

Configuration Manual

MSc Research Project

MSc in Artificial Intelligence

Vishnu Kumar Javvaji

Student ID: 23153539

School of Computing

National College of Ireland

Supervisor: Rejwanul Haque

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Vishnu Kumar Javvaji

Student ID:

23153539

Programme:

MSc in Artificial Intelligence

Year:

2023-2024

Module:

MSc Research Practicum

Lecturer:

Rejwanul Haque

Submission

Due Date:

12/08/2024

Project Title:

Adaptive Network Intrusion Detection Using Deep Reinforcement Learning

Word Count:

……1400………………………… Page Count: ………10………………………….…….………

I hereby certify that the information contained in this (my submission) is information pertaining to research I

conducted for this project. All information other than my own contribution will be fully referenced and listed in

the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the

Referencing Standard specified in the report template. To use other author's written or electronic work is illegal

(plagiarism) and may result in disciplinary action.

Signature:

Vishnu Kumar Javvaji

Date:

12/02/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) □

Attach a Moodle submission receipt of the online project submission, to

each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for

your own reference and in case a project is lost or mislaid. It is not sufficient to

keep a copy on the computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box

located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Vishnu Kumar Javvaji

Student ID: 23153539

1. Introduction

This project is oriented to the development of a Network Adaptive Intrusion Detection System

using Deep Reinforcement Learning and, in particular, a Deep Q-Network. The main objective

of the study is to increase the accuracy of NIDS by realising the power of DRL in detecting

and reacting to network intrusions in real time.

The DQN model is trained in this paper using the CICIDS 2017 dataset consisting of all

variations of normal and malicious network traffic: several classes of attacks, such as Brute

Force, Denial-of-Service, Infiltration, Botnet, and so on.

These two critical techniques, experience replay and epsilon decay, are used within the model

to make it robust and more effective in learning. This is coming from the fact that experience

replay allows the model to learn from previous experiences, by memorising and sampling them

in a random way within recent experiences, breaking the correlation among them. Epsilon

decay will ensure the model explores different actions sufficiently in the beginning stages of

training before slowly shifting to policy exploitation.

2. Setting Up the Environment

2.1. Link to Google Colab

Google Colab is a free cloud service for running Jupyter notebooks aimed at helping students

and working professionals execute their scripts in the safari of a web browser. Especially handy

for my machine learning projects, where powerful GPUs accelerate model training. Here's how

it's done:

Open Google Colab:

 Open any browser in your Computer and navigate to search bar and search for google

colab

 Login With gmail credentials to start.

Add a new notebook:

 Once the colab is opened Click on +New notebook.

Runtime configuration:

 At the very top of the Colab window, click Runtime > Change runtime type.

 Select the appropriate option from the dropdown in the Hardware accelerator section.

For example, you can choose GPU. Click "Save." This is essential when one wants to train

deep learning models, as it will be done more quickly.

2

2.2 Installation of Appropriate Libraries

You will need to install quite a few Python libraries running this project successfully. It is a set

of libraries that makes it possible for you to do all your data processing, model building,

training, and evaluation. You should be able to install them by just running this command in a

Colab code cell.

!pip install numpy pandas matplotlib &&

!pip install -q scikit-learn torch seaborn

This command performs the following installation:

numpy: For numerical operations.

Pandas: Manipulation and analysis of data.

matplotlib: Plotting and visualisation.

scikit-learn: To use for data preprocessing and model evaluation. torch:

PyTorch library to build and train the DQN model.

seaborn – Better looking visualisations.

3

Fig 1: Workflow of Setting Up the Environment and Running the Model

3. Uploading and Preparing Data

3.1 Steps for Uploading Necessary Files

The dataset is uploaded and prepared using the following steps:

Download the dataset:

 Download the dataset from CICIDS 2017 Dataset: The dataset must be in the format of

a CSV file.(https://paperswithcode.com/dataset/cicids2017)

4

Load Dataset on Colab:

 On the left sidebar of your Colab notebook, click on the folder.

 You click on the upload button, which is an upward arrow inside of a file, to upload a

data set from your local machine into the COLAB environment.

Check the Upload:

 After uploading, ensure this dataset is in your working directory by running:

 !ls

This command will list all the files in the working directory so you can be sure your data set is

properly uploaded.

3.2 Updating Folder Structures as Needed

Once you upload the files, proceed to make sure that your code correctly matches up all the

file path locations in the Colab space.

For instance, if you have a data wrangling that you named dataset1_ids.csv, you can load it

into a pandas DataFrame as:

Update all the paths related to your code in correspondence to the dataset and other files.

Fig 2: Data Preprocessing Workflow

5

4. Running the Model/System

4.1 Instructions for Running the Model

Now, let's go ahead in steps, after an appropriate setup of the environment and data preparation,

with running the DQN model.

