"'—-
\ National

Configuration Manual

MSc Research Project
Master of Science in Artificial Intelligence

Forename Surname
Student ID: x23311550

School of Computing
National College of Ireland

Supervisor: Dr. Devanshu Anand

~

College
Ireland

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Niall Kierans
Student ID: x23311550
Programme: MSCAITOP
Year: 2024
Module: MSC Artificial Intelligence
Supervisor: Dr. Devanshu Anand
Submission Due Date: 12th August 2024
Project Title: Configuration Manual
Word Count: 1488
Page Count: [16]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Niall Kierans

Date: 11th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Niall Kierans
x233115501

1 Introduction

This configuration manual explains all the steps from design right through to the evalu-
ation results. This project covers sentiment analysis on Google reviews for airports using
Natural Language Processing (NPL) and Machine Learning (ML) which covers the data
input, python libraries, data transformation, modeling methods, and evaluation results.

2 Environment Setup

2.1 System specification

The implementation of this project was completed via Juypter Notebook from Anaconda,
using a Dynabook laptop with 8 GB RAM and, 64-bit operating system on Windows 11
Home edition. There was no additional hardware or software required as the goal of the
project to to find to best prediction models.

2.2 Technical specification

The models were written in Python program languages and the following packages where
used to complete the project: Pandas

1. Numpy

2. NLTK

3. Re - Regular expression operations
4. matplotlib

5. seaborn

6. time

7. string

8. textblob

9. sklearn

10. autocorrect

11. langdetect
12. vaderSentiment

13. nrclex

14. wordcloud

3 Dataset

The Google reviews data was retrieved and downloaded via a third-party vendor called
APIty. This was an easy, quick, and inexpensive way to receive the data required for the
project. The data for each airport was downloaded individually in CSV format. Each
file was then unzipped and the data was combined manually in Excel, only keeping the
small number of features required for the project.

4 Implementation

The implementation steps will be discussed in this section. There is only one data set, but
10 Jupyter Notebook files (.ipynb). Screenshots will form part of this section to provide
more details on the process. A summary of the models applied to the Airport data set is
as follows:

1. Textblob - Compute sentiment polarity and subjectivity.

2. Vader - Analyze sentiment polarity scores (positive, negative, neutral).

3. NRCLex - Assign emotions to text (joy, anger, sadness, etc.).

4. Random Forest - Ensemble learning method using multiple decision trees.

5. SVM - Classification technique that finds the hyperplane separating different classes.

6. Naive Bayes - Probabilistic classifier based on Bayes’ theorem.

D 01 - Data processing and analysis.ipynb

D 02 - Textblob Anaysis for Aspect, Sentence and Review.ipynb

D 03 - Vader Anaysis for Aspect, Sentence and Review.ipynb

D 04 - NRCLex Anaysis for Aspect, Sentence and Review.ipynb

D 05 - SVM Anaysis for whole review only.ipynb

D 06 - Maive Bayes Anaysis for whole review only.ipynb

D 07 - Random Forest Anaysis for whole review.ipynb

D 08 - SVM & Vader Anaysis for Aspect, Sentence and Review.ipynb
D 09 - Naive Bayes Anaysis for Aspect, Sentence and Review.ipynb

D 10 - Random Forest Anaysis for Aspect, Sentence and Review.ipynb

Figure 1: List of the Python Code Files

https://apify.com/

4.1 Data Preprocessing

1. The data was loaded from the same location as the Jypyter Notebook file using the
following code:

#Data Collection
df = pd.read excel('Data 6 airports.xlsx')

Figure 2: Code to load the data

2. Used the following steps to review the data before moving forward

(a) Use the info function to review the features for non-null count and data type

(b) Check the unique (nunique) values for each feature.
3. Any rows where the review comment was blank were removed.

