

Configuration Manual

MSc Research Project MSc In Artificial Intelligence

> Balaji Dinakaran Student ID: x22249842

School of Computing National College of Ireland

Supervisor: Prof. Victor Del Rosal

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Balaji Dinakaran	
Student ID:	x22249842	
Programme:	Master of Science in Artificial Intelligence	
Year:	2024	
Module:	MSc Research Project	
Supervisor:	Prof. Victor Del Rosal	
Submission Due Date:	12/08/2024	
Project Title:	Configuration Manual	
Page Count:	10	

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Balaji Dinakaran
Signature.	
Date:	12 August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Balaji Dinakaran x22249842

1 System Configuration

The project is done on 64-Bit Windows 11 pro–operating system with 8 GB RAM with Intel® Core[™] i5-8259U Processor having a base clock speed of 3.30 GHz.

Item	Value
OS Name	Microsoft Windows 10 Pro
Version	10.0.19045 Build 19045
Other OS Description	Not Available
OS Manufacturer	Microsoft Corporation
System Name	DESKTOP-CJA0QNI
System Manufacturer	Apple Inc.
System Model	MacBookPro15,2
System Type	x64-based PC
System SKU	
Processor	Intel(R) Core(TM) i5-8259U CPU @ 2.30GHz, 2301 Mhz, 4 Core(s), 8 Logical Processor(s)
BIOS Version/Date	Apple Inc. 2020.61.1.0.0 (iBridge: 21.16.2057.0.0,0), 11-11-2023
SMBIOS Version	3.3
Embedded Controller V	255.255
BIOS Mode	UEFI
BaseBoard Manufacturer	Apple Inc.
BaseBoard Product	Mac-827FB448E656EC26
BaseBoard Version	MacBookPro15,2
Platform Role	Mobile
Secure Boot State	On
PCR7 Configuration	Binding Not Possible
Windows Directory	C:\Windows
System Directory	C:\Windows\system32
Boot Device	\Device\HarddiskVolume1
Locale	United Kingdom
Hardware Abstraction L	Version = "10.0.19041.3636"
Username	DESKTOP-CJA0QNI\Balaji_Dinakaran
Time Zone	India Standard Time
Installed Physical Mem	8.00 GB
Total Physical Memory	7.85 GB
Available Physical Mem	2.57 GB
Total Virtual Memory	14.6 GB
Available Virtual Memory	6.63 GB

Figure 1: System Conifguration

2 Software Requirements

For the project we have used following software:

- 1. Python 3.11.4
- 2. Anaconda 2.4.3
- 3. VS Code
- 4. Jupyter Notebook

3 Python Libraries

The project uses following python libraries:

- 1. TensorFlow
- 2. Keras

- 3. numpy
- 4. matplotlib
- 5. pandas
- 6. sklearn
- 7. itertools
- 8. nltk
- 9. transformers
- 10. scipy

4 Dataset

- 1. The dataset is readily available at Kaggle and licensed by MIT. This dataset provides synthetic data related to vehicle maintenance to help predict whether a vehicle requires maintenance or not based on various features.
- 2. The model uses a dataset of 50,000 vehicles, featuring both categorical and numerical data on specifications, maintenance, and operational metrics.
- 3. Link https://www.kaggle.com/datasets/vehicle-maintenance-data

5 Data Preprocessing

- 1. Data is cleaned and process to remove unwanted columns from the data frame.
- 2. The data is label-encoded to convert categorical variables into a numerical format suitable for model training.

Figure 2: Label Encoded Data

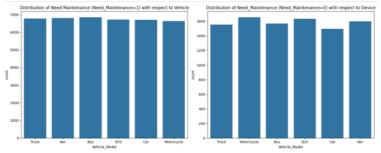
3. Following label encoding, feature selection such as spearman, pearson and SelectKBase to retain the most relevant variables that significantly contribute to the model performance.

