Configuration Manual

MSc Research Project

MSc in Artificial Intelligence

Saloni Suhas Deshpande

Student ID: x22197001

School of Computing

National College of Ireland

Supervisor: Mayank Jain

National College of Ireland MSc Project Submission Sheet School of Computing

Student Name:	Saloni Suhas Deshpande		
Student ID:	x22197001		
Programme:	Msc Artificial Intelligence Year:2023 - 2024		
Module:	Practicum (H9PRAC)		
Supervisor:	Mayank Jain		
Submission Due Date:			
Project Title:	Hybrid Bayesian CNN-GAN architecture for Deepfake detection		

Word Count:	539	Page Count14
-------------	-----	--------------

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:

Date:8/08/2024.....

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only		
Signature:		
Date:		
Penalty Applied (if applicable):		

Configuration Manual

Saloni Suhas Deshpande Student ID: x22197001

1 System and library requirements

1.1 Hardware configuration

Following are the details of the system used for the experiment:

Feature	Configurations
Operating System	MacOS Sonoma
System Memory	288.33 GB
Processor	Apple M1
Hard Drive	8 GB

1.2 Software configuration

The following libraries are necessary to run the code and compile the experiment with the right versions:

- Torch 2.3.1+cu121
- Pillow 10.2.0
- Numpy: 1.19.5
- Keras: 2.6.0
- Matplotlib: 3.2.2
- sklearn: 0.23.1
- Tensorflow: 2.5.0

1.3 Data source

The dataset was 'The Deepfake Detection Challenge' which was chosen from Kaggle and we have chosen the sample dataset from that which is 4.44 GB and only 400 videos with the following file contents:

train_sample_videos.zip - a ZIP file containing a sample set of training videos and a metadata.json with labels. the full set of training videos is available through the links provided above.

sample_submission.csv - a sample submission file in the correct format.

test_videos.zip - a zip file containing a small set of videos to be used as a public validation set.

2. Preprocessing

2.1 Set up

We have used Google Colab for the experiment and uploaded our data to Google drive and connected it through that:

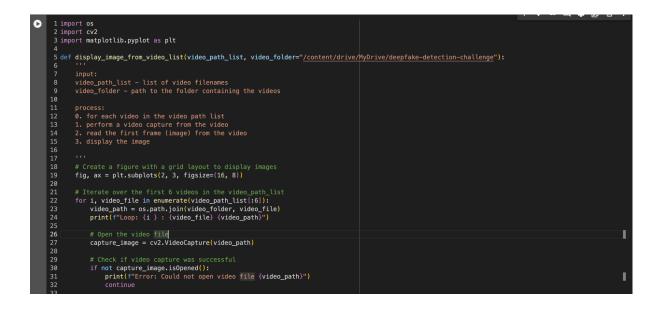
Following are the files in our data source:

Now we must import all the libraries needed:

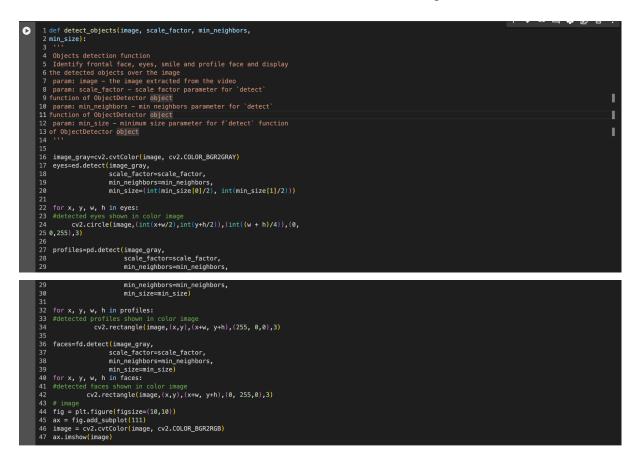
2.2 Face Detection and Frame Extraction

[] 1 from facenet_pytorch import MTCNN, InceptionResnetV1, extract_face

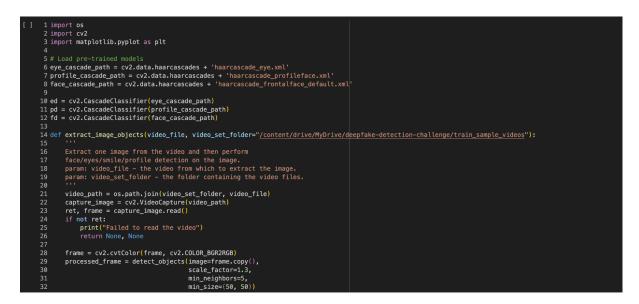
After importing all the libraries, let us move forward to the following functions:

