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1 Introduction

This configuration manual explains all the steps from design right through to the evalu-
ation results. This project covers sentiment analysis on Google reviews for airports using
Natural Language Processing (NPL) and Machine Learning (ML) which covers the data
input, python libraries, data transformation, modeling methods, and evaluation results.

2 Environment Setup

2.1 System specification

The implementation of this project was completed via Juypter Notebook from Anaconda,
using a Dynabook laptop with 8 GB RAM and, 64-bit operating system on Windows 11
Home edition. There was no additional hardware or software required as the goal of the
project to to find to best prediction models.

2.2 Technical specification

The models were written in Python program languages and the following packages where
used to complete the project: Pandas

1. Numpy

2. NLTK

3. Re - Regular expression operations
4. matplotlib

5. seaborn

6. time

7. string

8. textblob

9. sklearn

10. autocorrect



11. langdetect
12. vaderSentiment

13. nrclex

14. wordcloud

3 Dataset

The Google reviews data was retrieved and downloaded via a third-party vendor called
APIty. This was an easy, quick, and inexpensive way to receive the data required for the
project. The data for each airport was downloaded individually in CSV format. Each
file was then unzipped and the data was combined manually in Excel, only keeping the
small number of features required for the project.

4 Implementation

The implementation steps will be discussed in this section. There is only one data set, but
10 Jupyter Notebook files (.ipynb). Screenshots will form part of this section to provide
more details on the process. A summary of the models applied to the Airport data set is
as follows:

1. Textblob - Compute sentiment polarity and subjectivity.

2. Vader - Analyze sentiment polarity scores (positive, negative, neutral).

3. NRCLex - Assign emotions to text (joy, anger, sadness, etc.).

4. Random Forest - Ensemble learning method using multiple decision trees.

5. SVM - Classification technique that finds the hyperplane separating different classes.

6. Naive Bayes - Probabilistic classifier based on Bayes’ theorem.

D 01 - Data processing and analysis.ipynb

D 02 - Textblob Anaysis for Aspect, Sentence and Review.ipynb

D 03 - Vader Anaysis for Aspect, Sentence and Review.ipynb

D 04 - NRCLex Anaysis for Aspect, Sentence and Review.ipynb

D 05 - SVM Anaysis for whole review only.ipynb

D 06 - Maive Bayes Anaysis for whole review only.ipynb

D 07 - Random Forest Anaysis for whole review.ipynb

D 08 - SVM & Vader Anaysis for Aspect, Sentence and Review.ipynb
D 09 - Naive Bayes Anaysis for Aspect, Sentence and Review.ipynb

D 10 - Random Forest Anaysis for Aspect, Sentence and Review.ipynb

Figure 1: List of the Python Code Files
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4.1 Data Preprocessing

1. The data was loaded from the same location as the Jypyter Notebook file using the
following code:

#Data Collection
df = pd.read excel('Data 6 airports.xlsx')

Figure 2: Code to load the data

2. Used the following steps to review the data before moving forward

(a) Use the info function to review the features for non-null count and data type

(b) Check the unique (nunique) values for each feature.
3. Any rows where the review comment was blank were removed.

4. New feature added to count the number of characters in a review

# Function to count characters in a string
def count_characters(text):
if isinstance(text, str):
return len(text)
else:
return @ # Return @ for NaN values

# Add a new column ‘char_count' with the count of characters in 'Review Comment’
data['char count'] = data['Review Comment'].apply(count characters)
print(data)

Figure 3: Code to Count Review Characters

5. Finally review the number of Google stars ratings to get an idea of the distribution

of the data.
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Figure 4: Distribution of Google Reviews Star Ratings



4.2 Data Collection Analysis

1. Code to review the data in several different ways
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Stars Distribution by Day of Week
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Figure 5: Examples of Analysis of Google Star Ratings

2. Retrieve the most popular aspects from the Google Reviews and generate a word
cloud visual.

Noun Frequency

1@ airport 12411
27 security 4189
24 staff 3557
55 flight 3125
1 time 3124
4 people 2414
56 hour 2021

Figure 6: Top 7 Aspects from Google Reviews
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Figure 7: Word Cloud of the most common Aspects

Top 20 Bigrams:
security check: 924
worst airport: 749
passport control: 687
duty free: 462

nice airport: 453

Top 20 Trigrams:

worst airport ever: 187
one best airport: 123
one worst airport: 11@
duty free shop: 91
airport ive ever: 81

Top 20 Fourgrams:

worst airport ive ever: 48
one best airport world: 31
worst airport ’ ever: 27
one best airport europe: 26
easy find way around: 21

Figure 8: Top 5 Bi-grams, Tri-grams and Four-grams

3. Using Ngrams in Python to generate the top 20 Uni-grams, Bi-grams, Trigrams and
Four-grams from all the Google Reviews.