#Feature Selection using spearman and pearson
List of date columns
date_columns = ['Service_Date', 'Warranty_Expiry_Date', 'Service_History']
filtered_df = pred_df.drop(columns=date_columns)
Assuming df is your DataFrame and target is your target variable
<pre>spearman corr = filtered df.corr(method='spearman')</pre>
pearson corr = filtered_df.corr(method='pearson')
spearman_target_corr = spearman_corr['Need_Naintenance']
pearson target corr = pearson corr['Need Naintenance']
here a first state of the second state of the
Define different thresholds
low threshold = 0.1 # Very weak to weak correlations
Inclusion of the second s
moderate_intendia = 0.3 # moderate to strong corrections high threshola = 0.5 # strong correlations
nign_threshold = 0.5 # Strong correlations
Determine a threshold for significance, e.g., 0.1
<pre># Decemble 0 in Eshold) w Signi)(clambe, e.g., 0.1 significant spearman features = spearman target corriabs(spearman target corr) > low threshold].index</pre>
<pre>significant_pearson_features = pearson_target_corr[abs(pearson_target_corr) > low_threshold].index</pre>
Combine significant features from both methods
Composite significant peatures from both methods significant features = list(set(significant_spearman_features) set(significant_pearson_features))
<pre># print(significant_features)</pre>
Threshold for multicollinearity, e.g., 0.9
Intestidua for matricolitation (y) e.g., 6.5
threshold = 0.9 to remove = set()
to_remove = set()
for feature in significant features:
for the feature in significant features:
print(other_feature)
<pre># print(abs(pearson_corr.Loc[feature, other_feature]))</pre>
if feature != other_feature and abs(pearson_corr.loc[feature, other_feature]) > threshold:
to_remove.add(other_feature)
first_selected_features = [feature for feature in significant_features if feature not in to_remove]
print(first_selected_features)

Figure 3: Feature Selection using Spearman and Pearson

Feature Selection using SelectKBest # Select top 10 features based on chi-squared
X = filtered df.drop(columns='Need Maintenance')
<pre>> = filtered df('keed Maintenance'l.astype('int')</pre>
select k best = SelectKBest(chi2, k=10)
x new = select k best.fit transform(X, y)
Get the scores for each feature
feature_scores = select_k_best.scores_
feature_names = X.columns # assuming X is a DataFrame
<pre>selected_features = feature_names[select_k_best.get_support()]</pre>
print("Selected features:", selected features)
print("selected restures; , selected_restures) print("selected restures; , selected_restures) print("selected_restures scores; , feature scores)
prince reactive scores, prescure_scores/
#training and test set based on selected features
X = pred df[selected features]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
print(X)
print(y)
filtered_df.head()

Figure 4: Feature Selection using SelectKBase


4. The figure 5 displays the final processed and cleaned dataset which serves as the foundation for training both supervised and deep learning algorithms.

	Vehicle_Model	Maintenance	History Fuel	Type Transmission_Typ	e Tire_Condition I	Brake_Condition	Battery_Status	Owner_Type	Mileage	Reported_Issues
0	4		1	1	0 1	1	2	1	58765	0
1	5		0	1	0 1	1	2	1	60353	1
2	C		2	1	0 1	0	2	0	68072	0
3	C		0	2	0 1	2	1	1	60849	4
4	C		2	2	1 0	0	2	2	45742	5
Eng	ine_Size Odor	meter_Reading	Service_Date	Warranty_Expiry_Date	Insurance_Premium	Service_History	Accident_Histo	ry Fuel_Effi	ciency N	leed_Maintenance
Eng	2000 2000	neter_Reading 28524	Service_Date 23-11-2023	Warranty_Expiry_Date 24-06-2025	Insurance_Premium				ciency N 22204	leed_Maintenance
Eng						. 6		3 13.6		leed_Maintenance 1 1
Eng	2000	28524	23-11-2023	24-06-2025	20782	6		3 13.6 0 13.6	22204	leed_Maintenance
Eng	2000 2500	28524 133630	23-11-2023 21-09-2023	24-06-2025 04-06-2025	20782 23489	6 7 7		3 13.6 0 13.6 0 14.3	22204 25307	leed_Maintenance

Figure 5: Final Label Encoded Data Frame

6 Data Analysis

1. The distribution of Need Maintenance with respect to Device whereas 1 represents maintenance required and 0 represents maintenance not required. This shows dataset contains different model with almost equivalent quantity to conduct further study.

Figure 6: Distribution of Need Maintenance with respect to vehicle 2. Distribution of 'maintenance' based on different issues as hue

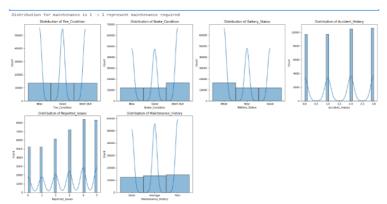


Figure 7: Distribution of 'maintenance' based on different issues as hue

7 Model Training and Testing

Vehicle maintenance prediction using supervised learning and deep learning (Neural network) algorithms.