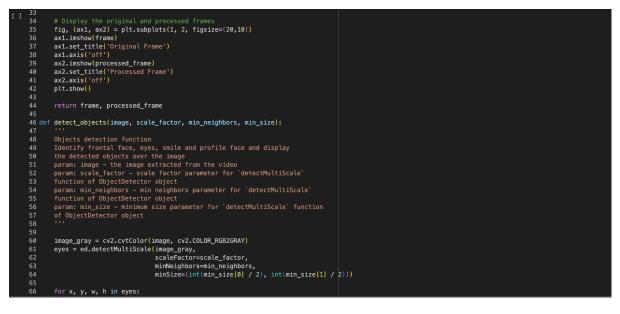

Let us now create a function to count train and test dataset features. The following code takes in 4 features from the data frame.

After feature training, we will now implement Cv2 to capture frames in videos. The following function will take the file path and then read all the images.



Function to extract and compare different images from videos:

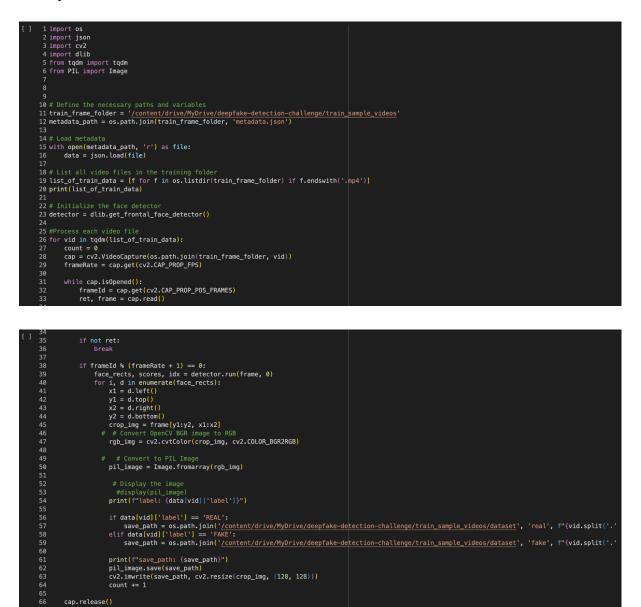

Now we will code a function to detect face features from the image:




Function to play videos during initial exploration of the dataset:

			 . ت <u>م</u>
0		import os	
		from IPython.display import HTML	
		from base64 import b64encode	
	5 dei 6	<pre>jef play_video(video_file, subset="/content/drive/MyDrive/deepfake-detection-challenge/train_sample_videos"):</pre>	
	о 7	Display video	
	8	Display video	
	9	param. Vice_inte - the name of the viceo file of display param: subset - the folder where the video file is located	
	10	param, subset = che fotor inter the video fite s course and so and the second s	
	11	in a content of very second a content of very second a content of the second a content of very second a content o co	
	12	video path = os.path.join(subset, video file)	
	13		
	14	try:	
	15	# Read the video file as binary data	
		video_data = open(video_path, 'rb').read()	
	17		
	18	# Encode the video data to base64	
	19	video_base64 = b64encode(video_data).decode()	
	20		
	21	# Construct the data URL for the video	
	22	data_url = "data:video/mp4;base64," + video_base64	I
	24	# Display the video using HTML5 video tag	
	25	return HTML(""" <video controls="" width="500"><source src="%s" type="video/mp4"/></video> """ % data_url)	
	26		
	27 28	except FileNotFoundError:	
	28 29	return HTML(f"Video file '{video_file}' not found in folder '{subset}'.") except Exception as e:	
	29 30	except exception as e: return HTML(fr=pbError: {e}-")	
	20		

Now we will write 2 functions, the first one to extract the frames and the second to detect objects:



The above-mentioned code also can display an example and we selected a file to see how it works and following was the output for our chosen image:

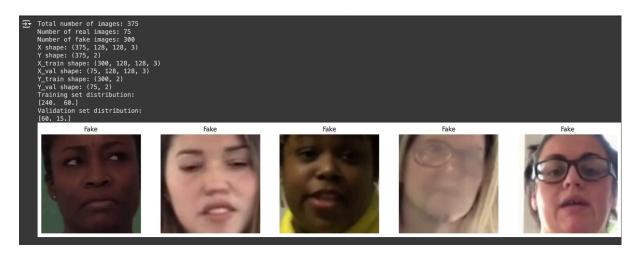
Further, we will generate a folder with all the captured frames from the videos and label and classify them:

if data[vid]['label'] == 'REAL':
 save_path = os.path.join('/content/drive/MyDrive/deepfake-detection-challenge/train_sample_videos/dataset', 'real', f"{vid.split('.'
 elif data[vid]['label'] == 'FAKE':
 save_path = os.path.join('/content/drive/MyDrive/deepfake-detection-challenge/train_sample_videos/dataset', 'fake', f"{vid.split('.'
 save_path = os.path.join('/content/drive/MyDrive/deepfake-detection-challenge/train_sample_videos/dataset', 'fake', f"{vid.split('.')
 save_path = os.path.join('/content/drive/MyDrive/deepfake-detection-challenge/train_sample_videos/dataset', 'fake', f"{vid.split('.')

Convert to PIL Image
pil_image = Image.fromarray(rgb_img)

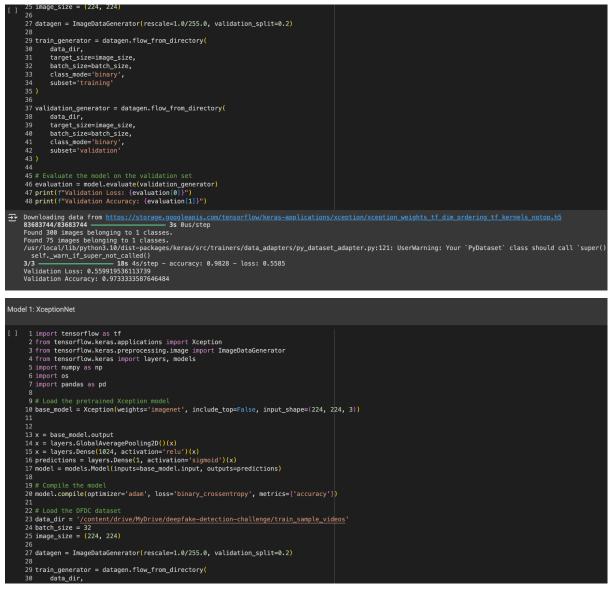
count += 1

Display the image #display(pil_image) print(f"label: {data[vid]['label']}")

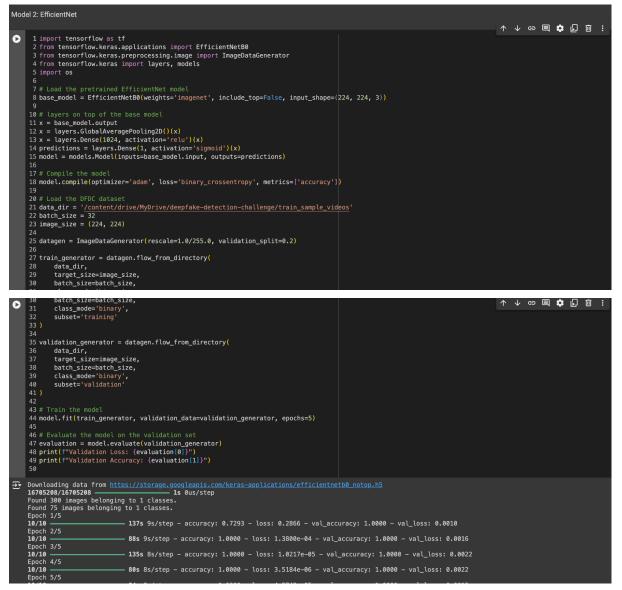

Following is the output for our above function and it basically lists all the frames we have have labels and sorts them in the right folder while saving the paths.