Load and Preprocess Data:

 Load the dataset into a DataFrame using the pandas library.

 Clean data from duplications, missing values, and values normalisation.

Sample Code:

DQN Model Training:

 Define the DQN model with the architecture that includes an input layer, a hidden layer, and

an output layer.

 Train the model using experience replay and epsilon decay over a few epochs. While you are

training the model, make sure to train it using a validation set for evaluating its performance.

Example training loop:

6

Model Evaluation:

 Check the evaluation metrics post-training, which include accuracy, confusion matrix, and

ROC curve.

Example scoring code:

Visualise Results:

 Plot the training and validation accuracy and loss and show the ROC curve using Matplotlib.

Sample code for visualisation:

7

Fig 3: DQN Model Training Process

4.2 Saving and Loading Models

It is important to save the trained model so that you can reuse it without retraining. Here’s how

to save and load the model:

 Saving the Model:

torch.save(dqn_model.state_dict(), 'dqn_model.pth')

8

 Loading the Model:

 dqn_model.load_state_dict(torch.load('dqn_model.pth'))

By saving the model, you ensure that you can deploy or further evaluate it without having to

go through the training process again.

5. User Interface Overview

5.1 Explanation of User Interface

The user interface for this work majorly involves the outputs and visualisations as exhibited

under the Colab notebook. Here are the main walkthroughs of those:

Confusion Matrix:

 The confusion matrix presents the number of correct and incorrect predictions for each

class, indicating where the model may go wrong. This part is important to correctly understand

the performance displayed by the model both for normal and malicious network traffic.

ROC Curve:

 The ROC curve plots the trade-off of the true positive rate across different threshold

settings against the false positive rate. The Area Under the Curve (AUC) provides a measure

of performance, in which high values indicate good discrimination of classes.

Precision and Loss Graphs:

 Keep these plots on the screen to observe accuracy and model improvements during

training, which allows you to monitor the learning process. Consistent improvement in

validation accuracy with decreasing loss seems to be effective learning.

5.2 Tips for Effective Use

Keep count while moving:

 The accuracy and loss plots should be monitored periodically during training to observe

if the learning is actually being done effectively by the model. If overfitting is observed—

specifically, an increase in the training accuracy while the validation accuracy drops off—

consider early stopping or hyperparameter adjustment.

Evaluate Regularly:

 Use confusion matrices and ROC curves at different stages of training so that you are

able to continue gauging the classification performance of your model on a continuous basis.

It helps in recognising problems early and making appropriate changes.

Restoration, if needed:

 Notice how the model performs across classes using the confusion matrix. Indeed, a

high false positive rate suggests a need for more tuning, especially in a sensor-intensive mode

of application like NIDS.

9

Fig 5: Troubleshooting Flow

6. Troubleshooting

6.1 Common Issues and Solutions

 File Path Errors:

 In case of any 'no such file' kinds of error, double-check that you have specified your file paths

correctly. To be safe from all the file location-based problems in Colab, use absolute paths.

Memory Errors:

10

 Memory problems might occur while attempting to work with very large datasets or complex

models. One can try to defeat such limitations by reducing the batch size or working with a

smaller subset of the data.

Library Conflicts:

 Make sure you have all the additions and most up-to-date modules installed: If you notice that

there are discrepancies with these, you can upgrade them by using pip:

 !pip install --upgrade library_name

Model Convergence Issues:

 If a model is not converging or its loss is fluctuating, this could be improved by decrementing

or incrementing values, such as the learning rate, batch size, or epochs, and testing the

variations accordingly. Also, exploring new neural network architectures that give improvable

performances is worthwhile.

7. Conclusion

This manual is a step-by-step guide to the configuration, implementation, and debugging of an

Adaptive Network Intrusion Detection System running on the principle of Deep Reinforcement

Learning. You should have the ability to execute the DQN model to ensure the proper updating

of the target and current Q-values in improved network intrusion real-time detection with this

system. It embodies yet another historic improvement in the cybersecurity landscape through

harnessing the power of DRL toward adaptation to ever-changing and threat-evolving

environments.

References

Google. (n.d.). Google Colaboratory. Retrieved August 11, 2024, from

https://colab.research.google.com/

Scikit-learn developers. (n.d.). Scikit-learn: Machine learning in Python. Retrieved August 11,

2024, from https://scikit-learn.org/

TensorFlow developers. (n.d.). TensorFlow: An end-to-end open-source machine learning

platform. Retrieved August 11, 2024, from https://www.tensorflow.org/

Hunter, J. D., Droettboom, M., & Caswell, T. A. (n.d.). Matplotlib: Visualisation with Python.

Retrieved August 11, 2024, from https://matplotlib.org/

Python Software Foundation. (n.d.). PyPI: The Python Package Index. Retrieved August 11,

2024, from https://pypi.org/