4. New feature added to count the number of characters in a review

Function to count characters in a string
def count_characters(text):
if isinstance(text, str):
return len(text)
else:
return @ # Return @ for NaN values

Add a new column ‘char_count' with the count of characters in 'Review Comment’
data['char count'] = data['Review Comment'].apply(count characters)
print(data)

Figure 3: Code to Count Review Characters

5. Finally review the number of Google stars ratings to get an idea of the distribution

of the data.
Distribution of Star Ratings
8207

8000
7000
80001 5515

., 000

c

3 4000 3839
3000

2229

2000 1736
1000

0 T T T
1 2 3 4 5
Star Rating

Figure 4: Distribution of Google Reviews Star Ratings

4.2 Data Collection Analysis

1. Code to review the data in several different ways

ftle
Stars Distribution by Day of Week

Saturday Friday Thursday vidnesday Tesday Manday sunday
Day of week

Stars Distribution by Hour of Day

1294 pom - 1307 1303 1292 stars.
uey g7 1263 1241 1249 1241

i

ags as 5 2 ar a

5
400 El El B 374
En =0 2 5 5 m
B0 22 28|
T 08 =0 2 e B N E N D R 2 =0 o1]
0 3 e b 2034 e [D 127
115 uf1z8 el 1254
ﬂ* WEJﬁ Ll lil K |
H | 1M LRLRRLIRIARANRTIRY 111}
3 u

4 B [7 [3 10 it 12 B
Hour of gay

Figure 5: Examples of Analysis of Google Star Ratings

2. Retrieve the most popular aspects from the Google Reviews and generate a word
cloud visual.

Noun Frequency

1@ airport 12411
27 security 4189
24 staff 3557
55 flight 3125
1 time 3124
4 people 2414
56 hour 2021

Figure 6: Top 7 Aspects from Google Reviews

e
engerl

ime.s:

dll

minute

Tlight

POI

t

Figure 7: Word Cloud of the most common Aspects

Top 20 Bigrams:
security check: 924
worst airport: 749
passport control: 687
duty free: 462

nice airport: 453

Top 20 Trigrams:

worst airport ever: 187
one best airport: 123
one worst airport: 11@
duty free shop: 91
airport ive ever: 81

Top 20 Fourgrams:

worst airport ive ever: 48
one best airport world: 31
worst airport ’ ever: 27
one best airport europe: 26
easy find way around: 21

Figure 8: Top 5 Bi-grams, Tri-grams and Four-grams

3. Using Ngrams in Python to generate the top 20 Uni-grams, Bi-grams, Trigrams and
Four-grams from all the Google Reviews.

4. Generate the following information and visualisations from Ngrams for the Google

Reviews by Airport:

(a) Top ten Bi-grams for each of the six airports.

(b) Top ten Trigrams for each of the six airports.

duty free shop

well erganized airport
long walk gate
friendly Relpful Staff
airport friendly staff
easy get around

nice clean airport
love dublin airport
dulg free area
airport dublin airport

one best airport
ort lot shop

airport secuﬂy check
well organized airport

airport ive ever
airport well organized
waiting time security

worst airport ever
one worst airport

WISt aIrport ive

airport ive ever

london stansted airport
stay car park

worst airport world
worst airport experience
take long time

duty free shop

Top 10 Trigrams for Dublin Airport

wo

]

2 4 6 10
Frequency

Top 10 Trigrams for Copenhagen Airport

12
1
10
10

wmmme

0

2

4 6 8 10 12 14 16
Frequency

Top 10 Trigrams for London Stansted Airport

89
38
2
27
26
%
5

2
20
20

0

20 40 60 80
Frequency

athens intemational airport
one best airport

duty free shop

best airport europe

best airport world

well organized airport

easy get around

easy find way

airport well organized
baggage claim area

worst airport ever
one worst airport

worst airport world
worst airport uk

airport ive ever

worst airport ive

wiorst airport experience
long queue security
wiorst airport '

duty free shop

one best airport

long waiting time
best airport world
waiting time security
best airport europe
clean well organized
well organized airport
find way around
duty free shop

easy get around

Top 10 Trigrams for Athens International Airport

38
B
3
=B
12
n
1
10
9
5 0 15 20 b3 2 5
Frequency
Top 10 Trigrams for Manchester Airport
7%
a3
k-3
25
24
2
17
16
16

10 20 30 40 50 €0 70
Frequency

Top 10 Trigrams for Zurich Airport

57

35
]