1. Logistic Regression

<pre>lr = LogisticRogression() lr.fit(x_train, y_train)</pre>
Predictions on the test set y_pred = 1r.predict(X_test)
Calculate accuracy _score(y_test, y_pred) patrix(*scuracy: %.2f* % (accuracy))
<pre>precision = precision_score(y_test, y_pred) print('Precision: %_2f' % precision)</pre>
Calculat F1 score f1 - f1_score(y_test, y_pred) put('f1 score: %.2f' % f1)
Geiculate recell recall - recall store(xist, y_ared) print(*Becall: %_2f' % recall)
<pre># print(y_pred)</pre>

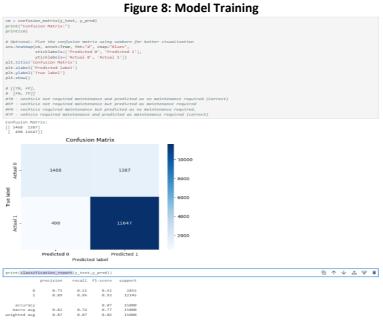
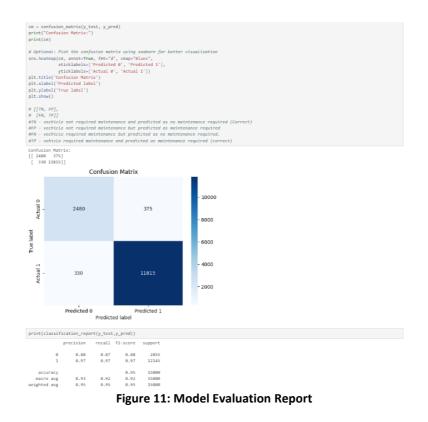



Figure 9: Model Evaluation Report

2. Decision Tree

•	
<pre># Initialize and fit the DecisionTreeClassifier DTC = DecisionTreeClassifier()</pre>	,
DTC = DTC.fit(X_train, y_train)	
# Predict the test set results	
<pre>y_pred = DTC.predict(X_test)</pre>	
# Calculate accuracy	
accuracy = accuracy_score(y_test, y_pred)	
<pre>print('Accuracy: %.2f' % (accuracy))</pre>	
# Calculate precision	
precision = precision_score(y_test, y_pred)	
<pre>print('Precision: %.2f' % precision)</pre>	
# Calculate FI score	
<pre>f1 = f1_score(y_test, y_pred)</pre>	
print('F1 Score: %.2f' % f1)	
# Calculate recall	
<pre>recall = recall_score(y_test, y_pred) print('Recall: %.2f' % recall)</pre>	
print(Kecall: x.2r x recall)	

Figure 10: Model Training

3. Gradient Boosting Regressor

Figure 12: Model Training

Figure 13: Model Evaluation Report

4. Random Forest

<pre>REC = Randominustlassifier() SEC = REC_fit(x_train, y_train) y_gred = REC_predict(X_test)</pre>	Ē	\uparrow	\downarrow	÷	₽	8
# Calculate accuracy accuracy - accuracy_icce(v_test, v_pred) print(*Accuracy: %.zff % (accuracy))						
<pre>precision = precision_score(y_test, y_pred) print('Precision: %.2f' % precision)</pre>						
# Colculate F1 score f1 = f1_score(y_tont, y_pred) print('F1 Score: %.2f' % fb)						
<pre># Colculate recail recail = recails.core(y_test, y_pred) print("Recails %.A" % recail)</pre>						