4. Generate the following information and visualisations from Ngrams for the Google

Reviews by Airport:

(a) Top ten Bi-grams for each of the six airports.

(b) Top ten Trigrams for each of the six airports.
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Figure 9: Top 10 Tri-grams For Each Airport




5. Generate Bi-grams and Tri-grams for the top 5 aspect words:

(a) Airport
(b) Security
(c) Staff
(d) Flight
(e) Time
Top 10 Bigrams Containing “Airport”
worst airport 748
nice airport 450
manchester airport 390
good airport 343
best airport 305
international airport 21
airport ever 258
airport good 258
zurich airport 258
great airport 53
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Figure 10: Top 10 Bi-gram and Tri-gram for the Aspect "Airport’)

4.3 Data Preprocessing before NLP and ML

Before any natural language processing or machine learning techniques were deployed
there was a process to clean the data beforehand. The cleaning steps generate a new
feature called ’cleaned reviews comment’. Here are the steps involved:

e Convert the text to lowercase

e Remove any URLs

e Remove any emails

e Remove punctuation

e Remove numbers

e Tokenise the text

e Remove stop words and lemmatise

Rejoin tokens into strings

Remove extra white spaces

Remove leading and trailing white spaces



# Get stop
stop_words
lemmatizer

# Function

text
text
text
text
text
tokens

words

set(stopwords.words('english'))
WordNetLemmatizer()

to clean text

def clean_text(text):

str(text).lower() # Convert to Lowercase

re.sub(r"http\s+', "', text) # Remove URLs

re.sub(r'\S*@\s*\s?', "', text) # Remove emails
re.sub(f'[{string.punctuation}]’, "', text) # Remove punctuation
re.sub(r'\d+", "', text) # Remove numbers

word tokenize(text) # Tokenize the text
[lemmatizer.lemmatize(word) for word in tokens if word not in stop words] # Remove stopwords and Lemmatize
'.join(tokens) # Rejoin tokens into a string

re.sub(' +', ' ', text) # Remove extra whitespace
text.strip() # Remove leading/trailing whitespace
text

Figure 11: Python Code to Clean Data Before NLP and ML

4.4 Sentiment Analysis - Natural Language Processing (NLP)

Each of the NLP sentiment analyses was processed at different levels of the review left
by passengers for each airport. The "Whole Review’, 'Sentence Level’ and ’Aspect
Level’ with the objective of understanding which returned the best evaluation scores.
On the second line of each of the NPL sentiment files, you can enter the number of
aspects you want to run. The default number is 50 however you can change the number
as desired. The higher the aspect number the longer the coding will take to execute the

results.

# Capture the start time
start_time = time.time()

# Enter the top x amount of aspects to use in the Evaluation
num_of aspects = 58

#Data Collection
df = pd.read excel('Data 6 airports.xlsx")

Figure 12: Enter the number of aspects required

Each of the sentiments for NPL use the Google Star Ratings as a comparison for the
evaluation. Google Star ratings 4 and 5 = Positive, 3 = Neutral, and 1 and 2 = Negative.

# Map 5-point google star ratings te sentiments - 1 & 2 = Negative, 3 = Neutral, 4 & 5 = Positive
def map_rating to_sentiment(rating):
if rating in [1, 2]:
return ‘negative’
elif rating == 3:
return 'neutral’

else:

return 'positive’

# Apply mapping to actual sentiment ratings
data[ "actual sentiment'] = data['stars'].apply(map_rating to sentiment)

Figure 13: Google Star Rating Sentiment Ratings



4.4.1 Textblob

The positive, negative and neutral sentiments were detected using the Textblob library
from Python. The sentiment will add two new features to the data set, 'whole review
sentiment’ and 'whole review compound’. If the compound score is equal to 0, then
the sentiment is Neutral, if the compound score is greater than 0 then the sentiment is
Positive and if the compound score is less than 0 then the sentiment is negative.