21

20
15
15
15

10 20 30 40 50
Frequency

Figure 9: Top 10 Tri-grams For Each Airport

5. Generate Bi-grams and Tri-grams for the top 5 aspect words:

(a) Airport
(b) Security
(c) Staff
(d) Flight
(e) Time
Top 10 Bigrams Containing “Airport”
worst airport 748
nice airport 450
manchester airport 390
good airport 343
best airport 305
international airport 21
airport ever 258
airport good 258
zurich airport 258
great airport 53
0 200 400 €00

Frequency

worst airport ever

one best airport

one worst airport
airport ive ever

wiorst airport ive

wiorst airport world
worst airport experience
airport nice airport

best airport world

well organized airport

Top 10 Trigrams Containing "Airport”

187
123

110

74

B8y g

o
f

100 150

Frequency

Figure 10: Top 10 Bi-gram and Tri-gram for the Aspect "Airport’)

4.3 Data Preprocessing before NLP and ML

Before any natural language processing or machine learning techniques were deployed
there was a process to clean the data beforehand. The cleaning steps generate a new
feature called ’cleaned reviews comment’. Here are the steps involved:

e Convert the text to lowercase

e Remove any URLs

e Remove any emails

e Remove punctuation

e Remove numbers

e Tokenise the text

e Remove stop words and lemmatise

Rejoin tokens into strings

Remove extra white spaces

Remove leading and trailing white spaces

Get stop
stop_words
lemmatizer

Function

text
text
text
text
text
tokens

words

set(stopwords.words('english'))
WordNetLemmatizer()

to clean text

def clean_text(text):

str(text).lower() # Convert to Lowercase

re.sub(r"http\s+', "', text) # Remove URLs

re.sub(r'\S*@\s*\s?', "', text) # Remove emails
re.sub(f'[{string.punctuation}]’, "', text) # Remove punctuation
re.sub(r'\d+", "', text) # Remove numbers

word tokenize(text) # Tokenize the text
[lemmatizer.lemmatize(word) for word in tokens if word not in stop words] # Remove stopwords and Lemmatize
'.join(tokens) # Rejoin tokens into a string

re.sub(' +', ' ', text) # Remove extra whitespace
text.strip() # Remove leading/trailing whitespace
text

Figure 11: Python Code to Clean Data Before NLP and ML

4.4 Sentiment Analysis - Natural Language Processing (NLP)

Each of the NLP sentiment analyses was processed at different levels of the review left
by passengers for each airport. The "Whole Review’, 'Sentence Level’ and ’Aspect
Level’ with the objective of understanding which returned the best evaluation scores.
On the second line of each of the NPL sentiment files, you can enter the number of
aspects you want to run. The default number is 50 however you can change the number
as desired. The higher the aspect number the longer the coding will take to execute the

results.

Capture the start time
start_time = time.time()

Enter the top x amount of aspects to use in the Evaluation
num_of aspects = 58

#Data Collection
df = pd.read excel('Data 6 airports.xlsx")

Figure 12: Enter the number of aspects required

Each of the sentiments for NPL use the Google Star Ratings as a comparison for the
evaluation. Google Star ratings 4 and 5 = Positive, 3 = Neutral, and 1 and 2 = Negative.

Map 5-point google star ratings te sentiments - 1 & 2 = Negative, 3 = Neutral, 4 & 5 = Positive
def map_rating to_sentiment(rating):
if rating in [1, 2]:
return ‘negative’
elif rating == 3:
return 'neutral’

else:

return 'positive’

Apply mapping to actual sentiment ratings
data["actual sentiment'] = data['stars'].apply(map_rating to sentiment)

Figure 13: Google Star Rating Sentiment Ratings

4.4.1 Textblob

The positive, negative and neutral sentiments were detected using the Textblob library
from Python. The sentiment will add two new features to the data set, 'whole review
sentiment’ and 'whole review compound’. If the compound score is equal to 0, then
the sentiment is Neutral, if the compound score is greater than 0 then the sentiment is
Positive and if the compound score is less than 0 then the sentiment is negative.