Figure 14: Model Training

Figure 15: Model Evaluation Report

5. Gated Recurrent Unit

Figure 16: Model Training

Figure 17: Model Evaluation Report

6. Long Short-Term Memory

Figure 18: Model Training

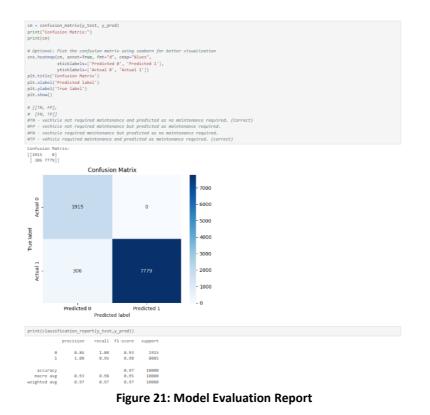



Figure 19: Model Evaluation Report

7. Minimal Gated Unit

	lodel Training
<pre># Calculate recall recall = recall_score(y_test, y_pred) prist("Socall: %.2f" % recall)</pre>	
<pre>f1 = f1_score(y_text, y_pres) print('F1 icore: 5.2f' 3 f1)</pre>	
T Calculate #1 score	
pression = pression_score(y_test, y_pres) print('Presision: X.2f' X presision)	
# Calculate precision precision = precision_score(y_test, y_pred)	
print('Accuracy: 3.27' 3 accuracy)	
# Calculate accuracy accuracy = accuracy_score(y_test, y_pred)	
y_pred = np.round(y_pred_prob) = Since the output is probabilistic, round to get	class productions
y_pred_prob = model.predict(x_text)	
# Predict on the text data	
<pre>lack, accuracy = model.evaluate(x_text, y_text) print(('iest Accuracy: (accuracy:.26)')</pre>	
E Fedluate the model on the test data	
<pre># Frais the model for 10 epochs model.fit(x_trais, y_trais, epochs.10, batch_size.22, validation_data=(x_test, y_</pre>	:+::))
<pre>model.compile(optimizer-Adam(), lock='binary_crossentropy', metrick=['accuracy'])</pre>	
# Compile the model	
<pre>eddl.idd(Mad(unit(:%e)) # Die the Cuiton Mar Layer eddl.idd(Sence(1, activation='cignoid'))</pre>	
s angles the main-mains model model = tequential() model_add(Madjunitcide)) IF use the custom MBH Layer	
# Define the Mig-based model	
X_train = np.expand_dims(X_train, axis=-1) X_test = np.expand_dims(X_test, axis=-1)	
# Rechape the data to fit the MBU input requirements	
<pre>x_train = scaler.fit_transform(x_train) x_text = scaler.transform(x_text)</pre>	
scaler = StandardScaler()	
# Feature scaling	
<pre># Split the data into training and test sets %_train, %_test, y_train, y_test = train_test_split(%, y, test_size=0.2, random_s</pre>	tate-(2)
<pre># y = np.array() # Define or load your labels here</pre>	
# Assuming X and y are your features and labels # X = np.array() # Define or load your feature dataset here	
<pre>def coll(solf, inputs): return solf.rem(inputs)</pre>	
self.rns = RMM(MAXCell(units)) $~\sigma$ RMM (ayer wrapping the custom MAXCell	
<pre>super(MGU, celf)init() celf.units = units</pre>	
<pre>class med(tayer): definit(celf, units):</pre>	
# define a wrapper layer to create an HNN with MGD	
return h, [h]	
<pre>h_candidate = tf.tach(tf.wateul(inputs, self.ws) + r * (tf.wateul(h_prev, h = (1 - r) * h_prev + r * h_candidate</pre>	
h_prev = states[0] r = tf.signoid(tf.satsul(inputs, self.wr) + tf.satsul(h_prev, self.ur) +	uelf.br)
<pre>def call(celf, inputs, states):</pre>	
self.br = self.add_weight(shape=(self.units,), initializer='zeros', rame=	'br')
<pre>celf.ur = celf.ndd_weight(shape=(celf.units, celf.units), initializer='gl celf.bh = celf.ndd_weight(shape=(celf.units,), initializer='zeros', rase=</pre>	orst_uniform', name='Ur')
<pre>self.wh = self.add_weight(shape=(self.units, self.units), initializer='gl self.wr = self.add_weight(shape=(input_shape[-t], self.units), initialize</pre>	r='glorot_uniform', name='Wr')
celf.mx = celf.add_weight(chape=(input_chape[-1], celf.units), initialize	"glorat_uniform', name.'Hz')
def build(self, input_shape):	
celf.units = units celf.state_size = units = add the state_size_attribute	
<pre>definit(celf, units): cuper(MGUCell, celf)init()</pre>	
class modell(Layer):	
minimal Gated Unit (MGU) # Define the Minimal Gated Unit (MGU) as a custam layer	

Figure 20: Model Training