# Function te calculate sentiment scores using TextBlob
def textblob_sentiment_score(text):

if pd.isna(text):
return @ # If text is NaN, return neutral (compound 8)

blob = TextBlob(text)

sentiment_score =
return sentiment_score

blob.sentiment.polarity

# Function to determine sentiment and compound score for a whole review

def whole review sentiment_textblob(review):
sentiment_score = textblob_sentiment_score(review)
# Determine sentiment label based on sentiment score

sentiment = ‘positive’ if sentiment score > @ else ‘negative’ if sentiment score < @

return {'sentiment’': sentiment, 'compound’: sentiment_score}

else 'neutral’

Whole Whole
publishedAtDate title stars et textTrans/ated Co'::n"';l:r:: char_count m“"g:::.':: E):l:‘a:::: Review Review
Sentiment  Compound
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Figure 14: Textblob Model

Comparing the Google star rating sentiment against the Texblob sentiment to get the
evaluation scores using the confusion matrix, accuracy, precision, recall and f1 scores.

Accuracy: @.581269162872825
Precision: @.68862386B8758322

Recall: @.681269162872805

F1 Score: @.6812525934626119

Confusion Matrix Textblob - Review Level
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Figure 15: Evaluation Scores for Textblob
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The positive, negative and neutral sentiments were detected using the Vader library
from Python. The sentiment will add two new features to the data set, 'whole review



sentiment’ and 'whole review compound’. If the compound score is equal to 0, then
the sentiment is Neutral, if the compound score is greater than 0 then the sentiment is
Positive and if the compound score is less than 0 then the sentiment is negative.

# Initialize VADER sentiment analyzer
analyzer = SentimentIntensityanalyzer()

# Whole Level Sentiment Analysis (Complete reivew)

def

def

vader_sentiment_score(text):
if pd.isna(text):
return {‘compound’: 8}

sentiment_dict = analyzer.polarity scores(text)

return sentiment_dict

whole_review sentiment_vader(review):

sentiment_dict = vader_sentiment_score(review)

compound = sentiment_dict[’compound”]
return {sentiment®:

‘positive’ if compound > & else 'negative’ if compound < @ else 'neutral’,

"compound’ : compound}
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Figure 16: Vader Model

Comparing the Google star rating sentiment against the Vader sentiment to get the
evaluation scores using the confusion matrix, accuracy, precision, recall and f1 scores.

Accuracy: ©,7a57511846139553
Precision: 8.7116861335385738
Recall: @.7057511846139553

Fl Score: @.7@71393814816351

Confusion Matrix Vader - Review Level

H

E' 860 1741 -
53 - 6000
3. me B8 1072
*E - 2000

5 - 9 1403 - 2000

B

negatiee meutral positive
Predicted

Figure 17: Evaluation Scores for Vader
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The positive, negative and neutral sentiments were detected using the NRCLex library
from Python. The sentiment will add two new features to the data set, 'whole review
sentiment’ and 'whole review compound’. If the compound score is equal to 0, then
the sentiment is Neutral, if the compound score is greater than 0 then the sentiment is
Positive and if the compound score is less than 0 then the sentiment is negative.



def nrc_sentiment_score(text):
if pd.isna(text):
return {'compound’: @}
nrc_obj = NRCLex(text)

return nrc_obj.affect_frequencies

def whole_review_sentiment_nrc(review):
sentiment_dict = nrc_sentiment_score(review)
# Calculate a compound score based on the affect freguencies
compound = sentiment_dict['positive’] - sentiment_dict['negative’]

return {
'sentiment’: ‘positive’ if compound > @ else 'negative’' if compound < @ else 'neutral’,
‘compound” : compound
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Figure 18: NRCLex Model

Comparing the Google star rating sentiment against the NRCLex sentiment to get
the evaluation scores using the confusion matrix, accuracy, precision, recall and f1 scores.

Accuracy: @.7857511846139553
pPrecision: @.7116861935089738
Recall: 8.7@57511846139553

Fl Score: @.7071293014816251
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Figure 19: Evaluation Scores for NRCLex

On all the Python files there is code to monitor the computation speed in seconds.
This was used mainly for the Aspect Level sentiment analysis as the higher the number
of aspects required the longer the computation.

4.5 Sentiment Analysis - Machine Learning (ML)

In this section, the different levels of sentiment were not used and all outcomes are based
on the complete review left by the passenger. The ML models used in this section are

10



# Capture the start time
start_time = time.time()

# Capture the end time
end time = time.time()

# Calculate the total runtime
total runtime = end time - start time

print(f"Total runtime: {total runtime} seconds™)

Total runtime: 95.29323768615723 seconds

Figure 20: Python Code to Provide Computation Time
Support Vector Machine (SVM), Random Forest and Naive Bayes.