Function te calculate sentiment scores using TextBlob
def textblob_sentiment_score(text):

if pd.isna(text):
return @ # If text is NaN, return neutral (compound 8)

blob = TextBlob(text)

sentiment_score =
return sentiment_score

blob.sentiment.polarity

Function to determine sentiment and compound score for a whole review

def whole review sentiment_textblob(review):
sentiment_score = textblob_sentiment_score(review)
Determine sentiment label based on sentiment score

sentiment = ‘positive’ if sentiment score > @ else ‘negative’ if sentiment score < @

return {'sentiment’': sentiment, 'compound’: sentiment_score}

else 'neutral’

Whole Whole
publishedAtDate title stars et textTrans/ated Co'::n"';l:r:: char_count m“"g:::.':: E):l:‘a:::: Review Review
Sentiment Compound
Nie mam I have no firve 0
0 2024-04- Dublin 5 problerny problem working e 5y Problem working [protilenm, e 0.000000
08TOT:11:06.489Z Airport sprawnie efficiently all the efficiently all efficiently time tirmie]
zawsze . U_;"
e ..
2024-04- Dublin Ewerything is Everything is everything .
2 DBTO4.0021 2372 Airpont 5 well-crganized NaN - well.organized 28 wellorganized [everything] neviral 0.000000
New scanning New scanning new SCanning [machine
2024.04- Dublin machanes need machings need machine nesd 3
J DETO4.07:51.2937 Airport 3 people that NaN people that 103 people know use pecple, \;ﬁ:' i LARE
know ho know ho... long.

Figure 14: Textblob Model

Comparing the Google star rating sentiment against the Texblob sentiment to get the
evaluation scores using the confusion matrix, accuracy, precision, recall and f1 scores.

Accuracy: @.581269162872825
Precision: @.68862386B8758322

Recall: @.681269162872805

F1 Score: @.6812525934626119

Confusion Matrix Textblob - Review Level

£
‘E- an 876
3E. me 03
i
g
£- M 1304
B
regative reutral
Predicted

4.4.2 Vader

1398

1234

positive

Figure 15: Evaluation Scores for Textblob

- B000

- 4000

- 2000

Accuracy: ©.6917216389482487
Precision: B.6893972627594438

Recall:

8.6917216380482487

Fl Score: 8.686BEBE/G22911334

Aciusal
positive neutral negative

Confusion Matrix Textblob - Sentence Level

13
8

45

regative

o4

104

Feutral
Predicted

044

1%0

[

- 8000

- 6000

- 2000

ACCuracy: @.67444832118368484
Precision: 8.67934117138909378
Recall: ©.6744482118368484

Fl Score: @.6733483437E08987

Confusion Matrix Textblob - Aspect Level

¢
‘5 1 4299 B8
o
5h 20
i§
¥
g - 1321
m-q;rw redtral
Predicted

2134

n7r

positive

- OO0

- G000

The positive, negative and neutral sentiments were detected using the Vader library
from Python. The sentiment will add two new features to the data set, 'whole review

sentiment’ and 'whole review compound’. If the compound score is equal to 0, then
the sentiment is Neutral, if the compound score is greater than 0 then the sentiment is
Positive and if the compound score is less than 0 then the sentiment is negative.

Initialize VADER sentiment analyzer
analyzer = SentimentIntensityanalyzer()

Whole Level Sentiment Analysis (Complete reivew)

def

def

vader_sentiment_score(text):
if pd.isna(text):
return {‘compound’: 8}

sentiment_dict = analyzer.polarity scores(text)

return sentiment_dict

whole_review sentiment_vader(review):

sentiment_dict = vader_sentiment_score(review)

compound = sentiment_dict[’compound”]
return {sentiment®:

‘positive’ if compound > & else 'negative’ if compound < @ else 'neutral’,

"compound’ : compound}

" Whole ‘Whole
publishedAtDate title stars text textTranslated Roview por couny ClPaned Review Ewtracted § ol Review
Comment Comment Neuns Sentiment Compound
Noe: mam | have no I ;{?;;;
2024-04- Dublin problemu problem working problem working [problem,
0 06TOT-1106489Z Aiport ° sprawnie effciently all the . Working 51 efficiently time time] [Posilve UL
Zawsze - o
the
2024-04- Dublin Everything is Everything is everything
2 DETO4:08:21 2372 Airport 5 well-organized hatl wel-organized. ? wellorganized leverything] neutral 00000
Mew scanning MNew scanning e SCANMING [machine
2024-04- Dublin machines need machines need machine need 3
2 068TO4:07-51.293Z Airport i people that phnl people that s peaple know use people, T;:S] Latfl] AREE
lnow ho know ho lang

Figure 16: Vader Model

Comparing the Google star rating sentiment against the Vader sentiment to get the
evaluation scores using the confusion matrix, accuracy, precision, recall and f1 scores.