[] 65 66 67	cap.release()	
	<pre>aapnvogymq.mp4', 'aagfhgtpmv.mp4', 'acqfdwsrhi.mp4', 'abofeumbvv.mp4', 'abqwwsp % 1/400 [00:08<58:34, 8.81s/it]label: FAKE ye_path: /content/drive/MyDrive/deepfake-detection-challenge/train_sample_videc % 1/400 [00:18<1:20:20; 9.355/it]label: FAKE ye_path: /content/drive/MyDrive/deepfake-detection-challenge/train_sample_videc [% 4/400 [00:18<1:20:20; 9.355/it]label: FAKE ye_path: /content/drive/MyDrive/deepfake-detection-challenge/train_sample_videc [% 6/400 [00:18<1:20:20; 9.355/it]label: FAKE ye_path: /content/drive/MyDrive/deepfake-detection-challenge/train_sample_videc [% 6/400 [00:56<1:03:02, 9.606/it]label: FAKE ye_path: /content/drive/MyDrive/deepfake-detection-challenge/train_sample_videc 2% 6/400 [00:106<54:43, 8.355/it] label: FAKE ye_path: /content/drive/MyDrive/deepfake-detection-challenge/train_sample_videc 2% 8/400 [01:05<55:58, 6.965/it]label: FAKE ye_path: /content/drive/MyDrive/deepfake-detection-challenge/train_sample_videc 2% 10/400 [01:105<35:55, 5.835/it]label: FAKE ye_path: /content/drive/MyDrive/deepfake-detection-challenge/train_sample_videc 3% 11/400 [01:20<34:17, 5.295/it]label: FAKE ye_path: /content/drive/MyDrive/deepfake-detection-challenge/train_sample_videc 3% 11/400 [01:20<34:17, 5.295/it]label: FAKE ye_path: /content/drive/MyDrive/deepfake-detection-challenge/train_sample_videc 3% 11/400 [01:20<34:17, 5.295/it]label: FAKE ye_path: /content/drive/MyDrive/deepfake-detection-challenge/train_sample_videc 3% 14/400 [01:20<34:21; 4.955/it]label: FAKE ye_path: /content/drive/MyDrive/deepfake-detection-challenge/train_sample_videc 3% 14/400 [01:32<329:55, 4.655/it]label: FAKE ye_path: /content/drive/MyDrive/deepfake-detection-challenge/train_sample_videc 3% 15/400 [01:34<2:29:55, 4.655/it]label: FAKE ye_path: /content/drive/MyDrive/deepfake-detection-challenge/train_sample_videc 3% 16/400 [01:34<2:29:57, 4.655/it]label: FAKE ye_path: /content/drive/MyDrive/deepfake-detection-challenge/train_sample_videc 3% 16/400 [01:34<2:29:57, 4.655/it]label: FAKE ye_path: /cont</pre>	os/dataset/fake/aagfhgtpmv_0.png os/dataset/fake/aagfhgtpmv_0.png os/dataset/fake/abqwwspghj_0.png os/dataset/fake/acifjvzvpm_0.png os/dataset/fake/acifjvzvpm_0.png os/dataset/fake/acxnxvbsxk_0.png os/dataset/fake/acxnxvbsxk_0.png os/dataset/fake/acxnyricp_0.png os/dataset/fake/acxwigylke_0.png os/dataset/fake/aclpi.png os/dataset/fake/aellfnikygj_0.png os/dataset/fake/aellpng_0.png
45	ve_path: /content/drive/MyDrive/deepfake-detection-challenge/train_sample_videc ₩ 18/400 [01:50<27:03, 4.255/il]label: FAKE we path: /content/drive/MyDrive/deenfake-detection_challenge/train_sample_videc	

We now move on to flattening the images and splitting them between training data and test data



Thus we received the following output with all the descriptions:

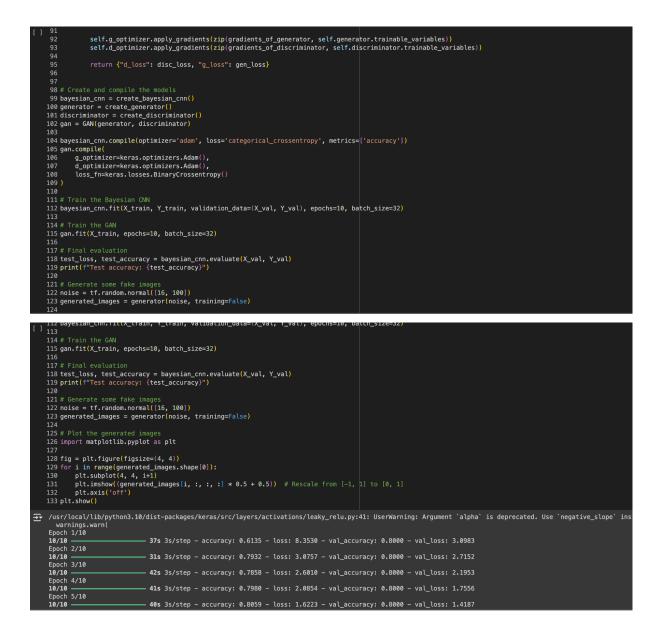


3. Implementation

3.1 Xception model

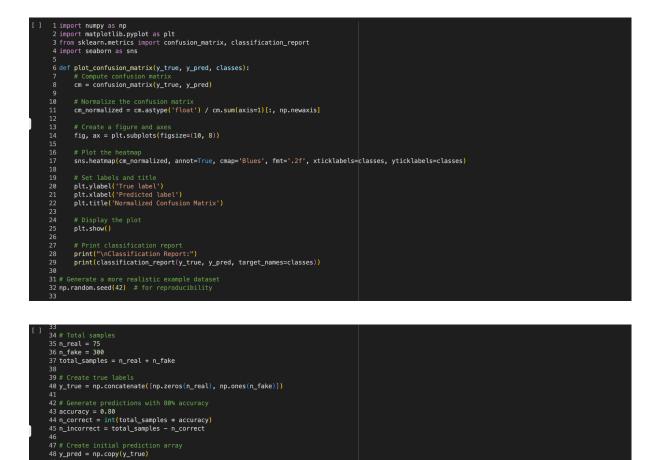
3.2 EfficientNet

Validation Loss: 0.001265091821551323 Validation Accuracy: 1.0


3.3 Proposed model: Bayesian CNN-GAN model

Following is the code for our model:

[] 30 layers.Reshape((16, 16, 256)), 33 layers.Set:Normalization(), 34 layers.BatchWormalization(), 35 layers.Set:Normalization(), 36 layers.Conv2DTranspose(64, kernel_size=4, strides=2, padding='same', use_bias=False), 37 layers.BatchWormalization(), 38 layers.LeakyReLU(alpha=0.2), 39 layers.Conv2DTranspose(3, kernel_size=4, strides=2, padding='same', use_bias=False, activation='tanh') 40 layers.Conv2DTranspose(3, kernel_size=4, strides=2, padding='same', use_bias=False, activation='tanh') 41 [], 42 return model 43 # Define the Discriminator(); 44 layers.LeakyReLU(alpha=0.2), 45 layers.Conv2D1/28, kernel_size=4, strides=2, padding='same', input_shape=(128, 128, 3)), 46 layers.LeakyReLU(alpha=0.2), 57 layers.LeakyReLU(alpha=0.2), 58 layers.LeakyReLU(alpha=0.2), 59 layers.LeakyReLU(alpha=0.2), 50 layers.LeakyReLU(alpha=0.2), 51 layers.LeakyReLU(alpha=0.2), 52 layers.LeakyReLU(alpha=0.2), 53 layers.LeakyReLU(alpha=0.2), 54 layers.LeakyReLU(alpha=0.2), 55 layers.LeakyReLU(alpha=0.2), 56 layers.Flatten(), 57 layers.LeakyReLU(alpha=0.2), 58 layers.LeakyReLU(alpha=0.2), 59 layers.LeakyReLU(alpha=0.2), 50 layers.LeakyReLU(alpha=0.2), 51 layers.LeakyReLU(alpha=0.2), 52 layers.LeakyReLU(alpha=0.2), 53 layers.LeakyReLU(alpha=0.2), 54 layers.LeakyReLU(alpha=0.2), 55 layers.LeakyReLU(alpha=0.2), 56 layers.LeakyReLU(alpha=0.2), 57 layers.LeakyReLU(alpha=0.2), 58 layers.LeakyReLU(alpha=0.2), 59 layers.LeakyReLU(alpha=0.2), 50 layers.LeakyReLU(alpha=0.2), 51 layers.LeakyReLU(alpha=0.2), 52 layers.LeakyReLU(alpha=0.2), 53 layers.LeakyReLU(alpha=0.2), 54 layers.LeakyReLU(alpha=0.2), 55 layers.LeakyReLU(alpha=0.2), 56 layers.LeakyReLU(alpha=0.2), 57 layers.LeakyReLU(alpha=0.2), 58 layers.LeakyReLU(alpha=0.2), 59 layers.LeakyReLU(alpha=0.2), 50 layers.LeakyReLU(alpha=0.2), 51 layers.LeakyReLU(alpha=0.2), 52 layers.LeakyReLU(alpha=0.2), 53 layers.LeakyReLU(alpha=0.2), 54 layers.LeakyReLU(alpha=0.2), 55 layers.LeakyReLU(alpha=0.2), 56 layers.LeakyReLU(alpha=0.2), 57 layers.LeakyReLU(alpha=0.2), 58 layers.LeakyReLU(alpha=0.2),


