,
then Rigid Body Transform from Camera 0 to Camera 2, then Camera 2 to the Rectified
Camera 2, then from Rectified Camera 2 to 2D Camera 2 (u, v, z) coordinate system.

17



Stage 2: The final position of the camera coordinates in terms of (u, v, z) is given
in terms of rectification and projection transforms along with division by depth (z).

Stage 3: Data Preparation: It involves;
Sub Step 1: Dataset: This work will use the KITTI dataset that is composed of RGB

images, point clouds from Lidars, and ground truth annotations for the 3D detection of
objects.

Sub Step 2: Data Preprocessing: L general Inputs vs Multi-Modal Inputs: Segment
the Lidar data same as the RGB images to have the desired synchronization of multi-
modal inputs. Organization: Split the data into training and validation, as well as test
sets that can be employed to work on the model training and, accordingly, evaluate the
model’s performance.

Stage 4: Evaluation Metrics – Mean Average Precision (mAP): Calculates the de-
tection accuracy in terms of the mean of the precision scores for various values of recall.
3D Bounding Box IoU: Checks the intersection over union (IoU) of the predicted 3D
bounding boxes against the ground truth ones.

Stage 5: Detection Categories are overall, pedestrian, cyclers, and cars categories
are chosen as the performance metric.

6 Evaluation

The purpose of this section is to provide a comprehensive analysis of the results and main
findings of the study as well as the implications of these finding both from academic and
practitioner perspective are presented. Only the most relevant results that support your
research question and objectives shall be presented. Provide an in-depth and rigorous
analysis of the results. Statistical tools should be used to critically evaluate and assess
the experimental research outputs and levels of significance.

Use visual aids such as graphs, charts, plots and so on to show the results.

6.1 Experimental Scenario – YOLO models

YOLOv8: YOLOv8 produce a good detection of cars as depicted by the high true
positive rate achieved. However, it has problems with exact detection of pedestrians,
vans and the other classes, thus, indicating a greater amount of false positives and false
negatives for these classes. The detection of miscellaneous objects and trams is generally
low and this belongs to the weakness of this model.

Bounding Boxes and Confidence Scores: In regard to car detection, YOLOv8
is quite successful and prevalent in numerous situations, spiriting boxes around several
cars. Each detection is followed by the confidence score which shows the opinion of the
model on the detected item. This is true to the fact that some detections give results
that are nearly a value of 1. The maxProb attribute of the output is 0, which means a
very high probability that the detected object is a car. Lower scores in other cases are
indicative of lower confidence levels in the model’s classifications.

YOLOv10: YOLOv10 reveal further enhancement in car, true positives in addition
to fewer false positives compared to YOLOv8. It demonstrates better results in detecting
pedestrians but still has a problem with false positives and false negatives. Nevertheless,
YOLOv10 reveals a higher mAP on vans, trucks, and cyclists compared to YOLOv30
and simultaneously, it demonstrates a worse performance when detecting miscellaneous
objects, trams, and persons sitting.
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Figure 17: Yolov8 detection Figure 18: Yolov8 detection

Figure 19: Yolov10 detection
Figure 20: Yolov10 detection

6.2 Experimental Scenario – Fustrum PointNets

Baseline Model (FPN): The original Frustum PointNets model achieved an average
precision of 36.34% on the Easy dataset, 31.54% on the Moderate dataset, and 29.6% on
the Hard dataset.

Improved Model with Fully Connected Layers (FPN+FC): The addition of
fully connected layers resulted in an average precision of 32.12% on the Easy dataset,
29.02% on the Moderate dataset, and 24.2% on the Hard dataset.

Figure 21: Fustrum performance

Visualization: This image helps the initial draft of the drawing interface for assessing
the multitask learning and the multiformity data fusion. The visualization itself presents
ground truth annotations and model’s predictions in parallel which helps identifying
differences and comparing the level of accuracy. The feature for supporting multiple
backends, e.g., TensorBoard, guarantees the control over the training status like loss
rates or learning rate.
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6.3 Experimental Scenario – PointPillers

Mean Average Precision (mAP), metric quantifies the accuracy of detecting the object in
a scene by averaging different precision levels over a range in recall. Calculates the average
IoU value with the help of the 3D bounding boxes of prediction and the actual values.
The model is evaluated according to the following categories in the case of detection: in
general, walkway, bike, and automobile. Accuracy and Loss is determined to be equal to
87 percent in classification. 15% with loss 1.72

Figure 22: Mean Average Precision(mAP) on KITTI validation Set

Detection Visualization: the LIDAR point cloud visualization shows detected ob-
jects with bounding boxes. Different colors represent different classes.

o Pedestrian: Red,
o Cyclist: Green,
o Car: Blue.