Accuracy: ©,7a57511846139553
Precision: 8.7116861335385738
Recall: @.7057511846139553

Fl Score: @.7@71393814816351

Confusion Matrix Vader - Review Level

H

E' 860 1741 -
53 - 6000
3. me B8 1072
*E - 2000

5 - 9 1403 - 2000

B

negatiee meutral positive
Predicted

Figure 17: Evaluation Scores for Vader

4.4.3 NRCLex

Accuracy: B.7089566106104246
Precision: @.714724808784155
Recall: 8.7839566106184246

Fl

Actual

Score! B.71832993454T74469

Confusion Matnx Vader - Sentence Level

£

2 55 1700 . 2000
g

= - B0O0
2 - Lj 7] 306 1071

E = 2000
:

E - 666 1401 = 3000

mg;tm neutral positive
Predicted

Accuracy! 8.56E8572331134443
Precision: @.6787478195338255
Recall: @.56809572331134442

F1 Score; ©,6113164578999684

Confusion Matrix Vader - Aspect Level

'}

&

Bl - - |-
i
3E. s 680 34 4000
i

u

& - 669 - 2000

m r:l\.i'lral posirve
Predicted

The positive, negative and neutral sentiments were detected using the NRCLex library
from Python. The sentiment will add two new features to the data set, 'whole review
sentiment’ and 'whole review compound’. If the compound score is equal to 0, then
the sentiment is Neutral, if the compound score is greater than 0 then the sentiment is
Positive and if the compound score is less than 0 then the sentiment is negative.

def nrc_sentiment_score(text):
if pd.isna(text):
return {'compound’: @}
nrc_obj = NRCLex(text)

return nrc_obj.affect_frequencies

def whole_review_sentiment_nrc(review):
sentiment_dict = nrc_sentiment_score(review)
Calculate a compound score based on the affect freguencies
compound = sentiment_dict['positive’] - sentiment_dict['negative’]

return {
'sentiment’: ‘positive’ if compound > @ else 'negative’' if compound < @ else 'neutral’,
‘compound” : compound
Whole Whole
Review Cleaned Review Extracted Review Review
publishedAtDate title stars text textTranslated Cormmant char_caunt Comment Mouns | Sentiment Compound
[NRE) NRE)
hie mam | have no IE;"‘:;;
2024-04- Dublin problemu problem working problem working [problem,
a 06TO7T-11:06 4892 Airport 5 sprawnie efficiently all the eﬂlc:;‘;?u:ﬁ 51 efficently time time] evtral 0.000000
Zawsze. il
the .
2024-04- Dublin Everything is Everything is everything
2 06T04:09:21.237Z Ainport 3 well-crganized. HeN well-arganized.] wellorganized [everything] neviral 0000000
Mew scanning New scanning new scanning [machine
2024-04- Dublin machines need machines need machmne need %
¥ 0670407512932 Awport peaple that NalN - people tat 103 peopie know use PP || === Al
knaw ho.. know ha.... long.
Great relatively Great relatively [ainportvery,
2024-04- Dublin small small oreat relstively Customer,
4 057225344 0807 Airport s aport, very NeN airport, very 100 smail J;Wﬂm service, positve 0.166667
efficient efficient cfficient n people]

Figure 18: NRCLex Model

Comparing the Google star rating sentiment against the NRCLex sentiment to get
the evaluation scores using the confusion matrix, accuracy, precision, recall and f1 scores.