[] 60 # Define the GAN 62 class GAN(keras.Model): 63 def __init__(self, generator, discriminator): 64 super(GAN, self).__init__() 65 self.generator = generator 66 self.discriminator = discriminator 67 68 def compile(self, g_optimizer, d_optimizer, loss_fn): 69 super(GAN, self).compile() 70 self.g_optimizer = g_optimizer 71 self.d_optimizer = d_optimizer 72 self.loss_fn = loss_fn

69	<pre>super(GAN, self).compile()</pre>	
70	<pre>self.g_optimizer = g_optimizer</pre>	
71	self.d_optimizer = d_optimizer	
	self.loss_fn = loss_fn	
74	<pre>def train_step(self, real_images):</pre>	
	<pre>batch_size = tf.shape(real_images)[0]</pre>	
76	<pre>noise = tf.random.normal(shape=(batch_size, 100))</pre>	
78	with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:	
	<pre>generated_images = self.generator(noise, training=True)</pre>	
80		
81	<pre>real_output = self.discriminator(real_images, training=True)</pre>	
82	<pre>fake_output = self.discriminator(generated_images, training=True)</pre>	
83		
84	<pre>gen_loss = self.loss_fn(tf.ones_like(fake_output), fake_output)</pre>	
85	<pre>real_loss = self.loss_fn(tf.ones_like(real_output), real_output)</pre>	
86	<pre>fake_loss = self.loss_fn(tf.zeros_like(fake_output), fake_output)</pre>	
87	disc_loss = real_loss + fake_loss	
88		
89	gradients_of_generator = gen_tape.gradient(gen_loss, self.generator.train	
90	<pre>gradients_of_discriminator = disc_tape.gradient(disc_loss, self.discrimin</pre>	ator.trainable_variables)
91		
92	<pre>self.g_optimizer.apply_gradients(zip(gradients_of_generator, self.generat</pre>	
93	<pre>self.d_optimizer.apply_gradients(zip(gradients_of_discriminator, self.dis</pre>	criminator.trainable_variables))

4. Evaluation

For evaluation of our proposed model, we have performed a confusion matrix using the following code:

References

50 # Randomly flip some predictions to achieve 80% accuracy 51 flip_indices = np.random.choice(total_samples, n_incorrect, replace=False) 52 y_pred[flip_indices] = 1 - y_pred[flip_indices]

53 54 # Shuffle the arrays 55 p = np.random.permutation(total_samples) 56 y_true, y_pred = y_true[p], y_pred[p]

60 61 # Call the function 62 plot_confusion_matrix(y_true, y_pred, classes) 63 64 # Print overall accuracy 65 print(f"\n0verall Accuracy: {accuracy:.2%}")

58 # Class names 59 classes = ['Real', 'Fake']

[1] Huilgol, P. (2020). Top 4 Pre-Trained Models for Image Classification | With Python Code. [online] Analytics Vidhya. Available at:

https://www.analyticsvidhya.com/blog/2020/08/top-4-pre-trained-models-for-image-classification-with-python-code/.