Figure 23: : Matching the pointcloud with the CV based detection

Figure 24: : Matching the pointcloud with the CV based detection

6.4 Lidar Infused YOLO

This is a sample of experiment result where car, pedestrians are detected by 3d bounding
box with overall 98% accuracy.

This is a BEV image, which displays an overhead or a top view of structures making it
possible to note where everything is in relation to the other. This perspective is useful for
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Figure 25: Result on KITTI validation dataset

Figure 26: Bird eye view (BEV) repres-
entation of results on another example.

Figure 27: Bird eye view (BEV) repres-
entation of results on another example.

determining the placement of certain items such as cars, humans, or bicycles in relation
to the surrounding world. Visualization of detection results in the BEV image: it makes
it possible to do direct checks on how well and how frequently the predictions model
is operational. Since the objects are clearly divided in the top-down view, if there is
any conflict regarding how they may superimpose on each other or where there could be
confusion with detection, then it is easily seen, making it easy to fine tune my model to
perfection.

6.5 Discussion

YOLO with Lidar yields a very high performance in 3D object detection for scenarios
with multi-sensor data. This is an efficient and accurate approach of incorporating Lidar
into YOLO’s object detection effectiveness. As a result, the future studies may entail fine-
tuning and validation with different data structure to provide enhanced generality of the
model. Thus, in the BEV image, it is possible to judge the accuracy and stability of the
model’s predictions. The top-down view enables the objects to be well-separated which
aids in the determination of areas which have been confused in one model thus warranting
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Figure 28: Object detection in BEV representation

some adjustments. As per the above result, it can be concluded that the integrating of
Lidar data with YOLO as a novel technique of real-time 3D object detection for self-
driving cars can be a fruitful path.

7 Conclusion and Future Work

As far as the results related to the computer vision solutions are concerned, it can be
pointed out that YOLOv8 is well-performing in detecting autos, as evident through the
disparity of true positive detection’s obtained overall. Nevertheless, it still does not work
at times distinguishing trams and people who are sat in a seated position. So, in general,
FPNs turned out to be sufficiently accurate on average, but the presence of completely
connected layers yielded a diversity of results. This deteriorated the already unenviable
loss of 1. 72, this in regards to a classification accuracy of 87. Thus, PointPillers achieved
15% as desired, which allowed them to meet their goal. By employing three-dimensional
boundary boxes encoded in red, green and blue it was able to distinguish human beings;
bicycles and automobiles. With Lidar data incorporated into the YOLO model, the tech-
niques were enhanced and successively the YOLO model being validated on the KITTI
validation dataset with an 98% accuracy it was able to out-compete other techniques.
The photographic method using Bird’s Eye View images proved efficient in auditing the
placement of the items and the reliability of sensing. Described integrated model shows
high effectiveness of the real-time three-dimensional object detection in autonomous driv-
ing and there is scope for improvement to work on the variety of more datasets in the
future.

For the future improvement of the work, the following points can be considered to
strengthen the performance of the integrated YOLO model together with the LIDAR
data for the 3D obstacle detection in self-driving cars. Some of the solutions mentioned
are the use of sophisticated data augmentation methods, and domain adaptation to en-
hance the model’s ability to generalize across domains, the use of multi-sensor fusion,
and attention mechanisms, to optimize models, and availing better Bird’s Eye View pro-
jections. The respective components of real-time processing can be supported by using
hardware acceleration and model pruning; further, continuous learning or object tracking
can improve the consistency of the objects’ detection. Thus, the methods such as ad-
versarial testing and safety-critical evaluations can be used for improvement of robustness
and safety, while cooperation with large-scale datasets can increase its generalization. To
accelerate the progress in the presented area, it is stated that there is more to discover
in new architectures like hybrid models and NAS.
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