Accuracy: @.7857511846139553
pPrecision: @.7116861935089738
Recall: 8.7@57511846139553

Fl Score: @.7071293014816251

Confusion Matnx Vader - Review Level

£

i 80 1741 8000
5B wia 3
25 L] 18 w7z 5
X E - 8000

-

E - G 403 - 2000

ﬂeqa':we Peutral positrve
Predicted

Confusion Matrix Vader - Sentence Level

positive neutral negative

11
M6
101

Feutral
Predicted

Accuracy: @, 70B9566106184246
Precision: ©.714724808784155
Recall: @.7089566106104246
F1 Score: ©,7103299345474469

1700

w7

positive

Accuracy: 9.5680572331134447
Precision: @.6787470195338255
Recall: ©.5680572331134442

Fl Score: B.6113164573090684

Confusion Matrix Vader - Aspect Level

u

&
- (I~ |
00 -

2E 6 &9 X - 2000
000 &
- 2000 % — - 2000

' .
negative neutral positive
Preducted

Figure 19: Evaluation Scores for NRCLex

On all the Python files there is code to monitor the computation speed in seconds.
This was used mainly for the Aspect Level sentiment analysis as the higher the number
of aspects required the longer the computation.

4.5 Sentiment Analysis - Machine Learning (ML)

In this section, the different levels of sentiment were not used and all outcomes are based
on the complete review left by the passenger. The ML models used in this section are

10

Capture the start time
start_time = time.time()

Capture the end time
end time = time.time()

Calculate the total runtime
total runtime = end time - start time

print(f"Total runtime: {total runtime} seconds™)

Total runtime: 95.29323768615723 seconds

Figure 20: Python Code to Provide Computation Time
Support Vector Machine (SVM), Random Forest and Naive Bayes.

4.5.1 Model Setup
All three ML methods use the below code to set up the data for the training and test.
e CountVectorizer - Turn the words into numbers

e Vectorizer = CountVectorizer()

e X = vectorizer.fit_transform(data[’Cleaned Review Comment’]) - This sec-
tion contains all the passenger’s reviews. It reads all the reviews and processes them
into a matrix.

e y = data[’actual sentiment’] - This part is how the passenger feels - Positive,
Negative or Neutral. This sentiment is determined based on the Google review star
ratings (4/5 = Positive, 3 = Neutral, 1/2 = Negative)

SWM for whole

Convert text to features using CountVectorizer

vectorizer = CountVectorizer()

X = vectorizer.fit transform(data['Cleaned Review Comment'])
y = data["actual sentiment']

Figure 21: Python Code to Prepare Data for ML Methods

4.5.2 Model Train and Test

When applying all three models for the sentiment analysis 80 percent was used for training
and 20 percent for test. Random state seed is set at 42.

4.5.3 Evaluation Results

The results for all three MLL methods where evaluated against a confusion matrix, accur-
acy, precision, recall and f1 scores.

11

ACCUracy: B.7889743145094287
Precision: @.7644296749567161
Recall: &.7800743149094287

F1 Score: @.7707053253682232

Confusion Matrix SVM - Review Level

155

Tue Lsbel
positive newtrsl negative

negative
Predict

neutral

o8 245

03

poditive
ted Label

2000

- 1500

1000

ACCUracy:! B.B879424859431927
Precision: 8.7656672828198729
Recall: @.8879424059451927
F1 Score: @.778079163428645

Confusion Matrix Maive Bayes - Review Level

: ﬂ

3 % 177
Iz
38. 189 - ar
E ¥

u

-

= - 180 ol

2

-4

negative newutral POt

Predicted Label

Figure 22: Enter Caption

Accuracy: 8.7940083004273187
Precision: ©.7528032257208636
Recall: ©.7940083604273187
F1 Score: B.760076745390279]1

‘Confusion Matrix Random Forest - Review Level

- 3000 2
% 1150 bil 278 000
- 1500 3 £ - 1500
]
1800 _!. ; - 179 bil m | 1000
]
¥
" & 156) - 00
-]
2
I'Egl‘l'-‘! reutral postree

Predicted Label

4.6 Blending NLP and ML for Sentiment Analysis

In this section Vader will blend with the three machine learning methods with the aim
to improve the evaluation scores. Vader was used as it achieved the highest evaluation
scores from the NLP sentiment. Similar to the machine learning section only the full

review level was used, leaving out the sentence and aspect level.