4.5.1 Model Setup
All three ML methods use the below code to set up the data for the training and test.
e CountVectorizer - Turn the words into numbers

e Vectorizer = CountVectorizer()

e X = vectorizer.fit_transform(data[’Cleaned Review Comment’]) - This sec-
tion contains all the passenger’s reviews. It reads all the reviews and processes them
into a matrix.

e y = data[’actual sentiment’] - This part is how the passenger feels - Positive,
Negative or Neutral. This sentiment is determined based on the Google review star
ratings (4/5 = Positive, 3 = Neutral, 1/2 = Negative)

# SWM for whole

# Convert text to features using CountVectorizer

vectorizer = CountVectorizer()

X = vectorizer.fit transform(data[ 'Cleaned Review Comment'])
y = data[ "actual sentiment']

Figure 21: Python Code to Prepare Data for ML Methods

4.5.2 Model Train and Test

When applying all three models for the sentiment analysis 80 percent was used for training
and 20 percent for test. Random state seed is set at 42.

4.5.3 Evaluation Results

The results for all three MLL methods where evaluated against a confusion matrix, accur-
acy, precision, recall and f1 scores.
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ACCUracy: B.7889743145094287
Precision: @.7644296749567161
Recall: &.7800743149094287

F1 Score: @.7707053253682232
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Figure 22: Enter Caption

Accuracy: 8.7940083004273187
Precision: ©.7528032257208636
Recall: ©.7940083604273187
F1 Score: B.760076745390279]1

‘Confusion Matrix Random Forest - Review Level
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4.6 Blending NLP and ML for Sentiment Analysis

In this section Vader will blend with the three machine learning methods with the aim
to improve the evaluation scores. Vader was used as it achieved the highest evaluation
scores from the NLP sentiment. Similar to the machine learning section only the full

review level was used, leaving out the sentence and aspect level.

4.6.1 Model Setup

The same coding set-up as the machine learning methods in the previous section with
the only difference being at different Y value. y = data["Whole Review Sentiment’]
= Positive, Negative and Neutral determination based on compound score from Vader
(Instead of Google Review Star Ratings). Score less than 0 = Negative, Score greater

than 0 = Positive and Score equal to 0 = Neutral.
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Figure 23: Vader Features for use with ML Methods
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4.6.2 Model Train and Test

When applying all three models for the sentiment analysis 80 percent was used for training

Cleaned Review Extracted Hu:‘:::lw. RH:\:‘i::
Comment Neuns Sentiment  Compound
problem working [probdem
etficiently e tme] positive 0.6070
everything . o
wellorganized [everything] neutral 0.0000
new $Lanning [rachine
machane need .
people know use people l:::] negaine 04215

and 20 percent for test. Random state seed is set at 42.
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4.6.3 Evaluation Results

The results for all three ML methods where evaluated against a confusion matrix, accur-

acy, precision, recall and f1 scores.

Accuracy: B.B6785BB016728855
Precision: @.8683715278050575
Recall: @.86785880816720855

F1 Score: 8.8675849058978248

Confusion Matrix SVM & Vader - Review Level
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Accuracy: ©.7621922898281468
Precision: ©.7637110882300226
Recall: @.7621922898281468

F1 Score: ©.7310288287405908

Confusion Matrix NB & Vader - Review Level

Accuracy: 0.8362749651648862
Precision: @.8360843221927661
Recall: @.8362749651648862

Fl Score: 8.8353640394585004

Confusion Matrix - RF & Vader - Review Level
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Figure 24: Evaluation Results from Blended Approach
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Top 10 Bigrams for Dublin Airport
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Figure 25: Top 10 Bi-grams for All Airports
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Top 10 Trigrams for Dublin Airport

Top 10 Trigrams for Athens International Airport
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Figure 26: Top 10 Tri-grams for All Airports
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Figure 27: Top 10 Bi-grams and Tri-grams for "Airport’
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Top 10 Bigrams Containing "flight”

Top 10 Trigrams Containing “flight"
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Figure 28: Top 10 Bi-g

Top 10 Bigrams Containing "security”
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Figure 29: Top 10 Bi-grams and Tri-grams for ’Security’
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Figure 30: Top 10 Bi-grams and Tri-grams for "Staft’

Top 10 Bigrams Containing "time"
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Figure 31: Top 10 Bi-grams and Tri-grams for "Time’
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