4.6.1 Model Setup

The same coding set-up as the machine learning methods in the previous section with
the only difference being at different Y value. y = data["Whole Review Sentiment’]
= Positive, Negative and Neutral determination based on compound score from Vader
(Instead of Google Review Star Ratings). Score less than 0 = Negative, Score greater

than 0 = Positive and Score equal to 0 = Neutral.

published AtDate

0 2024-04-
06TOT:11:06 4862

2024-04-
DETO4.00:21 2372

3 2024-04-
OBT04:07-51 2632

tithe stars

Druabohiry
Airpart

Dhublin
Alrpart

Drublin
Airpart

Figure 23: Vader Features for use with ML Methods

taxt

Mie mar
problermu
Sprawne

zZawsze

Everything is
well-prganized

Mew scanning
machines need
people that

L

..... e

textTranslated cai'::; char_count
| have no | ;?;:I:
problem working
working 51
effciently all the efficiently all
the:
Everything is
NaN eiorganized 28
Mew scanning
machines. need
NaN people that 103

4.6.2 Model Train and Test

When applying all three models for the sentiment analysis 80 percent was used for training

Cleaned Review Extracted Hu:‘:::lw. RH:\:‘i::
Comment Neuns Sentiment Compound
problem working [probdem
etficiently e tme] positive 0.6070
everything . o
wellorganized [everything] neutral 0.0000
new $Lanning [rachine
machane need .
people know use people l:::] negaine 04215

and 20 percent for test. Random state seed is set at 42.

12

4.6.3 Evaluation Results

The results for all three ML methods where evaluated against a confusion matrix, accur-

acy, precision, recall and f1 scores.

Accuracy: B.B6785BB016728855
Precision: @.8683715278050575
Recall: @.86785880816720855

F1 Score: 8.8675849058978248

Confusion Matrix SVM & Vader - Review Level

E - % 206 2000 E 7
o f A
S = a7 18 SE. s
S wo 8
E 188 L] - 500 E - 39 7
minue l!t;ﬂll positive nen‘niu lﬂ;ﬁﬂi
Predicted Label Predicted Label

Accuracy: ©.7621922898281468
Precision: ©.7637110882300226
Recall: @.7621922898281468

F1 Score: ©.7310288287405908

Confusion Matrix NB & Vader - Review Level

Accuracy: 0.8362749651648862
Precision: @.8360843221927661
Recall: @.8362749651648862

Fl Score: 8.8353640394585004

Confusion Matrix - RF & Vader - Review Level

S T
1 e ;E a 5 3 o
1000 }E 1000
- 500 % 190 7 - 500
postve regsve md::e:ﬂwel

Figure 24: Evaluation Results from Blended Approach

5 Appendix

Top 10 Bigrams for Dublin Airport

dublin airport
security check
nice ail
U

great airport
good airport
easy navigate
aer lingus

helpful staff

125 150

0 5 50 B IDID 17‘5

Frequency
Top 10 Bigrams for Copenhagen Airport

nice air|
passport tnl'?toll.;tl
good airport
airport good

best ail
well organized

Iargdeugrg:r%

0 0 40 1] 80
Frequency

Top 10 Bigrams for London Stansted Airport

security check
worst ai

missed flight
;

T T T

150 200

Frequency

100

Top 10 Bigrams for Athens International Airport

assport control
inte'g\aég:al airport
nice airport

athel:‘s al

best ai
well organized
securi (_h;s:rl'::
ood air|
mogdem airport
o 20 40 60 80

Frequency

Top 10 Bigrams for Manchester Airport

I

manchester airport
worst aie

security check
car park
passport control
airport ever
| duty free
queue
seg:q staff
fast track

150

00 280 00 B0 400
Frequency

Top 10 Bigrams for Zurich Airport

0 0 100

zurich airpart
security check
passport control
well organized
best ai
waiting time
nice airf

.
ail clean
rpguty free

Figure 25: Top 10 Bi-grams for All Airports

13

Top 10 Trigrams for Dublin Airport

Top 10 Trigrams for Athens International Airport

free shop 10| athens imemaﬁonal airport
well organized airport 10 e best alg‘%rt
) walk gate 10) duty P
friendly helpful staff 10] best airport europe
airport friendly staff 10 best;?m'lmm
easy get around 9 well organized airport
nice clean airport 9 easy get around
love dublin nlrpurt g) weliy find ymg
airport dm&n ulrpurt 8 al%m gl:?rin";zr:l
0 2 4 3 8 0 5 10 15 20 5 30 k-]
Frequency Frequency
Top 10 Trigrams for Copenhagen Airport Top 10 Trigrams for Manchester Airport
one best airport | e airport ever - 7%
ail H 2 one worst airport 43
find wa: %nund arstlpt::_'tp:tnor:lg
lot snfs::‘ryestauwrar‘v{ "a‘lurporg ive ever
ail security check B worst airport ive
| organized ai B worst airport experience
airport ive cver 8 long queue secuntx
.‘3‘2.'#9 time nl?eammy E duty’ free shop
o 2 4 6 8 1 1 11 1 o 1 22 3B 4 0 @ M
Frequency Frequency
Top 10 Trigrams for London Stansted Airport Top 10 Trigrams for Zurich Airport
worst airport ever 89 one best ail lnrt
'one worst airport 02? waiting
wiorst ai ive be: wonid
london gar'p&r:ﬂw‘:lm 'mmga?urts:ﬁlr'on;ye
stay car park clean chRD anized
worst -poﬂi.m vmrld wello d"\:v :mund
take long time Tee shop
duty free shop easy get around
0 20 40 60 80 0 10 20 30 40 50
Frequency Frequency
Figure 26: Top 10 Tri-grams for All Airports
Top 10 Bigrams Containing "Airport” Top 10 Trigrams Containing "Airport”
worst airport worst airport ever
nice airport one best airport
manchester airport one worst airport
good airport airport ive ever
best airport worst airport ive

international airport
airport ever

airport good

zurich airport

great airport

worst airport world
worst airport experience
airport nice airport

best airport world

well organized airport

100
Freguency

150

Figure 27: Top 10 Bi-grams and Tri-grams for "Airport’

14

Top 10 Bigrams Containing "flight”

Top 10 Trigrams Containing “flight"

missed flight
miss flight
connecting flight
flight delayed
hour flight

flight time
missing flight
flight airport
waiting flight

next flight

almost missed flight
flight delayed hour
missed flight due
people miss flight
early morning flight
flight next day
people missing flight
least hour flight
nearly missed flight

people missed flight

% 75 100 15 150

Frequency

50

Figure 28: Top 10 Bi-g

Top 10 Bigrams Containing "security”

security check
security staff
security control
airport security
queue security
go security

get security
check security
security line

time security

400 600 800

Frequency

200

o -

Frequency

rams and Tri-grams for "Flight’

Top 10 Trigrams Containing “security”

long queue security
waiting time security
time security check
queue security check
security passport control
airport security check
security check take
passport control security
fast track security

go security check

20
Frequency

30

Figure 29: Top 10 Bi-grams and Tri-grams for ’Security’

15

friendly staff
airport staff
security staff
helpful staff
staff friendly
rude staff
staff rude
staff helpful
staff member

staff security

Top 10 Bigrams Containing "staff"

Top 10 Trigrams Containing "staff"

staff friendly helpful
airport friendly staff
friendly helpful staff
staff security check
clean friendly staff
security staff rude
airport staff friendly
security check staff
helpful friendly staff

airport helpful staff

50 100 150 200

Frequency

o

5 10 15 20 25 30
Frequency

Figure 30: Top 10 Bi-grams and Tri-grams for "Staft’

Top 10 Bigrams Containing "time"

waiting time
first time
long time
every time
flight time
last time
time security
lot time

next time

time get

50 100 150 200
Frequency

Top 10 Trigrams Containing "time"

long waiting time
waiting time security
take long time

time security check
wait long time

time get gate

time worst airport
airport first time
airport several time

short waiting time

0

10 20 30 40 50
Frequency

Figure 31: Top 10 Bi-grams and Tri-grams for "Time’

16

	Introduction
	Environment Setup
	System specification
	Technical specification

	Dataset
	Implementation
	Data Preprocessing
	Data Collection Analysis
	Data Preprocessing before NLP and ML
	Sentiment Analysis - Natural Language Processing (NLP)
	Textblob
	Vader
	NRCLex

	Sentiment Analysis - Machine Learning (ML)
	Model Setup
	Model Train and Test
	Evaluation Results

	Blending NLP and ML for Sentiment Analysis
	Model Setup
	Model Train and Test
	Evaluation Results

	Appendix

